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... ← Lévy processes → ...
↙ ↘

Stochastic differential equations Gaussian processes or

Markov processes Infinitely divisible processes

Semimartingales
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1 A random vector X is called infinitely divisible if for all n ≥ 1
there exists Y1, . . . ,Yn i.i.d. such that

X D= Y1 + · · ·+ Yn.

2 A process (Xt)t∈T is called infinitely divisible if for all n ≥ 1
and t1, . . . , tn ∈ T , (Xt1 , . . . ,Xtn ) are infinitely divisible.

3 A Lévy process is an example of an infinitely divisible process.

4 Typically, infinitely divisible processes are:

1 not Markov processes
2 not semimartingales
3 do not have independent increments
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A key class of stationary infinitely divisible processes are the
moving averages

Xt =
∫
R

g(t − s) dLs

1 g : R→ R is a deterministic function
2 L = (Lt)t∈R is a Lévy process indexed by R.
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Assumptions:

1

Xt =
∫
R
{g(t − s)− g0(−s)} dLs

2 L is a symmetric Lévy process ∼ (0, σ2, ν)

3 g(t) ∼ c0tα as t → 0, α > 0

4 g ∈ C1((0,∞))

Remark: (Xt) is an infinitely divisible process with stationary
increments. Moreover, X has typical continuous sample paths!
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The Blumenthal-Getoor index β of L = (Lt)t∈R is defined as

β := inf
{

r ≥ 0 :
∫ 1

−1
|x |r ν(dx) <∞

}
.
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Fractional Lévy processes

In the special case g(t) = g0(t) = tα+, X is called a
fractional Lévy process and has the form

Xt =
∫ t

−∞

{
(t − s)α − (−s)α+

}
dLs .

If in addition, L is an β-stable Lévy process then X is the
linear fractional stable motion with Hurst index H = α + 1/β.
Here X is self-similar with index H, i.e. for all a > 0

(Xat)t≥0
D= (aHXt)t≥0.

For β = 2, X is the fractional Brownian motion is Hurst index
H := α + 1/2.
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From: Simulating Sample Paths of Linear Fractional Stable
Motion by Wu, Michailidis and Zhang.
22
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Figure 1. Top, middle and bottom panels: realizations of linear fractional

stable motions for Æ = 1.8, Æ = 1.2 and Æ = 0.6. In all cases, the left panel

corresponds to H = .2, the middle panel to H = .5 and the right panel to

H = .8. The x°axis represents time (t = k/n, k = 0, 1, 2, · · · , n), while on

the y°axis the values of the LFSM process are given.
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Power variations

For a stochastic process X = (Xt)t≥0 and p > 0 we define the
the power variation of X by

V (p)n :=
n∑

i=1
|X i

n
− X i−1

n
|p.

In the following we will study the asymptotic behaviour of the
functional V (p)n as n→∞.
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Very little is known outside the two settings:

1 Itô semimartingales
2 Gaussian processes.

Two exceptions are the two works
1 The work [1] on the quadratic variation of the Rosenblatt

process.
2 The work [2] on power variation of a class of fractional Lévy

processes.

——————
[1] C. Tudor and F. Viens (2009). Variations and estimators for self-similarity
parameters via Malliavin calculus. Ann. Probab. 37.
[2] A. Benassi, S. Cohen and J. Istas (2004). On roughness indices for
fractional fields. Bernoulli 10(2), 357–373.
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Power variation for the fractional Brownian motion:
First order asymptotics

Let X be a fractional Brownian motion with Hurst exponent H.

Using ergodic theory it follows that:
First order asymptotics for X : For any H ∈ (0, 1) we have

n−1+pHV (p)n
P−→ mp := E[|X1|p] n→∞.
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We will see that the limit theory for power variation

V (p)n =
n∑

i=k
|X i

n
− X i−1

n
|p as n→∞

depends heavily on the interplay between the three parameters

p︸︷︷︸
power

α︸︷︷︸
behaviour of g at 0

and β︸︷︷︸
BG-index of L
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First order asymptotics for power variation

Theorem (B., Lachièze-Rey and Podolskij)
(i): Assume that L is a SβS process with β ∈ (0, 2).
If α ∈ (0, 1− 1/β) and p < β, we obtain

np(α+1/β)−1V (p)n
P−→ mp.
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First order asymptotics for power variation

Theorem (cont.)
Assume that p ≥ 1.

(ii): If α > 1− 1/p, p > β or α > 1− 1/β, p < β, we deduce

np−1V (p)n
P−→
∫ 1

0
|Fs |pds

with
Fs =

∫ s

−∞
g ′(s − u) dLu.
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Theorem (cont’)
(iii): If α ∈ (0, 1− 1/p) and p > β, we obtain

nαpV (p)n
L−s−→ |c0|p

∑
m: Tm∈[0,1]

|∆LTm |pVm

where (Tm)m≥1 are jump times of L, (Vm)m≥1 are certain i.i.d.
sequence of random variables independent of L.
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Theorem
(iii): If α ∈ (0, 1− 1/p) and p > β, then

nαpV (p)n
L−s−→ |c0|p

∑
m: Tm∈[0,1]

|∆LTm |pVm := Z

1 The limit Z is infinitely divisible with Lévy measure

(ν ⊗ η) ◦
(
(y , v) 7→ |c0y |pv

)−1

where η denotes the law of

V =
∞∑

l=0
|(l + U)α − (l + U − 1)α+|p,

U ∼ U [0, 1].
2 Convergence in probability does not hold.
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Summary of first order asymptotics

Theorem
(i): Assume that L is a β-stable Lévy process with β ∈ (0, 2).
If α ∈ (0, 1− 1/β) and p < β, we obtain

np(α+1/β)−1V (p)n
P−→ mp.

(ii): Assume p ≥ 1. If α > k − 1/p, p > β or
α > k − 1/β, p < β, we deduce

nkp−1V (p)n
P−→
∫ 1

0
|F (k)

s |pds.

(iii): If α ∈ (0, k − 1/p) and p > β, we obtain

nαpV (p)n
L−s−→ |c0|p

∑
m: Tm∈[0,1]

|∆LTm |pVm ∼ ID.
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Remarks

The above three cases covers all possible cases α > 0,
β ∈ [0, 2) and p ≥ 1 besides the three boundary cases:

α = k − 1/p, α = k − 1/β, p = β.

The two cases

α = k − 1/p and p > β

α = k − 1/β and p < β/2

are treated in a joint work with M. Podolskij.
Additional logarithmic scaling occur in these cases.
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Second order asymptotics for case (i)

”Classical” results of the form

an

n∑
i=1

Yi
d→ U n→∞.

where (Yi )i≥1 is a stationary sequence which satisfies one of the
following

1 (Yi )i≥1 are independent
2 (Yi )i≥1 are martingale difference
3 (Yi )i≥1 are Markov chain
4 (Yi )i≥1 are strongly mixing

are never applicable.
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Second order asymptotics

Theorem (Breuer–Major [1], Taqqu [2])

Suppose that X is the fractional Brownian motion with Hurst
index H ∈ (0, 1). The following assertions hold:
(i) Assume that H ∈ (0, 3/4). Then

√
n
(
n−1+pHV (p)n −mp

) d−→ N (0, vp).

(ii) When H ∈ (3/4, 1) it holds that

n2−2H
(
n−1+pHV (p)n −mp

) d−→ Z ,

where Z is a Rosenblatt random variable.
[1] Breuer and Major (1983). Central limit theorems for nonlinear functionals
of Gaussian fields. Journal of Multivariate Analysis 13.
[2] Taqqu (1979). Convergence of integrated processes of arbitrary Hermite
rank. Z. Wahrsch. Verw. Gebiete 50.
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Second order asymptotics associated with case (i)

Theorem (B., Lachièze-Rey and Podolskij)
Assume that L is a β-stable Lévy process with β ∈ (0, 2).
For α ∈ (0, 1− 1/β) and p < β/2, it holds that

n1− 1
(1−α)β

(
np(α+1/β)−1V (p)n −mp

) d−→ S(1−α)β

where S(1−α)β is a totally right skewed (1− α)β-stable random
variable with mean zero.
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Higher order differences

For k ≥ 1 we define the k-th order increments of X via

∆n
i ,kX :=

k∑
j=0

(−1)j
(

k
j

)
X(i−j)/n.

For instance,

∆n
i ,1X = Xi/n−X(i−1)/n and ∆n

i ,2X = Xi/n−2X(i−1)/n+X(i−2)/n.

The power variation of k-th order increments of X is given by
the statistic

V (p, k)n :=
n∑

i=k
|∆n

i ,kX |p.
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Higher order differences

Theorem (B., Lachièze-Rey and Podolskij)
Assume that L is a SβS Lévy process with β ∈ (0, 2). Let p < β/2.
(a): For α ∈ (0, k − 2/β), we obtain

√
n
(
np(α+1/β)−1V (p, k)n − c

) d−→ N (0, v2).

(b): For α ∈ (k − 2/β, k − 1/β), it holds that

n1− 1
(1−α)β

(
np(α+1/β)−1V (p, k)n − c

) d−→ S(k−α)β

where S(k−α)β is a totally right skewed (k − α)β-stable random
variable with mean zero.
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Thank you for your attention!!!
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