Power variation for a class of Lévy driven moving averages

Andreas Basse-O'Connor joint work with R. Lachièze-Rey and M. Podolskij

Aarhus University, Denmark
Conference on Ambit Fields and Related Topics.
August 15-18, 2016. Aarhus, Denmark.

Stochastic differential equations
Markov processes
Semimartingales
(1) A random vector X is called infinitely divisible if for all $n \geq 1$ there exists Y_{1}, \ldots, Y_{n} i.i.d. such that

$$
X \stackrel{\mathcal{D}}{=} Y_{1}+\cdots+Y_{n} .
$$

(2) A process $\left(X_{t}\right)_{t \in T}$ is called infinitely divisible if for all $n \geq 1$ and $t_{1}, \ldots, t_{n} \in T,\left(X_{t_{1}}, \ldots, X_{t_{n}}\right)$ are infinitely divisible.
(3) A Lévy process is an example of an infinitely divisible process.
(9) Typically, infinitely divisible processes are:
(1) not Markov processes
(2) not semimartingales
(3) do not have independent increments

A key class of stationary infinitely divisible processes are the moving averages

$$
X_{t}=\int_{\mathbb{R}} g(t-s) d L_{s}
$$

(1) $g: \mathbb{R} \rightarrow \mathbb{R}$ is a deterministic function
(2) $L=\left(L_{t}\right)_{t \in \mathbb{R}}$ is a Lévy process indexed by \mathbb{R}.

Assumptions:
(1)

$$
X_{t}=\int_{\mathbb{R}}\left\{g(t-s)-g_{0}(-s)\right\} d L_{s}
$$

(2) L is a symmetric Lévy process $\sim\left(0, \sigma^{2}, \nu\right)$
(3) $g(t) \sim c_{0} t^{\alpha}$ as $t \rightarrow 0, \alpha>0$
(9) $g \in C^{1}((0, \infty))$

Remark: $\left(X_{t}\right)$ is an infinitely divisible process with stationary increments. Moreover, X has typical continuous sample paths!

The Blumenthal-Getoor index β of $L=\left(L_{t}\right)_{t \in \mathbb{R}}$ is defined as

$$
\beta:=\inf \left\{r \geq 0: \int_{-1}^{1}|x|^{r} \nu(d x)<\infty\right\} .
$$

- In the special case $g(t)=g_{0}(t)=t_{+}^{\alpha}, X$ is called a fractional Lévy process and has the form

$$
X_{t}=\int_{-\infty}^{t}\left\{(t-s)^{\alpha}-(-s)_{+}^{\alpha}\right\} d L_{s}
$$

- If in addition, L is an β-stable Lévy process then X is the linear fractional stable motion with Hurst index $H=\alpha+1 / \beta$. Here X is self-similar with index H, i.e. for all $a>0$

$$
\left(X_{a t}\right)_{t \geq 0} \stackrel{\mathcal{D}}{=}\left(a^{H} X_{t}\right)_{t \geq 0} .
$$

For $\beta=2, X$ is the fractional Brownian motion is Hurst index $H:=\alpha+1 / 2$.

From: Simulating Sample Paths of Linear Fractional Stable Motion by Wu, Michailidis and Zhang.

FIGURE 1. Top, middle and bottom panels: realizations of linear fractional stable motions for $\alpha=1.8, \alpha=1.2$ and $\alpha=0.6$. In all cases, the left panel corresponds to $H=.2$, the middle panel to $H=.5$ and the right panel to $H=$.8. The x-axis represents time $(t=k / n, k=0,1,2, \cdots$, n), while on the y-axis the values of the LFSM process are given.

- For a stochastic process $X=\left(X_{t}\right)_{t \geq 0}$ and $p>0$ we define the the power variation of X by

$$
V(p)_{n}:=\sum_{i=1}^{n}\left|X_{\frac{i}{n}}-X_{\frac{i-1}{n}}\right|^{p} .
$$

In the following we will study the asymptotic behaviour of the functional $V(p)_{n}$ as $n \rightarrow \infty$.

Very little is known outside the two settings:
(1) Itô semimartingales
(2) Gaussian processes.

Two exceptions are the two works
(1) The work [1] on the quadratic variation of the Rosenblatt process.
(2) The work [2] on power variation of a class of fractional Lévy processes.
[1] C. Tudor and F. Viens (2009). Variations and estimators for self-similarity parameters via Malliavin calculus. Ann. Probab. 37.
[2] A. Benassi, S. Cohen and J. Istas (2004). On roughness indices for fractional fields. Bernoulli 10(2), 357-373.

Power variation for the fractional Brownian motion: First order asymptotics

Let X be a fractional Brownian motion with Hurst exponent H.
Using ergodic theory it follows that:
First order asymptotics for X : For any $H \in(0,1)$ we have

$$
n^{-1+p H} V(p)_{n} \xrightarrow{\mathbb{P}} m_{p}:=\mathbb{E}\left[\left|X_{1}\right|^{p}\right] \quad n \rightarrow \infty .
$$

- We will see that the limit theory for power variation

$$
V(p)_{n}=\sum_{i=k}^{n}\left|X_{\frac{i}{n}}-X_{\frac{i-1}{n}}\right|^{p} \quad \text { as } n \rightarrow \infty
$$

depends heavily on the interplay between the three parameters

First order asymptotics for power variation

Theorem (B., Lachièze-Rey and Podolskij)

(i): Assume that L is a $S \beta S$ process with $\beta \in(0,2)$. If $\alpha \in(0,1-1 / \beta)$ and $p<\beta$, we obtain

$$
n^{p(\alpha+1 / \beta)-1} V(p)_{n} \xrightarrow{\mathbb{P}} m_{p} .
$$

First order asymptotics for power variation

Theorem (cont.)

Assume that $p \geq 1$.
(ii): If $\alpha>1-1 / p, p>\beta$ or $\alpha>1-1 / \beta, p<\beta$, we deduce

$$
n^{p-1} V(p)_{n} \xrightarrow{\mathbb{P}} \int_{0}^{1}\left|F_{s}\right|^{p} d s
$$

with

$$
F_{s}=\int_{-\infty}^{s} g^{\prime}(s-u) d L_{u}
$$

Theorem (cont')

(iii): If $\alpha \in(0,1-1 / p)$ and $p>\beta$, we obtain

$$
n^{\alpha p} V(p)_{n} \xrightarrow{\mathcal{L}-s}\left|c_{0}\right|^{p} \sum_{T_{m} \in[0,1]}\left|\Delta L_{T_{m}}\right|^{p} V_{m}
$$

where $\left(T_{m}\right)_{m \geq 1}$ are jump times of $L,\left(V_{m}\right)_{m \geq 1}$ are certain i.i.d. sequence of random variables independent of L.

Theorem
(iii): If $\alpha \in(0,1-1 / p)$ and $p>\beta$, then

$$
n^{\alpha p} V(p)_{n} \xrightarrow{\mathcal{L}-s}\left|c_{0}\right|^{p} \sum_{m: T_{m} \in[0,1]}\left|\Delta L_{T_{m}}\right|^{p} V_{m}:=Z
$$

(1) The limit Z is infinitely divisible with Lévy measure

$$
(\nu \otimes \eta) \circ\left((y, v) \mapsto\left|c_{0} y\right|^{p} v\right)^{-1}
$$

where η denotes the law of

$$
V=\sum_{I=0}^{\infty}\left|(I+U)^{\alpha}-(I+U-1)_{+}^{\alpha}\right|^{p}
$$

$$
U \sim \mathcal{U}[0,1]
$$

(2) Convergence in probability does not hold.

Theorem

(i): Assume that L is a β-stable Lévy process with $\beta \in(0,2)$. If $\alpha \in(0,1-1 / \beta)$ and $p<\beta$, we obtain

$$
n^{p(\alpha+1 / \beta)-1} V(p)_{n} \xrightarrow{\mathbb{P}} m_{p}
$$

(ii): Assume $p \geq 1$. If $\alpha>k-1 / p, p>\beta$ or $\alpha>k-1 / \beta, p<\beta$, we deduce

$$
n^{k p-1} V(p)_{n} \xrightarrow{\mathbb{P}} \int_{0}^{1}\left|F_{s}^{(k)}\right|^{p} d s .
$$

(iii): If $\alpha \in(0, k-1 / p)$ and $p>\beta$, we obtain

$$
n^{\alpha p} V(p)_{n} \xrightarrow{\mathcal{L}-s}\left|c_{0}\right|^{p} \sum_{m: T_{m} \in[0,1]}\left|\Delta L_{T_{m}}\right|^{p} V_{m} \sim I D .
$$

Remarks

- The above three cases covers all possible cases $\alpha>0$, $\beta \in[0,2)$ and $p \geq 1$ besides the three boundary cases:

$$
\alpha=k-1 / p, \quad \alpha=k-1 / \beta, \quad p=\beta
$$

- The two cases
- $\alpha=k-1 / p$ and $p>\beta$
- $\alpha=k-1 / \beta$ and $p<\beta / 2$
are treated in a joint work with M. Podolskij.
Additional logarithmic scaling occur in these cases.

Second order asymptotics for case (i)

"Classical" results of the form

$$
a_{n} \sum_{i=1}^{n} Y_{i} \xrightarrow{d} U \quad n \rightarrow \infty
$$

where $\left(Y_{i}\right)_{i \geq 1}$ is a stationary sequence which satisfies one of the following
(1) $\left(Y_{i}\right)_{i \geq 1}$ are independent
(2) $\left(Y_{i}\right)_{i \geq 1}$ are martingale difference
(3) $\left(Y_{i}\right)_{i \geq 1}$ are Markov chain
(c) $\left(Y_{i}\right)_{i \geq 1}$ are strongly mixing
are never applicable.

Second order asymptotics

Theorem (Breuer-Major [1], Taqqu [2])

Suppose that X is the fractional Brownian motion with Hurst index $H \in(0,1)$. The following assertions hold:
(i) Assume that $H \in(0,3 / 4)$. Then

$$
\sqrt{n}\left(n^{-1+p H} V(p)_{n}-m_{p}\right) \xrightarrow{d} \mathcal{N}\left(0, v_{p}\right) .
$$

(ii) When $H \in(3 / 4,1)$ it holds that

$$
n^{2-2 H}\left(n^{-1+p H} V(p)_{n}-m_{p}\right) \xrightarrow{d} Z,
$$

where Z is a Rosenblatt random variable.
[1] Breuer and Major (1983). Central limit theorems for nonlinear functionals of Gaussian fields. Journal of Multivariate Analysis 13.
[2] Taqqu (1979). Convergence of integrated processes of arbitrary Hermite rank. Z. Wahrsch. Verw. Gebiete 50.

Second order asymptotics associated with case (i)

Theorem (B., Lachièze-Rey and Podolskij)

Assume that L is a β-stable Lévy process with $\beta \in(0,2)$. For $\alpha \in(0,1-1 / \beta)$ and $p<\beta / 2$, it holds that

$$
n^{1-\frac{1}{(1-\alpha) \beta}}\left(n^{p(\alpha+1 / \beta)-1} V(p)_{n}-m_{p}\right) \xrightarrow{d} S_{(1-\alpha) \beta}
$$

where $S_{(1-\alpha) \beta}$ is a totally right skewed $(1-\alpha) \beta$-stable random variable with mean zero.

Higher order differences

- For $k \geq 1$ we define the k-th order increments of X via

$$
\Delta_{i, k}^{n} x:=\sum_{j=0}^{k}(-1)^{j}\binom{k}{j} x_{(i-j) / n} .
$$

For instance,
$\Delta_{i, 1}^{n} X=X_{i / n}-X_{(i-1) / n} \quad$ and $\quad \Delta_{i, 2}^{n} X=X_{i / n}-2 X_{(i-1) / n}+X_{(i-2) / n}$.

- The power variation of k-th order increments of X is given by the statistic

$$
V(p, k)_{n}:=\sum_{i=k}^{n}\left|\Delta_{i, k}^{n} X\right|^{p} .
$$

Higher order differences

Theorem (B., Lachièze-Rey and Podolskij)

Assume that L is a $S \beta S$ Lévy process with $\beta \in(0,2)$. Let $p<\beta / 2$. (a): For $\alpha \in(0, k-2 / \beta)$, we obtain

$$
\sqrt{n}\left(n^{p(\alpha+1 / \beta)-1} V(p, k)_{n}-c\right) \xrightarrow{d} \mathcal{N}\left(0, v^{2}\right) .
$$

(b): For $\alpha \in(k-2 / \beta, k-1 / \beta)$, it holds that

$$
n^{1-\frac{1}{(1-\alpha) \beta}}\left(n^{p(\alpha+1 / \beta)-1} V(p, k)_{n}-c\right) \xrightarrow{d} S_{(k-\alpha) \beta}
$$

where $S_{(k-\alpha) \beta}$ is a totally right skewed $(k-\alpha) \beta$-stable random variable with mean zero.

Thank you for your attention!!!

