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Introduction Estimating Drift

Stochastic ODE: Estimating Drift θ, with σ known

dX(t) = θX(t)dt + σX(t)dw(t), t ≥ 0

Problem

Assuming that one sample path X(ω, t), t ∈ [0, T ], is observed,

find/estimate the parameters θ and σ.

θ: Girsanov Theorem (change of drift) ↦ find the Likelihood Ratio ↦
Maximize dP/dP0 ↦ find MLE

θ̂t =
1

t
∫

t

0

dX(s)
X(s)

= 1

t
log

X(t)
X(0)

− σ
2

2
θ̂t → θ , t→∞

σ: Quadratic Variation ⟨X⟩t = σ2 ∫
t

0 X
2
sds ↝ σ =

√
⟨X⟩t/ ∫

t
0 X

2
sds
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Introduction Stochastic ODE: conclusion

Stochastic ODE: conclusion

the drift θ - approximated.

Regular model

1) dPθ
dP0

exists; 2) has a special form (LAN)

Same procedure for all

Find MLE by maximizing likelihood ratio

the volatility σ - exactly.

Singular model otherwise

Individual approach

In particular, if Pσ1 ⊥ Pσ2 for σ1 ≠ σ2, then one may find σ exactly
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SPDE

What do we have for SPDEs?

Reference example of SPDE to keep in mind:

du(t, x) = θuxxdt + σdW (t, x), t ≥ 0, x ∈ [0, π],

with zero boundary conditions and dW (t, x) = ∑∞k=1 sin(kx)dwk(t).
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What do we have for SPDEs? Mostly singular problems.
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The Heat Equation (simulated by Euler) du = ν u
xx

dt+ ε σ−γdW, T=1, ν= 0.1, γ= 0, ε= 0.5

Explore the singularity and try to find the exact value (or as a

limit of regular models) of the drift/viscosity coefficient.



SPDE Drift

⊳ additive noise: Huebner-Khasminskii-Rozovskii ’92, ’95

⊳ Bayesian: Bishwal (’02)

⊳ Several parameters: Huebner (’97)

⊳ Discrete-time observations: Piterbarg-Rozovskii (’97)

q = 2(m1−2m)
d ≥ 1, Markussen ’03

⊳ θ(t)-random: Lototsky (’04)

⊳ Small noise: Huebner (’97), Ibragimov-Khasminskii (’98,’99)

⊳ ”almost” diagonalizable model: Rozovskii-Lototsky (’97, ’01)

⊳ additive fractional noise: IgC, Lototsky, Pospisil (’09)

⊳ multiplicative noise: IgC and Lototsky (’08), IgC (’10)

⊳ nonlinear SPDE: IgC and Glatt-Holtz (’11)

⊳ Hypothesis testing: IgC and Xu (’14, ’15)

⊳ Non-MLE / Trajectory fitting estimators: IgC, Gong, Huang (’16)
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SPDE Drift

Part I(a): Maximum Likelihood Estimators
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The Problem General Framework

dU(t) + θAU(t)dt + F (U)dt = σdW (t), U(0) = U0

given stochastic basis (Ω,F ,F,P)

assume that U(ω, t) belongs to some “suitable” Hilbert space H;

in particular U = U(ω, t, x)

A a linear, selfadjoint, positive-defined (think Laplaceβ) in H with

eigenfunctions {hk}k≥1 CONS in H

σdW (t) = ∑k≥1 σkhkdWk(t), Wk, k ∈ N ind. Brownian Motions

F maybe nonlinear; σ known

U observed for all t ∈ [0, T ] - continuous observations

Goal:

Find estimators θ̂(ω), ω ∈ Ω, for parameters θ by observing a single

outcome U = U(ω, t) ∈H over a finite time horizon t ∈ [0, T ].
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The Problem General Framework

Formal Procedure to Derive an Estimator

Project the full system down to N dimensions PN(H) =HN ≃ RN

dUN + (θAUN +ΨN)dt = PNσdW, U(0) = U0

Let PN,Tθ (⋅) = P(UN ∈ ⋅) be the measure on C([0, T ];RN)
generated by UN ;

PTθ be the measure generated by U on C([0, T ];H).

Usually (at least in linear case), we can prove that PN,Tθ1
∼ PN,Tθ2

Hence, get MLE type estimators θ̂N,T .

Reasonable ansatz:

θ̂N,T Ð→
N→∞

θ
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The Problem General Framework

Formal Procedure to Derive an Estimator in Nonlinear Case

Formally treat ΨN = PNF (U) as an external and known quantity

(independent of θ)

Assume that PNσ is invertible on HN

Take G ∶= PNσ(U)(PNσ(U))∗ and assume it commutes with A

For a reference values θ0, apply (formally) Girsanov Theorem and

get the ’Likelihood Ratio’ (Radon-Nikodym derivative) dPN,Tθ /dPN,Tθ0

Maximize the Log-Likelihood Ratio

θ̃N,T (ω) ∶= arg max
θ

dPN,Tθ /dPN,Tθ0
(ω)
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The Problem General Framework

dPN,Tθ

dPN,Tθ0

= exp [∫
T

0
(θ − θ0)⟨AUN ,GdUN(t)⟩

+ 1

2
∫

T

0
(θ2 − θ2

0)⟨AUN ,GAUNdt⟩

+ ∫
T

0
(θ − θ0)⟨AUN ,GψNdt⟩],

θ̃N = −∫
T

0 ⟨AUN ,GdUN ⟩ + ∫
T

0 ⟨AUN ,GPNF(U)⟩dt

∫
T

0 ⟨AUN ,GAUN ⟩dt

Main Idea #1: Modified MLE

θ̃N = −∫
T

0 A1+ρ1UNG
ρ2
N dUN + ∫

T
0 A1+ρ1UNG

ρ2
N PNF (U))dt

∫
T

0 A1+ρ1UNG
ρ2
NAUNdt

for some ρ1, ρ2.
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The Problem General Framework

Motivated by MLE type estimator

θ̂1,N = −∫
T

0 A1+ρ1UNG
ρ2
N dUN + ∫

T
0 A1+ρ1UNG

ρ2
N PNF (U))dt

∫
T

0 A1+ρ1UNG
ρ2
NAUNdt

,

θ̂2,N = −∫
T

0 A1+ρ1UNG
ρ2
N dUN + ∫

T
0 A1+ρ1UNG

ρ2
N PNF (UN))dt

∫
T

0 A1+ρ1UNG
ρ2
NAUNdt

,

θ̂3,N = − ∫
T

0 A1+ρ1UNG
ρ2
N dUN

∫
T

0 A1+ρ1UNG
ρ2
NAUNdt

.

Choose ρ1, ρ2 such that we can prove

θ̂i,N Ð→ θ, as N →∞,

for i = 1,2,3.
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The Problem General Framework

θ̂2,N = θ + ∫
T

0 ⟨A1+ρ1UN ,Gρ2∑Nj=1 σj(U)ΦjdWj(t)⟩

∫
T

0 A1+ρ1UNG
ρ2
NAUNdt

+ ∫
T

0 ⟨A1+ρ1UN ,Gρ2(FN(U) − FN(UN))⟩dt

∫
T

0 A1+ρ1UNG
ρ2
NAUNdt

θ̂3,N = θ + ∫
T

0 ⟨A1+ρ1UN ,Gρ2∑Nj=1 σj(U)ΦjdWj(t)⟩

∫
T

0 A1+ρ1UNG
ρ2
NAUNdt

+ ∫
T

0 ⟨A1+ρ1UN ,Gρ2FN(UN)⟩dt

∫
T

0 A1+ρ1UNG
ρ2
NAUNdt

Need to show that each of ‘the excess term converge to zero’

Successfully applied to:

Stochastic linear parabolic SPDE, additive noise
Stochastic Navier-Stokes Equations, 2D, additive noise
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Trajectory fitting estimators

Part I(b): Trajectory Fitting Estimators

I. Cialenco, R. Gong and Y. Huang, Trajectory Fitting Estimators for SPDEs Driven by

Additive Noise submitted for publication, 2016 http://arxiv.org/abs/1607.04912
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Trajectory fitting estimators

Trajectory fitting estimators (TFE) for SDEs

The observed process S(θ) ∶= {S(t; θ)}t≥0 follows the dynamics

dS(t; θ) = b(θ,S(t; θ))dt + σ(S(t; θ))dB(t),

where B is an 1d standard Brownian motion, and θ is the parameter of

interest. Let F ∶ R→ R, F ∈ C2; by Itô’s formula,

F (S(t; θ)) = F (S0) + ∫
t

0
(F ′(S(s))b (θ,S(s)) + 1

2
F ′′(S(s))σ2(S(s)))ds

+ ∫
t

0
F ′(S(s))σ(S(s))dB(s).

For any θ ∈ Θ and t ∈ [0, T ], consider an artificial trajectory

F̃ (t; θ) ∶= F (S0) + ∫
t

0
(F ′(S(s))b (θ,S(s)) + 1

2
F ′′(S(s))σ2(S(s)))ds.
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Trajectory fitting estimators

TFE for SDEs; continued

The trajectory fitting estimator θ̃T of θ is defined as the solution to the

minimization problem

θ̃T ∶= arg inf
θ∈Θ

∫
T

0
(F (S(t; θ)) − F̃ (t; θ))2

dt.

The choice of F depends on the underlying models to insure the desired

asymptotic properties of the estimator; e.g. F (x) = x2.

For ergodic, finite dimensional diffusion processes, one can prove that

θ̃T → θ, as T →∞.

Goal:

Can we derive tractable TFEs for SPDEs?

Study the asymptotic properties of TFEs as number of Fourier

modes N increases.
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Trajectory fitting estimators

TFE for SPDEs

(Ω,F ,{Ft}t≥0,P) a stochastic basis;

We consider the evolution equation, in a separable Hilbert space H

du(t) + θAu(t)dt = σ dW (t), u0 ∈H,

where A1 is a linear operators on H, W ∶= {W (t)}t≥0 is a cylindrical

Brownian motion in H

Continuous-time observation framework of first N Fourier modes on a

finite time interval t ∈ [0, T ].

Parameter of interest θ ∈ Θ ⊂ R+.
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Trajectory fitting estimators

du(t) + θAu(t)dt = σ dW (t), u0 ∈H, (5.1)

The operator A has only point spectra; the eigenfunctions {hk}k∈N
form a complete, orthonormal system in H; eigenvalues νk, k ∈ N.

The sequence {νk}k∈N is such that limk→∞ νk = +∞.

W is a cylindrical Brownian motion in H, and has the following form

W (t) =
∞

∑
k=1

λ−γk hkwk(t), t ≥ 0,

for some γ ≥ 0, where λk ∶= ν
1/(2m)
k , k ∈ N, for some m ≥ 0, and

wk ∶= {wk(t)}t≥0, k ∈ N, are independent standard Brownian

motions.

That is: the equation (5.1) is linear, diagonalizable, parabolic, and

the solution exists and is unique.
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Trajectory fitting estimators

du(t) + θAu(t)dt = σ dW (t), u0 ∈H,

The unique solution is given by

u(t) =
∞

∑
k=1

uk(t)hk, t ≥ 0,

where, each Fourier mode uk, k ≥ 1 satisfies the SDE

duk(t) + θνk uk(t)dt = σλ−γk dwk(t), uk(0) = (u0, hk)H ,

uk(t) = e−νkθtuk(0) + σλ−γk e−νkθt∫
t

0
eνkθs dwk(s).

We denote by Vk the artificial trajectory of uk, as

Vk(t; θ) ∶= u2
k(0) + ∫

t

0
(σ2λ−2γ

k − 2νkθu
2
k(s))ds, k ∈ N, t ∈ [0, T ].
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Trajectory fitting estimators

Definition

The Trajectory Fitting Estimator for the drift parameter θ is defined as

θ̃N = θ̃N(T ) ∶= arg inf
θ∈Θ

N

∑
k=1
∫

T

0
(Vk(t; θ) − u2

k(t))
2
dt.

By direct evaluations, TFE can be computed explicitly

θ̃N = −
∑Nk=1 νk (

1
2ξ

2
k(T ) − u2

k(0)Yk(T ) − σ2λ−2γ
k Xk(T ))

2∑Nk=1 ν
2
kZk(T )

,

where

ξk(t) ∶=∫
t

0
u2
k(s)ds, Xk(t) ∶=∫

t

0
sξk(s)ds,

Yk(t) ∶=∫
t

0
ξk(s)ds, Zk(t) ∶=∫

t

0
ξ2
k(s)ds.
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TFE: Consistency

TFE: Consistency

Noting that

θ̃N−θ = −
∑Nk=1 νk (

1
2ξ

2
k − u

2
k(0)Yk − σ

2λ−2γ
k Xk + 2νkθZk)

2∑Nk=1 ν
2
kZk

=∶ − ∑
N
k=1 νkAk

2∑Nk=1 ν
2
kZk

.

Proposition (CGH ’16)

E(Zk) ≍
1

µ2
kθ

2
(u2

k(0) + σ
2Tλ−2γ

k )2
, k →∞,

Var(Zk) ≍
λ−2γ
k

ν5
kθ

5
(u2

k(0) + σ
2Tλ−2γ

k )3
,

E(Ak) ≍
λ−2γ
k

ν2
kθ

2
(u2

k(0) + σ
2Tλ−2γ

k ) ,

Var(Ak) ≍
λ−2γ
k

ν3
kθ

3
(u2

k(0) + σ
2Tλ−2γ

k )3
.
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TFE: Consistency

TFE: Consistency

Theorem (CGH ’16)

Assume that
∞

∑
k=

λ−4γ
k =∞.

Then,

lim
N→∞

θ̃N = θ, P − a. s..

Ig. Cialenco, IIT August 15, 2016 Slide # 23



TFE: Consistency

TFE: Asymptotic Normality

Theorem (CGH ’16)

If in addition
∞

∑
k=1

λ−8γ
k ν−1

k =∞.

Then, as N →∞,

θ̃N − θ + aN
bN

dÐ→ N (0,1), (5.2)

where

aN ∶= ∑
N
k=1 νk E(Ak)

2∑Nk=1 ν
2
k E(Zk)

, bN ∶=

√
∑Nk=1 ν

2
k Var(Ak)

2∑Nk=1 ν
2
k E(Zk)

, (5.3)

and where
dÐ→ denotes the convergence in distribution.
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TFE: Consistency

Example

Fractional stochastic heat equation driven by an additive noise:

du(t, x)+θ(−∆)βu(t, x)dt = σ
∞

∑
k=1

λ−γk hk(x)dwk(t), t ∈ [0, T ], x ∈ G,

with initial condition u(0, x) = u0(x) ∈H, where θ > 0, β > 0, γ ≥ 0 and

σ ∈ R ∖ {0} are constants. In this case,

νk ∼ c1k
2β/d, λk ∼

√
c1 k

1/d, k →∞.

The consistency and the asymptotic normality hold for the TFE θ̃N ,

whenever

2β + 8γ ≤ d.
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TFE: Consistency

Part II: Hypothesis Testing for SPDEs

I. Cialenco, L. Xu, Hypothesis testing for stochastic PDEs driven by additive noise,

Stochastic Processes and their Appl., vol. 125, Issue 3, March 2015, pp. 819-866.

I. Cialenco, L. Xu, A note on error estimation for hypothesis testing problems for some

linear SPDEs, Stochastic Partial Differential Equations: Analysis and Computations,

September 2014, vol. 2, No 3, pp. 408-431.
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TFE: Consistency

Similar Setup

Fractional heat equation driven by additive noise:

dU(t, x) + θ(−∆)βU(t, x)dt = σ
∞

∑
k=1

λ−γk hk(x)dwk(t),

where x ∈ G, G is a bounded domain in Rd, t ∈ [0, T ];

zero initial conditions and boundary values;

{wk(t)}k∈N are independent Brownian motions;

∆ is the Laplace operator on G with zero boundary condition;

{hk} are the eigenfunctions of ∆ in L2(G); {ρk} are the

eigenvalues; λk =
√−ρk ∼ k1/d;

consider solution in (Hβ+s(G),Hs(G),H−β+s(G));

θ > 0 (Unknown),

all other parameters β > 0, γ ≥ 0, σ ∈ R ∖ {0} known.

Ig. Cialenco, IIT August 15, 2016 Slide # 28



TFE: Consistency

Simple Hypothesis

dU(t, x) + θ(−∆)βU(t, x)dt = σ
∞

∑
k=1

λ−γk hk(x)dwk(t)

Assume that θ can take only two values {θ0, θ1}.

Consider a simple hypothesis:

H0 ∶ θ = θ0,

H1 ∶ θ = θ1.

For simplicity, assume θ1 > θ0 and σ > 0.
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Hypothesis Testing

Construction of the Test

dU(t, x) + θ(−∆)βU(t, x)dt = σ
∞

∑
k=1

λ−γk hk(x)dwk(t), U(0, x) = 0.

The k-th Fourier coefficient uk(t) = ⟨U(t, x), hk(x)⟩ is given by

duk = −θλ2β
k ukdt + σλ

−γ
k dwk(t), uk(0) = 0,

uk(t) = σλ−γk ∫
t

0
e−θλ

2β
k
(t−s)dwk, k ≥ 1.

Let PN,Tθ (⋅) = P(UNT ∈ ⋅) be the measure on C([0, T ];RN)
generated by UNT (t) = (u1, . . . , uN) up to time T .
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Hypothesis Testing

Observable: First N Fourier coefficients u1(t), . . . , uN(t), for all

t ∈ [0, T ].
Looking for rejection region R ∈ B(C([0, T ];RN)).

Type I error = PN,Tθ0
(R);

Type II error = 1 − PN,Tθ1
(R), and power of the test = PN,Tθ1

(R)
Define the class of test

Kα ∶= {R ∈ B(C([0, T ];RN)) ∶ PN,Tθ0
(R) ≤ α} .

with α ∈ (0,1) being the significance level, fixed in what follows.

Definition

We say that a rejection region R∗ ∈ Kα is the most powerful in the

class Kα if

PN,Tθ1
(R) ≤ PN,Tθ1

(R∗), for all R ∈ Kα.
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Hypothesis Testing Most Powerful Test

Neyman-Pearson Lemma

Theorem (C. and Xu, ’14, ’15)

Take the Likelihood Ratio

L(θ0, θ1, U
N
T ) = exp(−(θ1 − θ0)σ−2

N

∑
k=1

λ2β+2γ
k

×(∫
T

0
uk(t)duk(t) +

1

2
(θ1 + θ0)λ2β

k ∫
T

0
u2
k(t)dt)) .

Let cα be a real number such that

PN,Tθ0
(L(θ0, θ1, U

N
T ) ≥ cα) = α.

Then,

R∗ ∶= {UNT ∶ L(θ0, θ1, U
N
T ) ≥ cα},

is the most powerful rejection region in the class Kα.
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Hypothesis Testing Asymptotic Method in Time

The Difficulty:

The problem is that cα has no explicit formula for finite T and N .

We suggest/take “Asymptotic Method”

(1) Fix N , let T →∞;

(2) Fix T , let N →∞.

In this talk we focus on case (1), large time asymptotics;

For case (2) see [CX ’14 and ’15].
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Hypothesis Testing Asymptotic Method in Time

Asymptotic Method in Time T :

Define a new class

K∗α ∶= {(RT )T ∈R+ ∶ RT ∈ B(C([0, T ];RN), lim sup
T→∞

PN,Tθ0
(RT ) ≤ α} ,

where N is fixed, and α is the “Asymptotic Significance Level”.

Goal:

We want to find a rejection region (R∗
T )T ∈R+ such that

limT→∞ PN,Tθ0
(R∗

T ) = α.
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Hypothesis Testing Asymptotic Method in Time

Attempt:

We still try Likelihood Ratio test. Then, what is cα?

To find cα, we make the following heuristic argument: by Itō’s Formula,

PN,Tθ0
(L(θ0, θ1, U

N
T ) ≥ c∗α)

=PN,Tθ0
(XT −

2(θ1 + θ0)
(θ1 − θ0)σ

√
T
YT ≥ 4θ0 ln c∗α

(θ1 − θ0)2T
+M) ,

where

M ∶=
N

∑
k=1

λ2β
k , XT ∶=

N

∑
k=1

λ2β+2γ
k u2

k(T )
σ2T

,

YT ∶=
1√
T

N

∑
k=1

λ2β+γ
k ∫

T

0
ukdwk.
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Hypothesis Testing Asymptotic Method in Time

We can prove:

And we have the split:

PN,Tθ0
(L(θ0, θ1, U

N
T ) ≥ c∗α) ≤ PN,Tθ0

(XT ≥ δ)

+ PN,Tθ0
(− 2(θ1 + θ0)

(θ1 − θ0)σ
√
T
YT ≥ 4θ0 ln c∗α

(θ1 − θ0)2T
+M − δ) .

For any fixed δ > 0, PN,Tθ0
(XT ≥ δ)→ 0 as T →∞.

YT
d→ N (0, σ2M/(2θ0)) as T →∞.

It Is Reasonable To Take:

−
√

2θ0

M

(θ1 − θ0)
√
T

2(θ1 + θ0)
[ 4θ0 ln c∗α
(θ1 − θ0)2T

+M] = qα. (6.1)
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Hypothesis Testing Asymptotic Method in Time

Solve (6.1) to get

c♯α(T ) = exp
⎛
⎝
−(θ1 − θ0)2

4θ0
MT − θ

2
1 − θ2

0

2θ0

√
MT

2θ0
qα

⎞
⎠
. (6.2)

Theorem (C. and Xu)

Suppose

R♯
T ∶= {UNT ∶ L(θ0, θ1, U

N
T ) ≥ c♯α(T )}, for all T ,

where c♯α is given by (6.2). Then, the rejection region (R♯
T )T ∈R+ ∈ K∗α,

and moreover

lim
T→∞

PN,Tθ0
(R♯

T ) = α.
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Hypothesis Testing Asymptotic Method in Time

Solve (6.1) to get

c♯α(T ) = exp
⎛
⎝
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⎠
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and moreover

lim
T→∞

PN,Tθ0
(R♯

T ) = α.
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Hypothesis Testing Asymptotic Method in Time

The Next Question:

How does the power of this test PN,Tθ1
(R♯

T ) behave?

Theorem (C. and Xu)

1 − PN,Tθ1
(R♯

T ) ∼ exp(−I(θ0, θ1,N)T + o(T )), as T →∞,

where I(θ0, θ1,N) = (θ1 − θ0)2M/4θ0.

Sketch of the Proof:

Calculate the Moment Generating Function of the Log-Likelihood
ratio (Gapeev and Küchler [2008])

Use Feynman-Kac Formula to derive a PDE
Make some transforms and guess the solution

Apply a theorem for Large Deviation in Lin’kov [1999]

Use some technics in limit theory to get the final result.
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Hypothesis Testing Asymptotic Method in Time

Questions to be answered:

Except for (R♯
T ), how do other rejection regions work for the

testing? Is (R♯
T ) the best one?

Is the class K∗α the best to take for the testing?

How large T shall we take to insure the accuracy?
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Hypothesis Testing Asymptotically The Most Powerful Test

Asymptotically The Most Powerful Test

Definition

We say that a rejection region (R∗
T ) ∈ K∗α is asymptotically the most

powerful in the class K∗α if

lim inf
T→∞

1 − PN,Tθ1
(RT )

1 − PN,Tθ1
(R∗

T )
≥ 1, for all (RT ) ∈ K∗α.

Similarly, we define asymptotically the most powerful rejection regions for

a different given class of tests.
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Hypothesis Testing Asymptotically The Most Powerful Test

Theorem (C. and Xu)

There exists rejection region (R̂T ) ∈ K∗α which is Asymptotically More

Powerful than (R♯
T ), that is

lim sup
T→∞

1 − PN,Tθ1
(R̂T )

1 − PN,Tθ1
(R♯

T )
< 1.

Theorem (C. and Xu)

The rejection region of the form

RT ∶= {UNT ∶ L(θ0, θ1, U
N
T ) ≥ cα(T )} ,

with cα(T ) > 0, can not be asymptotically the most powerful in the class

K∗α.
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Hypothesis Testing Asymptotically The Most Powerful Test
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Hypothesis Testing Refined Asymptotic Class

Refined Asymptotic Class

Consider the class of the form:

K
♯
α ∶= {(RT ) ∶ lim sup

T→∞
(PN,Tθ0

(RT ) − α)
√

T ≤ α1} .

where α1 is some explicitly computable quantity.

Theorem (C. and Xu)

The rejection region (R♯
T ) is asymptotically the most powerful

in the class K♯α.
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Thank You !

The end of the talk ...but not of the story



Asymptotic Method in Fourier Modes

Asymptotic Method in Fourier Modes N →∞

Define class

K̃α(δ) ∶= {(RN) ∶ lim sup
N→∞

(PN,Tθ0
(RN) − α)

√
M ≤ α̃1(δ)} . (7.1)

Definition

We say that a rejection region (R̃N) ∈ K̃α is asymptotically the most

powerful in the class K̃α if

lim inf
N→∞

1 − PN,Tθ1
(RN)

1 − PN,Tθ1
(R̃N)

≥ 1, for all (RN) ∈ K̃α. (7.2)

Similarly, we define asymptotically the most powerful rejection regions for

a different given class of tests.
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Asymptotic Method in Fourier Modes

Following similar argument as in “T part”, one can find

R̃δN = {UNT ∶ L(θ0, θ1, U
N
T ) ≥ c̃δα(N)} ,

such that

Theorem (Main Result II)

Assume β/d ≥ 1/2. The rejection region (R̃δN) is asymptotically the most

powerful in K̃α(δ).
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New Tests for Error Control

New Tests for Error Control

Theorem (Error Control for T →∞)

Consider the test statistics of the form

R0
T = {UNT ∶ lnL(θ0, θ1, U

N
T ) ≥ η0T} ,

where η0 is given by an explicit formula of the form

− (θ1−θ0)
2

4θ0
M +O(T−1/2). If T ≥ T0 (T0 has explicit formula), then the

Type I and Type II errors have the following bound estimates

PN,Tθ0
(R0

T ) ≤ (1 + %)α,

1 − PN,Tθ1
(R0

T ) ≤ (1 + %) exp(−(θ1 − θ0)2

16θ2
0

MT) ,

where % denotes a given threshold of error tolerance.
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New Tests for Error Control

Theorem (Error Control for N →∞)

Consider the test statistics of the form

R0
N = {UNT ∶ lnL(θ0, θ1, U

N
T ) ≥ ζ0M} ,

where ζ0 is given by an explicit formula of the form

− (θ1−θ0)
2

4θ0
T +O(N−1/2−β/d). If N ≥ N0 (N0 has explicit formula), then

the Type I and Type II errors have the following bound estimates

PN,Tθ0
(R0

N) ≤ (1 + %)α,

1 − PN,Tθ1
(R0

N) ≤ (1 + %) exp(−(θ1 − θ0)2

16θ2
0

MT) ,

where % denotes a given threshold of error tolerance.
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New Tests for Error Control

Simulation Results

Table: Type I error for various α.

α 0.1 0.05 0.01 0.005

T0 629 818 1258 1447

PN,Tθ0
(R0

T0
) 0.020 0.006 0.002 0.001

Other parameters: θ0 = 0.1, θ1 = 0.2, N = 3,
ρ = 0.1, d = β = σ = 1, γ = 0.
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New Tests for Error Control

Table: Type I error for various T ≥ T0

T T0 T0 + T1 T0 + 2T1 T0 + 3T1 T0 + 4T1

PN,Tθ0
(R0

T ) 0.006 0.014 0.010 0.006 0.010

PN,Tθ0
(R♯

T ) 0.054 0.064 0.050 0.028 0.056

Other parameters:T1 = 2000, α = 0.05, θ0 = 0.1, θ1 = 0.2,
N = 3, ρ = 0.1, d = β = σ = 1, γ = 0.
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Appendix

Appendix

Theorem (Criterion for Most Powerful Test)

Consider the rejection region of the form

R∗
T = {UNT ∶ L(θ0, θ1, U

N
T ) ≥ c∗α(T )} , (7.3)

where c∗α(T ) is a function of T such that, c∗α(T ) > 0 for all T > 0 and

lim
T→∞

PN,Tθ0
(R∗

T ) = α, (7.4)

lim
T→∞

c∗α(T )
1 − PN,Tθ1

(R∗
T )

<∞. (7.5)

Then (R∗
T ) is asymptotically the most powerful in K∗α.
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Appendix

Proof for c♯α(T )/ (1 − PN,Tθ1
(R♯

T )) ∼
√
T :

Split the probability:

1 − PN,Tθ1
(R♯

T ) = ATBT

After some substitutions and calculations we get

AT ≍ exp[−I(θ0, θ1,N)T ]

By a series of technical lemmas we proved

BT ∼ exp[o(T )]/
√
T

Referring to the form of c♯α in (6.2) we finally have

c♯α(T )/ (1 − PN,Tθ1
(R♯

T )) ∼
√
T
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Appendix

Proof:

By the same reasoning as in ”Neyman-Pearson”, for a fixed T and any

(RT ) ∈ K∗α, we have that

PN,Tθ1
(R∗

T ) − PN,Tθ1
(RT ) ≥ c∗α(T ) (PN,Tθ0

(R∗
T ) − PN,Tθ0

(RT )) ,

which can be written as

1 − PN,Tθ1
(RT )

1 − PN,Tθ1
(R∗

T )
≥ 1 + c∗α(T )

1 − PN,Tθ1
(R∗

T )
(PN,Tθ0

(R∗
T ) − PN,Tθ0

(RT )) .
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Appendix

From here, using (7.4) and (7.5), we deduce

lim inf
T→∞

1 − PN,Tθ1
(RT )

1 − PN,Tθ1
(R∗

T )
≥1 + lim

T→∞

c∗α(T )
1 − PN,Tθ1

(R∗
T )

lim
T→∞

PN,Tθ0
(R∗

T )

− lim
T→∞

c∗α(T )
1 − PN,Tθ1

(R∗
T )

lim sup
T→∞

PN,Tθ0
(RT )

=1 + lim
T→∞

c∗α(T )
1 − PN,Tθ1

(R∗
T )

(α − lim sup
T→∞

PN,Tθ0
(RT ))

≥1.

This completes the proof.
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Appendix

Sketch of the proof for main theorem:

By the same reasoning as in ”Neyman-Pearson”, for a fixed T and any

(RT ) ∈ K∗α, we have that

PN,Tθ1
(R♯

T ) − PN,Tθ1
(RT ) ≥ c♯α(T ) (PN,Tθ0

(R♯
T ) − PN,Tθ0

(RT )) ,

which can be written as

1 − PN,Tθ1
(RT )

1 − PN,Tθ1
(R♯

T )
≥ 1 + c♯α(T )

1 − PN,Tθ1
(R♯

T )
(PN,Tθ0

(R♯
T ) − PN,Tθ0

(RT )) .

Taking the ’liminf’, we deduce

lim inf
T→∞

1 − PN,Tθ1
(RT )

1 − PN,Tθ1
(R♯

T )
≥1 + lim inf

T→∞

c♯α(T )
1 − PN,Tθ1

(R♯
T )

(PN,Tθ0
(R♯

T ) − α)

− lim sup
T→∞

c♯α(T )
1 − PN,Tθ1

(R♯
T )

(PN,Tθ0
(RT ) − α) .
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