Recent Advances in Statistical Inference for Stochastic PDEs

Igor Cialenco Department of Applied Mathematics Illinois Institute of Technology cialenco@iit.edu

Conference On Ambit Fields And Related Topics Aarhus University, Denmark

August 15, 2016

- Introduction: Parameter Estimation for SODE vs SPDE.
- Part I: Parameter Estimation for Stochastic PDEs.
 Maximum Likelihood Estimators
 Trajectory Fitting Estimators
- Part II: Hypothesis testing

Stochastic ODE: Estimating Drift θ , with σ known

$$dX(t) = \theta X(t)dt + \sigma X(t)dw(t), \quad t \ge 0$$

Problem

Assuming that one sample path $X(\omega,t), t \in [0,T]$, is observed, find/estimate the parameters θ and σ .

 θ : Girsanov Theorem (change of drift) \mapsto find the Likelihood Ratio \mapsto Maximize $d\mathbb{P}/d\mathbb{P}_0 \mapsto$ find MLE

$$\widehat{\theta}_t = \frac{1}{t} \int_0^t \frac{dX(s)}{X(s)} = \frac{1}{t} \log \frac{X(t)}{X(0)} - \frac{\sigma^2}{2} \qquad \qquad \widehat{\theta}_t \to \theta \ , \quad t \to \infty$$

 σ : Quadratic Variation $\langle X \rangle_t = \sigma^2 \int_0^t X_s^2 ds \rightsquigarrow \sigma = \sqrt{\langle X \rangle_t / \int_0^t X_s^2 ds}$

• the drift θ - approximated.

Regular model

1) $\frac{d\mathbb{P}_{\theta}}{d\mathbb{P}_{0}}$ exists; 2) has a special form (LAN)

Same procedure for all

Find MLE by maximizing likelihood ratio

the volatility σ - exactly.
 Singular model otherwise
 Individual approach
 In particular, if P_{σ1} ⊥ P_{σ2} for σ1 ≠ σ2, then one may find σ exactly

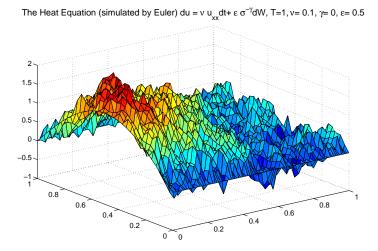
What do we have for SPDEs?

Reference example of SPDE to keep in mind:

$$du(t,x) = \theta u_{xx}dt + \sigma dW(t,x), \quad t \ge 0, \ x \in [0,\pi],$$

with zero boundary conditions and $dW(t,x) = \sum_{k=1}^{\infty} \sin(kx) dw_k(t)$.

What do we have for SPDEs? Mostly singular problems.



Explore the singularity and try to find the exact value (or as a limit of regular models) of the drift/viscosity coefficient.

- additive noise: Huebner-Khasminskii-Rozovskii '92, '95
- Bayesian: Bishwal ('02)
- ▷ Several parameters: Huebner ('97)
- ▷ Discrete-time observations: Piterbarg-Rozovskii ('97) $q = \frac{2(m_1 - 2m)}{d} \ge 1$, Markussen '03
- $\triangleright \theta(t)$ -random: Lototsky ('04)
- ▷ Small noise: Huebner ('97), Ibragimov-Khasminskii ('98,'99)
- ▷ "almost" diagonalizable model: Rozovskii-Lototsky ('97, '01)
- ▷ additive fractional noise: IgC, Lototsky, Pospisil ('09)
- ▷ multiplicative noise: IgC and Lototsky ('08), IgC ('10)
- ▷ nonlinear SPDE: IgC and Glatt-Holtz ('11)
- ▷ Hypothesis testing: IgC and Xu ('14, '15)
- ▷ Non-MLE / Trajectory fitting estimators: IgC, Gong, Huang ('16)

SPDE	Drift

$PART \ I(A): \ \ \text{Maximum Likelihood Estimators}$

 $dU(t) + \theta AU(t)dt + F(U)dt = \sigma dW(t), \quad U(0) = U_0$

- given stochastic basis $(\Omega, \mathcal{F}, \mathbb{F}, \mathbb{P})$
- assume that U(ω,t) belongs to some "suitable" Hilbert space H; in particular U = U(ω,t,x)
- A a linear, selfadjoint, positive-defined (think Laplace^{β}) in \mathcal{H} with eigenfunctions $\{h_k\}_{k\geq 1}$ CONS in \mathcal{H}
- $\sigma dW(t) = \sum_{k\geq 1} \sigma_k h_k dW_k(t)$, $W_k, k \in \mathbb{N}$ ind. Brownian Motions
- F maybe nonlinear; σ known
- U observed for all $t \in [0,T]$ continuous observations

Goal:

Find estimators $\hat{\theta}(\omega)$, $\omega \in \Omega$, for parameters θ by observing a single outcome $U = U(\omega, t) \in \mathcal{H}$ over a finite time horizon $t \in [0, T]$.

Formal Procedure to Derive an Estimator

Project the full system down to N dimensions $P_N(\mathcal{H}) = \mathcal{H}_N \simeq \mathbb{R}^N$

$$dU^{N} + (\theta A U^{N} + \Psi_{N})dt = P_{N}\sigma dW, \quad U(0) = U_{0}$$

Let P^{N,T}_θ(·) = P(U^N ∈ ·) be the measure on C([0,T]; ℝ^N) generated by U^N;
P^T_θ be the measure generated by U on C([0,T]; H).
Usually (at least in linear case), we can prove that P^{N,T}_{θ1} ~ P^{N,T}_{θ2} Hence, get MLE type estimators θ_{NT}.

Formal Procedure to Derive an Estimator

Project the full system down to N dimensions $P_N(\mathcal{H}) = \mathcal{H}_N \simeq \mathbb{R}^N$

$$dU^{N} + (\theta A U^{N} + \Psi_{N})dt = P_{N}\sigma dW, \quad U(0) = U_{0}$$

Let P^{N,T}_θ(·) = P(U^N ∈ ·) be the measure on C([0,T]; ℝ^N) generated by U^N;
P^T_θ be the measure generated by U on C([0,T]; H).
Usually (at least in linear case), we can prove that P^{N,T}_{θ1} ~ P^{N,T}_{θ2}

Hence, get MLE type estimators $\widehat{\theta}_{N,T}$.

Reasonable ansatz:

$$\widehat{\theta}_{N,T} \underset{N \to \infty}{\longrightarrow} \theta$$

Formal Procedure to Derive an Estimator in Nonlinear Case

- Formally treat $\Psi_N = P_N F(U)$ as an external and known quantity (independent of θ)
- Assume that $P_N \sigma$ is invertible on H_N
- Take $G := P_N \sigma(U) (P_N \sigma(U))^*$ and assume it commutes with A
- For a reference values θ_0 , apply (formally) Girsanov Theorem and get the 'Likelihood Ratio' (Radon-Nikodym derivative) $d\mathbb{P}_{\theta_0}^{N,T}/d\mathbb{P}_{\theta_0}^{N,T}$

Maximize the Log-Likelihood Ratio

$$\widetilde{\theta}_{N,T}(\omega) \coloneqq \underset{\theta}{\arg \max} d\mathbb{P}_{\theta}^{N,T}/d\mathbb{P}_{\theta_0}^{N,T}(\omega)$$

$$\begin{split} \frac{d\mathbb{P}_{\theta}^{N,T}}{d\mathbb{P}_{\theta_{0}}^{N,T}} &= \exp\Big[\int_{0}^{T}(\theta-\theta_{0})\langle AU^{N},GdU^{N}(t)\rangle \\ &\quad + \frac{1}{2}\int_{0}^{T}(\theta^{2}-\theta_{0}^{2})\langle AU^{N},GAU^{N}dt\rangle \\ &\quad + \int_{0}^{T}(\theta-\theta_{0})\langle AU^{N},G\psi^{N}dt\rangle\Big], \\ \widetilde{\theta}_{N} &= -\frac{\int_{0}^{T}\langle AU^{N},GdU^{N}\rangle + \int_{0}^{T}\langle AU^{N},GP_{N}\mathbf{F}(\mathbf{U})\rangle dt}{\int_{0}^{T}\langle AU_{N},GAU^{N}\rangle dt} \end{split}$$

$$\begin{split} \frac{d\mathbb{P}_{\theta}^{N,T}}{d\mathbb{P}_{\theta_{0}}^{N,T}} &= \exp\left[\int_{0}^{T} (\theta - \theta_{0}) \langle AU^{N}, GdU^{N}(t) \rangle \right. \\ &+ \frac{1}{2} \int_{0}^{T} (\theta^{2} - \theta_{0}^{2}) \langle AU^{N}, GAU^{N}dt \rangle \\ &+ \int_{0}^{T} (\theta - \theta_{0}) \langle AU^{N}, G\psi^{N}dt \rangle \right], \\ \widetilde{\theta}_{N} &= -\frac{\int_{0}^{T} \langle AU^{N}, GdU^{N} \rangle + \int_{0}^{T} \langle AU^{N}, GP_{N}\mathbf{F}(\mathbf{U}) \rangle dt}{\int_{0}^{T} \langle AU_{N}, GAU^{N} \rangle dt} \end{split}$$

Main Idea #1: Modified MLE

$$\widetilde{\theta}_{N} = -\frac{\int_{0}^{T} A^{1+\rho_{1}} U_{N} G_{N}^{\rho_{2}} dU_{N} + \int_{0}^{T} A^{1+\rho_{1}} U_{N} G_{N}^{\rho_{2}} P_{N} F(U)) dt}{\int_{0}^{T} A^{1+\rho_{1}} U_{N} G_{N}^{\rho_{2}} A U_{N} dt}$$

for some ρ_1, ρ_2 .

Motivated by MLE type estimator

$$\begin{split} \hat{\theta}_{1,N} &= -\frac{\int_{0}^{T} A^{1+\rho_{1}} U_{N} G_{N}^{\rho_{2}} dU_{N} + \int_{0}^{T} A^{1+\rho_{1}} U_{N} G_{N}^{\rho_{2}} P_{N} F(U)) dt}{\int_{0}^{T} A^{1+\rho_{1}} U_{N} G_{N}^{\rho_{2}} AU_{N} dt}, \\ \hat{\theta}_{2,N} &= -\frac{\int_{0}^{T} A^{1+\rho_{1}} U_{N} G_{N}^{\rho_{2}} dU_{N} + \int_{0}^{T} A^{1+\rho_{1}} U_{N} G_{N}^{\rho_{2}} P_{N} F(U_{N})) dt}{\int_{0}^{T} A^{1+\rho_{1}} U_{N} G_{N}^{\rho_{2}} AU_{N} dt}, \\ \hat{\theta}_{3,N} &= -\frac{\int_{0}^{T} A^{1+\rho_{1}} U_{N} G_{N}^{\rho_{2}} dU_{N}}{\int_{0}^{T} A^{1+\rho_{1}} U_{N} G_{N}^{\rho_{2}} AU_{N} dt}. \end{split}$$

Choose ρ_1, ρ_2 such that we can prove

$$\widehat{\theta}_{i,N} \longrightarrow \theta, \quad \text{as } N \to \infty,$$

for i = 1, 2, 3.

$$\begin{split} \hat{\theta}_{2,N} &= \theta + \frac{\int_{0}^{T} \langle A^{1+\rho_{1}} U^{N}, G^{\rho_{2}} \sum_{j=1}^{N} \sigma_{j}(U) \Phi_{j} dW_{j}(t) \rangle}{\int_{0}^{T} A^{1+\rho_{1}} U_{N} G_{N}^{\rho_{2}} AU_{N} dt} \\ &+ \frac{\int_{0}^{T} \langle A^{1+\rho_{1}} U^{N}, G^{\rho_{2}} (F^{N}(U) - F^{N}(U^{N})) \rangle dt}{\int_{0}^{T} A^{1+\rho_{1}} U_{N} G_{N}^{\rho_{2}} AU_{N} dt} \\ \hat{\theta}_{3,N} &= \theta + \frac{\int_{0}^{T} \langle A^{1+\rho_{1}} U^{N}, G^{\rho_{2}} \sum_{j=1}^{N} \sigma_{j}(U) \Phi_{j} dW_{j}(t) \rangle}{\int_{0}^{T} A^{1+\rho_{1}} U_{N} G_{N}^{\rho_{2}} AU_{N} dt} \\ &+ \frac{\int_{0}^{T} \langle A^{1+\rho_{1}} U^{N}, G^{\rho_{2}} F^{N}(U^{N}) \rangle dt}{\int_{0}^{T} A^{1+\rho_{1}} U_{N} G_{N}^{\rho_{2}} AU_{N} dt} \end{split}$$

Need to show that each of 'the excess term converge to zero'

Successfully applied to:

- Stochastic linear parabolic SPDE, additive noise
- Stochastic Navier-Stokes Equations, 2D, additive noise

PART I(B): Trajectory Fitting Estimators

I. Cialenco, R. Gong and Y. Huang, *Trajectory Fitting Estimators for SPDEs Driven by Additive Noise* submitted for publication, 2016 http://arxiv.org/abs/1607.04912

Trajectory fitting estimators (TFE) for SDEs

The observed process $S(\theta) \coloneqq \{S(t; \theta)\}_{t \ge 0}$ follows the dynamics

$$dS(t;\theta) = b(\theta, S(t;\theta))dt + \sigma(S(t;\theta)) dB(t),$$

where B is an 1d standard Brownian motion, and θ is the parameter of interest. Let $F : \mathbb{R} \to \mathbb{R}, F \in C^2$; by Itô's formula,

$$F(S(t;\theta)) = F(S_0) + \int_0^t \left(F'(S(s))b(\theta, S(s)) + \frac{1}{2}F''(S(s))\sigma^2(S(s)) \right) ds + \int_0^t F'(S(s))\sigma(S(s)) dB(s).$$

For any $\theta \in \Theta$ and $t \in [0,T]$, consider an *artificial trajectory*

$$\widetilde{F}(t;\theta) \coloneqq F(S_0) + \int_0^t \left(F'(S(s))b(\theta, S(s)) + \frac{1}{2}F''(S(s))\sigma^2(S(s)) \right) ds.$$

TFE for SDEs; continued

The *trajectory fitting estimator* $\tilde{\theta}_T$ of θ is defined as the solution to the minimization problem

$$\widetilde{\theta}_T \coloneqq \operatorname*{arg \, inf}_{\theta \in \Theta} \int_0^T \left(F(S(t;\theta)) - \widetilde{F}(t;\theta) \right)^2 dt.$$

The choice of F depends on the underlying models to insure the desired asymptotic properties of the estimator; e.g. $F(x) = x^2$.

For ergodic, finite dimensional diffusion processes, one can prove that $\tilde{\theta}_T \rightarrow \theta$, as $T \rightarrow \infty$.

Goal:

- Can we derive tractable TFEs for SPDEs?
- Study the asymptotic properties of TFEs as number of Fourier modes N increases.

TFE for SPDEs

 $(\Omega, \mathscr{F}, \{\mathscr{F}_t\}_{t\geq 0}, \mathbb{P})$ a stochastic basis;

We consider the evolution equation, in a separable Hilbert space H

$$du(t) + \theta \mathcal{A}u(t) dt = \sigma dW(t), \quad u_0 \in H,$$

where A_1 is a linear operators on H, $W \coloneqq \{W(t)\}_{t \ge 0}$ is a cylindrical Brownian motion in H

Continuous-time observation framework of first N Fourier modes on a finite time interval $t \in [0, T]$.

Parameter of interest $\theta \in \Theta \subset \mathbb{R}_+$.

$$du(t) + \theta \mathcal{A}u(t) dt = \sigma dW(t), \quad u_0 \in H,$$
(5.1)

- The operator \mathcal{A} has only point spectra; the eigenfunctions $\{h_k\}_{k \in \mathbb{N}}$ form a complete, orthonormal system in H; eigenvalues ν_k , $k \in \mathbb{N}$.
- The sequence $\{\nu_k\}_{k\in\mathbb{N}}$ is such that $\lim_{k\to\infty}\nu_k = +\infty$.
- W is a cylindrical Brownian motion in H, and has the following form

$$W(t) = \sum_{k=1}^{\infty} \lambda_k^{-\gamma} h_k w_k(t), \quad t \ge 0,$$

for some $\gamma \ge 0$, where $\lambda_k \coloneqq \nu_k^{1/(2m)}$, $k \in \mathbb{N}$, for some $m \ge 0$, and $w_k \coloneqq \{w_k(t)\}_{t\ge 0}$, $k \in \mathbb{N}$, are independent standard Brownian motions.

That is: the equation (5.1) is linear, diagonalizable, parabolic, and the solution exists and is unique.

$$du(t) + \theta \mathcal{A}u(t) dt = \sigma dW(t), \quad u_0 \in H,$$

The unique solution is given by

$$u(t) = \sum_{k=1}^{\infty} u_k(t)h_k, \quad t \ge 0,$$

where, each Fourier mode $u_k, \ k \ge 1$ satisfies the SDE

$$du_k(t) + \theta \nu_k u_k(t) dt = \sigma \lambda_k^{-\gamma} dw_k(t), \quad u_k(0) = (u_0, h_k)_H,$$
$$u_k(t) = e^{-\nu_k \theta t} u_k(0) + \sigma \lambda_k^{-\gamma} e^{-\nu_k \theta t} \int_0^t e^{\nu_k \theta s} dw_k(s).$$

We denote by V_k the artificial trajectory of u_k , as

$$V_k(t;\theta) \coloneqq u_k^2(0) + \int_0^t \left(\sigma^2 \lambda_k^{-2\gamma} - 2\nu_k \theta u_k^2(s)\right) ds, \quad k \in \mathbb{N}, \quad t \in [0,T].$$

Definition

The Trajectory Fitting Estimator for the drift parameter θ is defined as

$$\widetilde{\theta}_{N} = \widetilde{\theta}_{N}(T) := \operatorname*{arg \, inf}_{\theta \in \Theta} \sum_{k=1}^{N} \int_{0}^{T} \left(V_{k}(t;\theta) - u_{k}^{2}(t) \right)^{2} dt$$

By direct evaluations, TFE can be computed explicitly

$$\widetilde{\theta}_N = -\frac{\sum_{k=1}^N \nu_k \left(\frac{1}{2} \xi_k^2(T) - u_k^2(0) Y_k(T) - \sigma^2 \lambda_k^{-2\gamma} X_k(T)\right)}{2 \sum_{k=1}^N \nu_k^2 Z_k(T)},$$

where

$$\xi_k(t) \coloneqq \int_0^t u_k^2(s) \, ds, \qquad X_k(t) \coloneqq \int_0^t s \xi_k(s) \, ds.$$
$$Y_k(t) \coloneqq \int_0^t \xi_k(s) \, ds, \qquad Z_k(t) \coloneqq \int_0^t \xi_k^2(s) \, ds.$$

TFE: Consistency

Noting that

$$\widetilde{\theta}_N - \theta = -\frac{\sum_{k=1}^N \nu_k \left(\frac{1}{2}\xi_k^2 - u_k^2(0)Y_k - \sigma^2 \lambda_k^{-2\gamma} X_k + 2\nu_k \theta Z_k\right)}{2\sum_{k=1}^N \nu_k^2 Z_k} =: -\frac{\sum_{k=1}^N \nu_k A_k}{2\sum_{k=1}^N \nu_k^2 Z_k}$$

Proposition (CGH '16)

$$\mathbb{E}(Z_k) \asymp \frac{1}{\mu_k^2 \theta^2} \left(u_k^2(0) + \sigma^2 T \lambda_k^{-2\gamma} \right)^2, \quad k \to \infty,$$

$$Var(Z_k) \asymp \frac{\lambda_k^{-2\gamma}}{\nu_k^5 \theta^5} \left(u_k^2(0) + \sigma^2 T \lambda_k^{-2\gamma} \right)^3,$$

$$\mathbb{E}(A_k) \asymp \frac{\lambda_k^{-2\gamma}}{\nu_k^2 \theta^2} \left(u_k^2(0) + \sigma^2 T \lambda_k^{-2\gamma} \right),$$

$$Var(A_k) \asymp \frac{\lambda_k^{-2\gamma}}{\nu_k^3 \theta^3} \left(u_k^2(0) + \sigma^2 T \lambda_k^{-2\gamma} \right)^3.$$

Theorem (CGH '16)

Assume that

$$\sum_{k=1}^{\infty} \lambda_k^{-4\gamma} = \infty.$$

Then,

$$\lim_{N\to\infty}\widetilde{\theta}_N=\theta,\quad \mathbb{P}-a.\,s..$$

TFE: Consistency

TFE: Asymptotic Normality

Theorem (CGH '16)

If in addition

$$\sum_{k=1}^{\infty} \lambda_k^{-8\gamma} \nu_k^{-1} = \infty.$$

Then, as $N \to \infty$,

$$\frac{\widetilde{\theta}_N - \theta + a_N}{b_N} \xrightarrow{d} \mathcal{N}(0, 1), \tag{5.2}$$

where

$$a_{N} \coloneqq \frac{\sum_{k=1}^{N} \nu_{k} \mathbb{E}(A_{k})}{2\sum_{k=1}^{N} \nu_{k}^{2} \mathbb{E}(Z_{k})}, \quad b_{N} \coloneqq \frac{\sqrt{\sum_{k=1}^{N} \nu_{k}^{2} \operatorname{Var}(A_{k})}}{2\sum_{k=1}^{N} \nu_{k}^{2} \mathbb{E}(Z_{k})}, \quad (5.3)$$

and where $\stackrel{d}{\longrightarrow}$ denotes the convergence in distribution.

Example

Fractional stochastic heat equation driven by an additive noise:

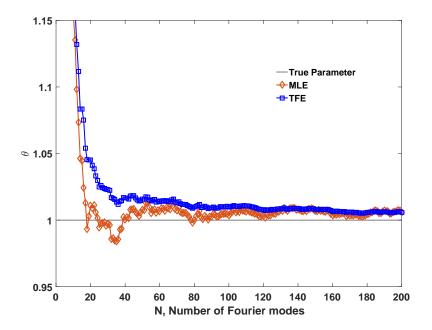
$$du(t,x)+\theta(-\Delta)^{\beta}u(t,x)\,dt=\sigma\sum_{k=1}^{\infty}\lambda_{k}^{-\gamma}h_{k}(x)\,dw_{k}(t),\quad t\in[0,T],\quad x\in G,$$

with initial condition $u(0, x) = u_0(x) \in H$, where $\theta > 0$, $\beta > 0$, $\gamma \ge 0$ and $\sigma \in \mathbb{R} \setminus \{0\}$ are constants. In this case,

$$\nu_k \sim c_1 k^{2\beta/d}, \quad \lambda_k \sim \sqrt{c_1} \, k^{1/d}, \quad k \to \infty.$$

The consistency and the asymptotic normality hold for the TFE $\theta_N,$ whenever

$$2\beta + 8\gamma \le d.$$



PART II: Hypothesis Testing for SPDEs

I. Cialenco, L. Xu, Hypothesis testing for stochastic PDEs driven by additive noise, Stochastic Processes and their Appl., vol. 125, Issue 3, March 2015, pp. 819-866.

I. Cialenco, L. Xu, A note on error estimation for hypothesis testing problems for some linear SPDEs, Stochastic Partial Differential Equations: Analysis and Computations, September 2014, vol. 2, No 3, pp. 408-431.

Similar Setup

Fractional heat equation driven by additive noise:

$$\mathrm{d}U(t,x) + \theta(-\Delta)^{\beta}U(t,x)\mathrm{d}t = \sigma \sum_{k=1}^{\infty} \lambda_k^{-\gamma} h_k(x)\mathrm{d}w_k(t),$$

where $x \in G$, G is a bounded domain in \mathbb{R}^d , $t \in [0, T]$;

- zero initial conditions and boundary values;
- $\{w_k(t)\}_{k\in\mathbb{N}}$ are independent Brownian motions;
- \blacksquare Δ is the Laplace operator on G with zero boundary condition;
- $\{h_k\}$ are the eigenfunctions of Δ in $L^2(G)$; $\{\rho_k\}$ are the eigenvalues; $\lambda_k = \sqrt{-\rho_k} \sim k^{1/d}$;
- consider solution in $(H^{\beta+s}(G), H^s(G), H^{-\beta+s}(G));$
- $\theta > 0$ (Unknown),

all other parameters $\beta > 0, \ \gamma \ge 0$, $\sigma \in \mathbb{R} \smallsetminus \{0\}$ known.

TFE: Consistency

Simple Hypothesis

$$\mathrm{d}U(t,x) + \theta(-\Delta)^{\beta}U(t,x)\mathrm{d}t = \sigma \sum_{k=1}^{\infty} \lambda_k^{-\gamma} h_k(x)\mathrm{d}w_k(t)$$

Assume that θ can take only two values $\{\theta_0, \theta_1\}$.

Consider a simple hypothesis:

 $\mathcal{H}_0: \quad \theta = \theta_0, \\ \mathcal{H}_1: \quad \theta = \theta_1.$

For simplicity, assume $\theta_1 > \theta_0$ and $\sigma > 0$.

Construction of the Test

$$\mathrm{d}U(t,x) + \theta(-\Delta)^{\beta}U(t,x)\mathrm{d}t = \sigma \sum_{k=1}^{\infty} \lambda_k^{-\gamma} h_k(x)\mathrm{d}w_k(t), \quad U(0,x) = 0.$$

• The k-th Fourier coefficient $u_k(t) = \langle U(t,x), h_k(x) \rangle$ is given by

$$du_{k} = -\theta \lambda_{k}^{2\beta} u_{k} dt + \sigma \lambda_{k}^{-\gamma} dw_{k}(t), \quad u_{k}(0) = 0,$$
$$u_{k}(t) = \sigma \lambda_{k}^{-\gamma} \int_{0}^{t} e^{-\theta \lambda_{k}^{2\beta}(t-s)} dw_{k}, \quad k \ge 1.$$

• Let $\mathbb{P}^{N,T}_{\theta}(\cdot) = \mathbb{P}(U_T^N \in \cdot)$ be the measure on $C([0,T]; \mathbb{R}^N)$ generated by $U_T^N(t) = (u_1, \dots, u_N)$ up to time T.

Observable: First N Fourier coefficients $u_1(t), \ldots, u_N(t)$, for all $t \in [0,T]$.

- Looking for rejection region $R \in \mathcal{B}(C([0,T];\mathbb{R}^N))$.
- **Type I error** = $\mathbb{P}_{\theta_0}^{N,T}(R)$;
- Type II error = $1 \mathbb{P}_{\theta_1}^{N,T}(R)$, and power of the test = $\mathbb{P}_{\theta_1}^{N,T}(R)$
- Define the class of test

$$\mathcal{K}_{\alpha} \coloneqq \left\{ R \in \mathcal{B}(C([0,T];\mathbb{R}^{N})) : \mathbb{P}_{\theta_{0}}^{N,T}(R) \leq \alpha \right\}.$$

with $\alpha \in (0,1)$ being the significance level, fixed in what follows.

Definition

We say that a rejection region $R^* \in \mathcal{K}_{\alpha}$ is the most powerful in the class \mathcal{K}_{α} if

$$\mathbb{P}_{\theta_1}^{N,T}(R) \le \mathbb{P}_{\theta_1}^{N,T}(R^*), \qquad \text{for all } R \in \mathcal{K}_{\alpha}.$$

Neyman-Pearson Lemma

Theorem (C. and Xu, '14, '15)

Take the Likelihood Ratio

$$L(\theta_0, \theta_1, U_T^N) = \exp\left(-(\theta_1 - \theta_0)\sigma^{-2}\sum_{k=1}^N \lambda_k^{2\beta+2\gamma} \times \left(\int_0^T u_k(t)du_k(t) + \frac{1}{2}(\theta_1 + \theta_0)\lambda_k^{2\beta}\int_0^T u_k^2(t)dt\right)\right).$$

Let c_{α} be a real number such that

$$\mathbb{P}_{\theta_0}^{N,T}(L(\theta_0,\theta_1,U_T^N) \ge c_\alpha) = \alpha.$$

Then,

$$R^* \coloneqq \{U_T^N : L(\theta_0, \theta_1, U_T^N) \ge c_\alpha\},\$$

is the most powerful rejection region in the class \mathcal{K}_{α} .

The Difficulty:

The problem is that c_{α} has no explicit formula for finite T and N.

The Difficulty:

The problem is that c_{α} has no explicit formula for finite T and N.

We suggest/take "Asymptotic Method"

(1) Fix N, let $T \to \infty$;

(2) Fix T, let $N \to \infty$.

In this talk we focus on case (1), large time asymptotics;

```
For case (2) see [CX '14 and '15].
```

Asymptotic Method in Time T:

Define a new class

$$\mathcal{K}^*_{\alpha} \coloneqq \left\{ (R_T)_{T \in \mathbb{R}_+} : R_T \in \mathcal{B}(C([0,T];\mathbb{R}^N), \limsup_{T \to \infty} \mathbb{P}^{N,T}_{\theta_0}(R_T) \le \alpha \right\},\$$

where N is fixed, and α is the "Asymptotic Significance Level".

`

Asymptotic Method in Time T:

Define a new class

$$\mathcal{K}_{\alpha}^{*} \coloneqq \left\{ (R_{T})_{T \in \mathbb{R}_{+}} : R_{T} \in \mathcal{B}(C([0,T];\mathbb{R}^{N}), \limsup_{T \to \infty} \mathbb{P}_{\theta_{0}}^{N,T}(R_{T}) \leq \alpha \right\},\$$

where N is fixed, and α is the "Asymptotic Significance Level".

Goal: We want to find a rejection region $(R_T^*)_{T \in \mathbb{R}_+}$ such that $\lim_{T \to \infty} \mathbb{P}^{N,T}_{\theta_0}(R_T^*) = \alpha.$

Attempt:

We still try Likelihood Ratio test. Then, what is c_{α} ?

To find c_{α} , we make the following heuristic argument: by Itō's Formula,

$$\mathbb{P}_{\theta_0}^{N,T} \left(L(\theta_0, \theta_1, U_T^N) \ge c_{\alpha}^* \right)$$
$$= \mathbb{P}_{\theta_0}^{N,T} \left(X_T - \frac{2(\theta_1 + \theta_0)}{(\theta_1 - \theta_0)\sigma\sqrt{T}} Y_T \ge \frac{4\theta_0 \ln c_{\alpha}^*}{(\theta_1 - \theta_0)^2 T} + M \right),$$

where

$$\begin{split} M &\coloneqq \sum_{k=1}^{N} \lambda_k^{2\beta}, \quad X_T \coloneqq \sum_{k=1}^{N} \frac{\lambda_k^{2\beta+2\gamma} u_k^2(T)}{\sigma^2 T}, \\ Y_T &\coloneqq \frac{1}{\sqrt{T}} \sum_{k=1}^{N} \lambda_k^{2\beta+\gamma} \int_0^T u_k dw_k. \end{split}$$

We can prove:

And we have the split:

$$\mathbb{P}_{\theta_0}^{N,T}(L(\theta_0,\theta_1,U_T^N) \ge c_{\alpha}^*) \le \mathbb{P}_{\theta_0}^{N,T}(X_T \ge \delta) + \mathbb{P}_{\theta_0}^{N,T}\left(-\frac{2(\theta_1+\theta_0)}{(\theta_1-\theta_0)\sigma\sqrt{T}}Y_T \ge \frac{4\theta_0\ln c_{\alpha}^*}{(\theta_1-\theta_0)^2T} + M - \delta\right).$$

For any fixed
$$\delta > 0$$
, $\mathbb{P}_{\theta_0}^{N,T}(X_T \ge \delta) \to 0$ as $T \to \infty$.

•
$$Y_T \xrightarrow{d} \mathcal{N}(0, \sigma^2 M/(2\theta_0))$$
 as $T \to \infty$.

We can prove:

And we have the split:

$$\mathbb{P}_{\theta_0}^{N,T}(L(\theta_0,\theta_1,U_T^N) \ge c_{\alpha}^*) \le \mathbb{P}_{\theta_0}^{N,T}(X_T \ge \delta) \\ + \mathbb{P}_{\theta_0}^{N,T}\left(-\frac{2(\theta_1+\theta_0)}{(\theta_1-\theta_0)\sigma\sqrt{T}}Y_T \ge \frac{4\theta_0\ln c_{\alpha}^*}{(\theta_1-\theta_0)^2T} + M - \delta\right).$$

• For any fixed
$$\delta > 0$$
, $\mathbb{P}_{\theta_0}^{N,T}(X_T \ge \delta) \to 0$ as $T \to \infty$.

•
$$Y_T \xrightarrow{d} \mathcal{N}(0, \sigma^2 M/(2\theta_0))$$
 as $T \to \infty$.

It Is Reasonable To Take:

$$-\sqrt{\frac{2\theta_0}{M}}\frac{(\theta_1 - \theta_0)\sqrt{T}}{2(\theta_1 + \theta_0)} \left[\frac{4\theta_0 \ln c_\alpha^*}{(\theta_1 - \theta_0)^2 T} + M\right] = q_\alpha.$$
 (6.1)

Solve (6.1) to get

$$c_{\alpha}^{\sharp}(T) = \exp\left(-\frac{(\theta_1 - \theta_0)^2}{4\theta_0}MT - \frac{\theta_1^2 - \theta_0^2}{2\theta_0}\sqrt{\frac{MT}{2\theta_0}}q_{\alpha}\right).$$
 (6.2)

Solve (6.1) to get

$$c_{\alpha}^{\sharp}(T) = \exp\left(-\frac{(\theta_1 - \theta_0)^2}{4\theta_0}MT - \frac{\theta_1^2 - \theta_0^2}{2\theta_0}\sqrt{\frac{MT}{2\theta_0}}q_{\alpha}\right).$$
 (6.2)

Theorem (C. and Xu)

Suppose

$$R_T^{\sharp} \coloneqq \{U_T^N : L(\theta_0, \theta_1, U_T^N) \ge c_{\alpha}^{\sharp}(T)\}, \qquad for \ all \ T,$$

where c_{α}^{\sharp} is given by (6.2). Then, the rejection region $(R_T^{\sharp})_{T \in \mathbb{R}_+} \in \mathcal{K}_{\alpha}^*$, and moreover

$$\lim_{T\to\infty}\mathbb{P}^{N,T}_{\theta_0}(R_T^{\sharp})=\alpha.$$

The Next Question:

How does the power of this test $\mathbb{P}^{N,T}_{\theta_1}(R^{\sharp}_T)$ behave?

The Next Question:

How does the power of this test
$$\mathbb{P}^{N,T}_{\theta_1}(R_T^{\sharp})$$
 behave?

Theorem (C. and Xu)

$$1 - \mathbb{P}_{\theta_1}^{N,T}(R_T^{\sharp}) \sim \exp(-I(\theta_0, \theta_1, N)T + o(T)), \quad as \ T \to \infty,$$

where $I(\theta_0, \theta_1, N) = (\theta_1 - \theta_0)^2 M / 4\theta_0$.

The Next Question:

How does the power of this test
$$\mathbb{P}^{N,T}_{\theta_1}(R_T^{\sharp})$$
 behave?

Theorem (C. and Xu)

$$1 - \mathbb{P}_{\theta_1}^{N,T}(R_T^{\sharp}) \sim \exp(-I(\theta_0, \theta_1, N)T + o(T)), \quad as \ T \to \infty,$$

where $I(\theta_0, \theta_1, N) = (\theta_1 - \theta_0)^2 M / 4\theta_0$.

Sketch of the Proof:

- Calculate the Moment Generating Function of the Log-Likelihood ratio (Gapeev and Küchler [2008])
 - Use Feynman-Kac Formula to derive a PDE
 - Make some transforms and guess the solution
- Apply a theorem for Large Deviation in Lin'kov [1999]
- Use some technics in limit theory to get the final result.

Questions to be answered:

- Except for (R_T^{\sharp}) , how do other rejection regions work for the testing? Is (R_T^{\sharp}) the best one?
- Is the class \mathcal{K}^*_{α} the best to take for the testing?
- How large T shall we take to insure the accuracy?

Asymptotically The Most Powerful Test

Definition

We say that a rejection region $(R_T^*) \in \mathcal{K}^*_{\alpha}$ is asymptotically the most powerful in the class \mathcal{K}^*_{α} if

$$\liminf_{T \to \infty} \frac{1 - \mathbb{P}_{\theta_1}^{N,T}(R_T)}{1 - \mathbb{P}_{\theta_1}^{N,T}(R_T^*)} \ge 1, \quad \text{ for all } (R_T) \in \mathcal{K}_{\alpha}^*$$

Similarly, we define asymptotically the most powerful rejection regions for a different given class of tests.

Theorem (C. and Xu)

There exists rejection region $(\hat{R}_T) \in \mathcal{K}^*_{\alpha}$ which is Asymptotically More Powerful than (R^{\sharp}_T) , that is

$$\limsup_{T \to \infty} \frac{1 - \mathbb{P}_{\theta_1}^{N,T}(\hat{R}_T)}{1 - \mathbb{P}_{\theta_1}^{N,T}(R_T^{\sharp})} < 1.$$

Theorem (C. and Xu)

There exists rejection region $(\hat{R}_T) \in \mathcal{K}^*_{\alpha}$ which is Asymptotically More Powerful than (R^{\sharp}_T) , that is

$$\limsup_{T \to \infty} \frac{1 - \mathbb{P}_{\theta_1}^{N,T}(\hat{R}_T)}{1 - \mathbb{P}_{\theta_1}^{N,T}(R_T^{\sharp})} < 1.$$

Theorem (C. and Xu)

The rejection region of the form

$$R_T \coloneqq \left\{ U_T^N : L(\theta_0, \theta_1, U_T^N) \ge c_\alpha(T) \right\},\$$

with $c_{\alpha}(T) > 0$, can not be asymptotically the most powerful in the class \mathcal{K}^{*}_{α} .

Refined Asymptotic Class

Consider the class of the form:

$$\mathcal{K}_{\alpha}^{\sharp} \coloneqq \left\{ (R_T) : \limsup_{T \to \infty} \left(\mathbb{P}_{\theta_0}^{N,T}(R_T) - \alpha \right) \sqrt{T} \le \alpha_1 \right\}$$

where α_1 is some explicitly computable quantity.

Theorem (C. and Xu)

The rejection region (R_T^{\sharp}) is asymptotically the most powerful in the class $\mathcal{K}_{\alpha}^{\sharp}$.

Thank You !

The end of the talk ... but not of the story

Asymptotic Method in Fourier Modes $N \rightarrow \infty$

Define class

$$\tilde{\mathcal{K}}_{\alpha}(\delta) \coloneqq \left\{ (R_N) : \limsup_{N \to \infty} \left(\mathbb{P}_{\theta_0}^{N,T}(R_N) - \alpha \right) \sqrt{M} \le \tilde{\alpha}_1(\delta) \right\}.$$
(7.1)

Definition

We say that a rejection region $(\tilde{R}_N) \in \tilde{\mathcal{K}}_{\alpha}$ is asymptotically the most powerful in the class $\tilde{\mathcal{K}}_{\alpha}$ if

$$\liminf_{N \to \infty} \frac{1 - \mathbb{P}_{\theta_1}^{N,T}(R_N)}{1 - \mathbb{P}_{\theta_1}^{N,T}(\tilde{R}_N)} \ge 1, \quad \text{for all } (R_N) \in \tilde{\mathcal{K}}_{\alpha}.$$
(7.2)

Similarly, we define asymptotically the most powerful rejection regions for a different given class of tests.

Following similar argument as in "T part", one can find

$$\tilde{R}_{N}^{\delta} = \left\{ U_{T}^{N} : L(\theta_{0}, \theta_{1}, U_{T}^{N}) \geq \tilde{c}_{\alpha}^{\delta}(N) \right\},\$$

such that

Theorem (Main Result II)

Assume $\beta/d \ge 1/2$. The rejection region (\tilde{R}_N^{δ}) is asymptotically the most powerful in $\tilde{\mathcal{K}}_{\alpha}(\delta)$.

Theorem (Error Control for $T \to \infty$)

Consider the test statistics of the form

$$R_T^0 = \left\{ U_T^N : \ln L(\theta_0, \theta_1, U_T^N) \ge \eta_0 T \right\},\$$

where η_0 is given by an explicit formula of the form $-\frac{(\theta_1-\theta_0)^2}{4\theta_0}M + O(T^{-1/2})$. If $T \ge T_0$ (T_0 has explicit formula), then the Type I and Type II errors have the following bound estimates

$$\mathbb{P}_{\theta_0}^{N,T}\left(R_T^0\right) \le (1+\varrho)\alpha,$$

$$1 - \mathbb{P}_{\theta_1}^{N,T}\left(R_T^0\right) \le (1+\varrho)\exp\left(-\frac{(\theta_1 - \theta_0)^2}{16\theta_0^2}MT\right),$$

where ρ denotes a given threshold of error tolerance.

Theorem (Error Control for $N \to \infty$)

Consider the test statistics of the form

$$R_N^0 = \left\{ U_T^N : \ln L(\theta_0, \theta_1, U_T^N) \ge \zeta_0 M \right\},\$$

where ζ_0 is given by an explicit formula of the form $-\frac{(\theta_1-\theta_0)^2}{4\theta_0}T + O(N^{-1/2-\beta/d})$. If $N \ge N_0$ (N_0 has explicit formula), then the Type I and Type II errors have the following bound estimates

$$\mathbb{P}_{\theta_0}^{N,T}\left(R_N^0\right) \le (1+\varrho)\alpha,$$

$$1 - \mathbb{P}_{\theta_1}^{N,T}\left(R_N^0\right) \le (1+\varrho)\exp\left(-\frac{(\theta_1 - \theta_0)^2}{16\theta_0^2}MT\right),$$

where ρ denotes a given threshold of error tolerance.

Table: Type I error for various α .

α	0.1	0.05	0.01	0.005			
T_0	629	818	1258	1447			
$\mathbb{P}_{\theta_{0}}^{N,T}\left(R_{T_{0}}^{0}\right)$	0.020	0.006	0.002	0.001			
Other parameters: $\theta_0 = 0.1$, $\theta_1 = 0.2$, $N = 3$, $\rho = 0.1$, $d = \beta = \sigma = 1$, $\gamma = 0$.							

Table: Type I error for various $T \ge T_0$

T	T_0	$T_0 + T_1$	$T_0 + 2T_1$	$T_0 + 3T_1$	$T_0 + 4T_1$
$\mathbb{P}_{\theta_{0}}^{N,T}\left(R_{T}^{0}\right)$	0.006	0.014	0.010	0.006	0.010
$\mathbb{P}_{\theta_{0}}^{N,T}\left(R_{T}^{\sharp}\right)$	0.054	0.064	0.050	0.028	0.056

Other parameters: $T_1 = 2000$, $\alpha = 0.05$, $\theta_0 = 0.1$, $\theta_1 = 0.2$, N = 3, $\rho = 0.1$, $d = \beta = \sigma = 1$, $\gamma = 0$.

Theorem (Criterion for Most Powerful Test)

Consider the rejection region of the form

$$R_T^* = \left\{ U_T^N : L(\theta_0, \theta_1, U_T^N) \ge c_{\alpha}^*(T) \right\},$$
(7.3)

where $c^*_{\alpha}(T)$ is a function of T such that, $c^*_{\alpha}(T) > 0$ for all T > 0 and

$$\lim_{T \to \infty} \mathbb{P}^{N,T}_{\theta_0}(R_T^*) = \alpha, \tag{7.4}$$

$$\lim_{T \to \infty} \frac{c_{\alpha}^{*}(T)}{1 - \mathbb{P}_{\theta_{1}}^{N,T}(R_{T}^{*})} < \infty.$$
(7.5)

Then (R_T^*) is asymptotically the most powerful in \mathcal{K}^*_{α} .

Proof for
$$c^{\sharp}_{\alpha}(T) / \left(1 - \mathbb{P}^{N,T}_{\theta_1}(R^{\sharp}_T)\right) \sim \sqrt{T}$$
:

Split the probability:

$$1 - \mathbb{P}_{\theta_1}^{N,T}(R_T^{\sharp}) = A_T B_T$$

After some substitutions and calculations we get

$$A_T \asymp \exp[-I(\theta_0, \theta_1, N)T]$$

By a series of technical lemmas we proved

$$B_T \sim \exp[o(T)]/\sqrt{T}$$

• Referring to the form of c^{\sharp}_{α} in (6.2) we finally have

$$c_{\alpha}^{\sharp}(T) / \left(1 - \mathbb{P}_{\theta_1}^{N,T}(R_T^{\sharp})\right) \sim \sqrt{T}$$

Proof:

By the same reasoning as in "Neyman-Pearson", for a fixed T and any $(R_T)\in \mathcal{K}^*_\alpha$, we have that

$$\mathbb{P}_{\theta_1}^{N,T}(R_T^*) - \mathbb{P}_{\theta_1}^{N,T}(R_T) \ge c_{\alpha}^*(T) \left(\mathbb{P}_{\theta_0}^{N,T}(R_T^*) - \mathbb{P}_{\theta_0}^{N,T}(R_T) \right),$$

which can be written as

$$\frac{1 - \mathbb{P}_{\theta_1}^{N,T}(R_T)}{1 - \mathbb{P}_{\theta_1}^{N,T}(R_T^*)} \ge 1 + \frac{c_{\alpha}^*(T)}{1 - \mathbb{P}_{\theta_1}^{N,T}(R_T^*)} \left(\mathbb{P}_{\theta_0}^{N,T}(R_T^*) - \mathbb{P}_{\theta_0}^{N,T}(R_T) \right).$$

From here, using (7.4) and (7.5), we deduce

$$\liminf_{T \to \infty} \frac{1 - \mathbb{P}_{\theta_1}^{N,T}(R_T)}{1 - \mathbb{P}_{\theta_1}^{N,T}(R_T^*)} \geq 1 + \lim_{T \to \infty} \frac{c_{\alpha}^*(T)}{1 - \mathbb{P}_{\theta_1}^{N,T}(R_T^*)} \lim_{T \to \infty} \mathbb{P}_{\theta_0}^{N,T}(R_T^*)$$
$$- \lim_{T \to \infty} \frac{c_{\alpha}^*(T)}{1 - \mathbb{P}_{\theta_1}^{N,T}(R_T^*)} \limsup_{T \to \infty} \mathbb{P}_{\theta_0}^{N,T}(R_T)$$
$$= 1 + \lim_{T \to \infty} \frac{c_{\alpha}^*(T)}{1 - \mathbb{P}_{\theta_1}^{N,T}(R_T^*)} \left(\alpha - \limsup_{T \to \infty} \mathbb{P}_{\theta_0}^{N,T}(R_T)\right)$$
$$\geq 1.$$

This completes the proof.

Sketch of the proof for main theorem:

By the same reasoning as in "Neyman-Pearson", for a fixed T and any $(R_T) \in \mathcal{K}^*_{\alpha}$, we have that

$$\mathbb{P}_{\theta_1}^{N,T}(R_T^{\sharp}) - \mathbb{P}_{\theta_1}^{N,T}(R_T) \ge c_{\alpha}^{\sharp}(T) \left(\mathbb{P}_{\theta_0}^{N,T}(R_T^{\sharp}) - \mathbb{P}_{\theta_0}^{N,T}(R_T) \right),$$

which can be written as

$$\frac{1 - \mathbb{P}_{\theta_1}^{N,T}(R_T)}{1 - \mathbb{P}_{\theta_1}^{N,T}(R_T^{\sharp})} \ge 1 + \frac{c_{\alpha}^{\sharp}(T)}{1 - \mathbb{P}_{\theta_1}^{N,T}(R_T^{\sharp})} \left(\mathbb{P}_{\theta_0}^{N,T}(R_T^{\sharp}) - \mathbb{P}_{\theta_0}^{N,T}(R_T) \right).$$

Taking the 'liminf', we deduce

$$\liminf_{T \to \infty} \frac{1 - \mathbb{P}_{\theta_1}^{N,T}(R_T)}{1 - \mathbb{P}_{\theta_1}^{N,T}(R_T^{\sharp})} \ge 1 + \liminf_{T \to \infty} \frac{c_{\alpha}^{\sharp}(T)}{1 - \mathbb{P}_{\theta_1}^{N,T}(R_T^{\sharp})} \left(\mathbb{P}_{\theta_0}^{N,T}(R_T^{\sharp}) - \alpha \right) \\ - \limsup_{T \to \infty} \frac{c_{\alpha}^{\sharp}(T)}{1 - \mathbb{P}_{\theta_1}^{N,T}(R_T^{\sharp})} \left(\mathbb{P}_{\theta_0}^{N,T}(R_T) - \alpha \right).$$