

π

Max-linear models on graphs

Claudia Klüppelberg
(joint with Nadine Gissibl and Moritz Otto)
Technical University of Munich

Graphical models [Lauritzen (1996)]

- $\mathbb{D}=(V, E)$: directed acyclic graph (DAG)
- $\mathbf{X}=\left(X_{1}, \ldots, X_{d}\right)$: joint probability distribution
- Markov relative to \mathbb{D}

Example. $V=\{1,2,3,4\}, E=\{(1,2),(1,3),(2,4),(3,4)\}$

(local) Markov property:

$$
\begin{aligned}
& X_{v} \Perp \mathbf{X}_{\mathrm{nd}(v) \mid \operatorname{pa}(v)} \mid \mathbf{X}_{\mathrm{pa}(v)} \\
& X_{4} \Perp X_{1} \mid X_{2}, X_{3}
\end{aligned}
$$

Structural equation models [Pearl (2009)]

For $i=1, \ldots, d$:

- f_{i} measurable functions
- Z_{i} independent noise variables
- Define $X_{i}:=f_{i}\left(\mathbf{X}_{\mathrm{pa}(i)}, Z_{i}\right)$

Examples: in the literature mainly discrete models and Gaussian models with $X_{i}=f_{i}\left(\mathbf{X}_{\mathrm{pa}(i)}, Z_{i}\right)=\sum_{k \in \mathrm{pa}(i)} c_{k}^{i} X_{k}+c_{i}^{i} Z_{i}$.

Max-linear structural equation models (ML-SEM)

For $Z_{1}, \ldots, Z_{d}>0$ independent, continuous with support \mathbb{R}^{+}and $c_{k}^{i} \in(0,1]$, we define the max-linear structural equation model

$$
\begin{aligned}
& X_{i}:=\bigvee_{k \in \operatorname{pa}(i)} c_{k}^{i} X_{k} \vee c_{i}^{i} Z_{i} \quad i=1, \ldots, d \\
& X_{1}=c_{1}^{1} Z_{1} \\
& X_{2}=c_{1}^{2} X_{1} \vee c_{2}^{2} Z_{2}=c_{1}^{1} c_{1}^{2} Z_{1} \vee c_{2}^{2} Z_{2} \\
& X_{3}=c_{1}^{3} X_{1} \vee c_{3}^{3} Z_{3}=c_{1}^{1} c_{1}^{3} Z_{1} \vee c_{3}^{3} Z_{3} \\
& X_{4}=c_{2}^{4} X_{2} \vee c_{3}^{4} X_{3} \vee c_{4}^{4} Z_{4} \\
& =c_{2}^{4}\left(c_{1}^{1} c_{1}^{2} Z_{1} \vee c_{2}^{2} Z_{2}\right) \vee c_{3}^{4}\left(c_{1}^{1} c_{1}^{3} Z_{1} \vee c_{3}^{3} Z_{3}\right) \vee c_{4}^{4} Z_{4} \\
& =\left(c_{1}^{1} c_{1}^{2} c_{2}^{4} \vee c_{1}^{1} c_{1}^{3} c_{3}^{4}\right) Z_{1} \vee c_{2}^{2} c_{2}^{4} Z_{2} \vee c_{3}^{3} c_{3}^{4} Z_{3} \vee c_{4}^{4} Z_{4}
\end{aligned}
$$

Max-linearity of X by path analysis

Let $\mathbf{X}=\left(X_{1}, \ldots, X_{d}\right)$ be generated by a max-linear SEM with coefficients $c_{k}^{i} \in(0,1]$ and $D A G \mathbb{D}=(V, E)$.
For a path $p=\left[j=k_{0} \rightarrow k_{1} \rightarrow \cdots \rightarrow k_{n}=i\right]$ define the coefficients

$$
d_{j i}(p):=c_{k_{0}}^{k_{1}} c_{k_{1}}^{k_{2}} \cdots c_{k_{n-1}}^{k_{n}}
$$

and for all $i=1, \ldots, d$,

$$
b_{j i}:=\bigvee_{p \in P_{j i}} d_{j i}(p) \quad \forall j \in \operatorname{an}(i), \quad b_{i i}=c_{i}^{i} \quad \text { and all other } \quad b_{j i}=0,
$$

We call the specific path/paths giving $b_{j i}$ max-weighted paths.
Theorem. \mathbf{X} is a max-linear model: For $i=1, \ldots, d$,

$$
X_{i}=\bigvee_{j=1}^{d} b_{j i} Z_{j}=\bigvee_{j \in \operatorname{An}(i)} b_{j i} Z_{j} \quad(\operatorname{An}(i)=\operatorname{an}(i) \cup\{i\})
$$

A SEM as max-linear model on a DAG

The ML coefficient matrix B is a weighted reachability matrix.
For our example we find:

$$
B=\left[\begin{array}{cccc}
c_{1}^{1} & c_{1}^{2} & c_{1}^{3} & c_{1}^{2} c_{2}^{4} \vee c_{1}^{3} c_{3}^{4} \\
0 & c_{2}^{2} & 0 & c_{2}^{4} \\
0 & 0 & c_{3}^{3} & c_{3}^{4} \\
0 & 0 & 0 & c_{4}^{4}
\end{array}\right]
$$

Reachability matrix: $R=\operatorname{sgn}(B)$

Transitive reduction

A DAG $\mathbb{D}^{\text {tr }}=\left(V, E^{\mathrm{tr}}\right)$ is called transitive reduction of \mathbb{D}, if (a) for all $i, j \in V$ the $D A G \mathbb{D}{ }^{\text {tr }}$ has a path from j to i if and only if \mathbb{D} has a path from j to i, and
(b) there is no DAG with less edges satisfying condition (a).

Theorem

Let (\mathbb{D}, \mathbf{X}) be a ML model on a DAG with coeff. matrix $B=\left(b_{i j}\right)_{d \times d}$. Let further $\mathbb{D}^{\mathbb{t r}}=\left(V, E^{\mathrm{tr}}\right)$ be the transitive reduction of \mathbb{D}. Define

$$
B^{=}:=\left\{(k, i) \in V \times V: k \in \mathrm{pa}(i) \backslash \mathrm{pa}^{\mathrm{tr}}(i) \text { and } b_{k i}=\bigvee_{l \in \operatorname{de}(k) \cap \mathrm{pa}(i)} \frac{b_{k \mid} b_{i i}}{b_{\|}}\right\}
$$

and for $E^{B}:=E \backslash B^{=}$the $\operatorname{DAG} \mathbb{D}^{B}:=\left(V, E^{B}\right)$.
Then $\left(\mathbb{D}^{B}, \mathbf{X}\right)$ is a minimal $M L$ model on a DAG.
Remark: \mathbb{D}^{B} is minimal causal w.r.t. \mathbf{X}.

Max-weighted ML model on a DAG

A ML model on a DAG (\mathbb{D}, \mathbf{X}) is called max-weighted, if all paths are max-weighted: for all paths $p=\left[j=k_{0} \rightarrow k_{1} \rightarrow \ldots \rightarrow k_{n}=i\right]$ we have

$$
b_{j i}=c_{k_{0}}^{k_{0}} c_{k_{0}}^{k_{1}} \cdots c_{k_{n-2}}^{k_{n-1}} c_{k_{n-1}}^{k_{n}}=d_{j i}(p)
$$

Proposition. (1) Let (\mathbb{D}, \mathbf{X}) be a max-weighted $M L$ model on a DAG. Then $\mathbb{D}^{B}=\mathbb{D}^{\text {tr }}$.
(2) A ML model (\mathbb{D}, \mathbf{X}) on a directed tree is max-weighted.
(3) For every DAG we can construct a max-weighted ML model by choosing $c_{k}^{i}=n_{k} / n_{i}, c_{i}^{i}=1 / n_{i}$ for $n_{i}:=|\operatorname{An}(i)|$ for $k \in \mathrm{pa}(i)$.

Asadi, P., Davison, A.C. and Engelke, S. (2015) Extremes on river networks.

Ficure 1. Topographie map of the upper Dambe bnsin, showing sites of 31 gauging stations (red blobs) along the Darabe and its tributaries. Water flows brondly from left to right.

Einmahl, Kiriliouk and Segers (2016) A continuous updating weighted least squares estimator of tail dependence in high dimensions.

X_{0} (EURO STOXX 50),

$X_{11}, X_{12}, X_{13}, X_{14}$ (chemical industry, insurance, DAX, CAC40), $X_{21}, X_{22}, X_{23}, X_{24}, X_{25}$ (Bayer, BASF, Allianz, Axa, Airliquide)

The multivariate distribution function of a ML model on a DAG

Let $Z_{1}, \ldots, Z_{d} \in \operatorname{MDA}\left(\Phi_{\alpha}\right)$ with $\Phi_{\alpha}(x)=e^{-x^{-\alpha}}, x>0$.
Then $\mathbf{X}=\left(X_{1}, \ldots, X_{d}\right) \in \operatorname{MDA}(G)$, where for $\mathbf{x}=\left(x_{1}, \ldots, x_{d}\right)>\mathbf{0}$

$$
G(\mathbf{x})=\exp \left\{-\sum_{k=1}^{d} \bigvee_{k \in \operatorname{An}(i)} b_{k i}^{\alpha} x_{i}^{-\alpha}\right\}
$$

In particular,

$$
\begin{aligned}
G_{X_{i}}(x) & =\exp \left\{-x^{-\alpha} \sum_{k \in \operatorname{An}(i)} b_{k i}^{\alpha}\right\} \\
G_{X_{i}, X_{j}}\left(x_{i}, x_{j}\right) & =\exp \left\{-\sum_{k \in \operatorname{An}(i) \cap \operatorname{An}(j)}\left(\frac{b_{k i}}{x_{i}}\right)^{\alpha} \wedge\left(\frac{b_{k j}}{x_{j}}\right)^{\alpha}\right\}
\end{aligned}
$$

Tail dependence coefficient

For notational simplicity assume from now on

$$
\sum_{k \in \operatorname{An}(i)} b_{k i}^{\alpha}=1 \quad \text { for } \quad i \in V
$$

Then G has standard marginal distributions Φ_{α}.
For $i, j \in V$ the tail dependence coefficient between X_{k} and X_{l}

$$
\chi(i, j)=\lim _{u \rightarrow \infty} P\left(X_{i}>u \mid X_{j}>u\right)=\sum_{k \in \operatorname{An}(i) \cap \operatorname{An}(j)} b_{k i}^{\alpha} \wedge b_{k j}^{\alpha}
$$

We also assume from now on

$$
\alpha=1 \quad \text { such that } \quad \chi(i, j)=\sum_{k \in \operatorname{An}(i) \cap \operatorname{An}(j)} b_{k i} \wedge b_{k j}, \quad i, j \in V .
$$

Goal: Estimate a max-weighted $M L$ model (\mathbb{D}, \mathbf{X}) from χ.

Max-weighted ML model on a DAG

Proposition. Let (\mathbb{D}, \mathbf{X}) be a max-weighted ML model on a DAG.
(1) For $j \in \operatorname{An}(i)$ we have $\chi(j, i)=\frac{b_{i j}}{b_{i}}$.
(2) For $j \in \operatorname{An}(i)$ with path $\left[j=k_{0} \rightarrow k_{1} \rightarrow \cdots \rightarrow k_{n}=i\right]$ we have $\chi(j, i)=\chi\left(k_{0}, k_{1}\right) \cdots \chi\left(k_{n-1}, k_{n}\right)$.

Corollary. Let V_{0} denote the set of initial nodes.
(1) Then $k \in \operatorname{An}(i)$ if and only if $\chi(k, i)>0$ and for all $j \in \operatorname{An}(i) \cap \operatorname{An}(k) \cap V_{0}$ we have $\chi(j, i)=\chi(j, k) \chi(k, i)$.
(2) There is a path $\left[j=k_{0} \rightarrow \cdots \rightarrow k_{n}\right]$ if and only if $\chi\left(k_{m}, k_{m+1}\right)>0$ for $m=0, \ldots, n-1$ and for all $j \in \operatorname{An}(i) \cap V_{0}$ we have $\chi(j, i)=\chi\left(k_{0}, k_{1}\right) \cdots \chi\left(k_{n-1}, k_{n}\right)$.

Theorem. The following are equivalent
(1) $\chi(i, j)=0$
(2) X_{i} and X_{j} are independent
(3) $\operatorname{An}(i) \cap \operatorname{An}(j)=\emptyset$

We call $W \subseteq V$ a χ-clique of \mathbb{D} if $\chi(i, j)=0$ for all $i, j \in W, i \neq j$.

Lemma. Let V_{0} denote the set of initial nodes of \mathbb{D}.
(1) For all $i, j \in V_{0}$ we have $\chi(i, j)=0$; i.e. V_{0} is a χ-clique.
(2) Let $W \subseteq V$ such that $\chi(i, j)=0$ for all $i, j \in W$. Then $|W| \leq\left|V_{0}\right|$; i.e. V_{0} is a maximal χ-clique. Hence, $\left|\operatorname{An}(i) \cap V_{0}\right|=1$ for all $i \in W$.

Theorem. The matrix B is identifiable from χ and V_{0}.

Identify (\mathbb{D}, \mathbf{X}) from data

(I) Find \mathbb{D} from the given (or estimated) tail dependence matrix χ.
(1) Calculate all maximum cliques.

- There is only one maximum clique \Rightarrow this is V_{0}.
- There are various maximum cliques
\Rightarrow there may be several DAGs with different V_{0}.
(2) Construct a reachability matrix R (hence \mathbb{D}) from χ and every maximum clique V_{0}.
Use: for $k, i \in V, k \in \operatorname{An}(i)$ if and only if $\chi(k, i)>0$ and
$\chi(j, i)=\chi(j, k) \chi(k, i)$ for all $j \in V_{0}$ with $\chi(j, i) \chi(j, k)>0$.
Thus we find for every node its ancestors, giving a possible R.
(II) Find B.

For all $j \in V_{0}$ we know $b_{j j}=1$.
For $j \in \operatorname{An}(i)$ we have $b_{j i}=\chi(i, j)$.
Since $\sum_{l \in \operatorname{An}(i)} b_{l i}=1$,

$$
b_{i i}=1-\sum_{j \in \operatorname{an}(i)} b_{j i}=1-\sum_{j \in \operatorname{an}(i)} b_{j j} \chi(i, j)
$$

References

- Gissibl, N. and Klüppelberg, C. (2015) Max-linear models on directed acyclic graphs. Submitted. http://arxiv.org/abs/1512.07522
- Gissibl, N., Klüppelberg, C. and Otto, M. (2016) Tail dependence of max-linear models on directed acyclic graphs. In preparation.
- Lauritzen, S.L. (1996). Graphical Models. Oxford University Press.
- Pearl, J. (2009) Causality: Models, Reasoning, and Inference (2nd Ed.) Cambridge University Press.

