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Simulating ambit processes and fields

We are interested in developing efficient simulation methods for
ambit processes and fields of the form

X(t) :=
∫
Rd

g(t − s)σ(s)W (ds), t ∈Rd,

where W is a Gaussian white noise on Rd.

Power-law kernel functions

• We concentrate on the case where the kernel function g
exhibits (possibly explosive) power-law behaviour near 0.

• Such kernel functions give rise to ambit fields X , whose
realisations are rougher or smoother, in terms of Hölder
regularity, than those of a Brownian motion/sheet.
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The Gaussian case

If the volatility field σ is constant and non-random, then X is
stationary and (centred) Gaussian with covariance

γ(h) := E(X(0)X(h)
)= ∫

Rd
g(h+x)g(x)dx, h ∈Rd.

Now X can be simulated exactly by sampling from a multivariate
Gaussian distribution, determined by γ.

Caveats of exact Gaussian simulation

• It can be computationally costly, but efficient implementations
using circulant matrices are available (Wood and Chan, 1994).

• The covariance γ is sometimes difficult evaluate numerically.

• The approach does not extend to the case where σ is
stochastic.
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Approximation by Riemann sums

In general, exactness of simulation is a tall order, and we instead try
to approximate X — hopefully precisely enough.

Riemann sum approximation of X

• We choose disjoint discretisation cells C1,C2, . . . ⊂Rd such that
Rd =⋃∞

i=1 Ci, and fix ci ∈ Ci for each i ∈N.

• We then approximate

X(t) =
∞∑

i=1

∫
Ci

g(t − s)σ(s)W (ds) ≈
N∑

i=1
g(t −ci)σ(ci)W (Ci),

where N is such that C1, . . . ,CN provide “enough” coverage.
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Poor precision of Riemann sums

In particular, this approach amounts to approximating the kernel
function g by a piecewise constant function.

When g has power-law behaviour near 0, the approximation

g(t − s) ≈ g(t −ci), s ∈ Ci,

can be very poor for any cell Ci such that ci ≈ t, as g is evaluated
near 0 therein.

The resulting Riemann sum approximation of X will be poor as well.

Solution

The hybrid scheme solves this problem by using a more
appropriate “bespoke” approximation of g near 0.
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Brownian semistationary processes

Definition (Barndorff-Nielsen and Schmiegel, 2009)

Let (Ω,F , {Ft}t∈R,P) be a filtered probability space supporting a
Brownian motion {W (t)}t∈R.

A Brownian semistationary (BSS) process {X(t)}t∈R is defined by

X(t) :=
∫ t

−∞
g(t − s)σ(s)dW (s),

where

• g : (0,∞) → [0,∞) is a square-integrable function,

• {σ(t)}t∈R is an adapted covariance-stationary process with
locally bounded trajectories.
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Standing assumptions

We first give a precise description of power-law behaviour near 0:

Assumption

I For some α ∈ (−1
2 , 1

2

)
\ {0},

g(x) = xαLg (x), x ∈ (0,1],

where Lg : (0,1] → [0,∞) is C1, slowly varying at 0 Definition and
bounded away from 0. Moreover, there exists a constant C > 0
such that the derivative L′

g of Lg satisfies

|L′
g (x)| ≤ C(1+x−1), x ∈ (0,1].
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Standing assumptions

The remaining assumptions serve a more technical purpose:

Assumption

II The function g is C1 on (0,∞), so that its derivative g ′ is
ultimately monotonic and satisfies

∫ ∞
1 g ′(x)2dx <∞.

III For some β ∈ (−∞,−1
2

)
, we have g(x) =O (xβ), x →∞.

Example

The so-called gamma kernel

g(x) = xαe−λx, x ∈ (0,∞),

for any α ∈ (−1
2 , 1

2

)
\ {0} and λ> 0 satisfies these assumptions.
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Remark about stationarity and regularity

Proposition (Bennedsen, Lunde, P., 2015)

1. The process X is centred and covariance stationary.

2. For any t ∈R,

E
(|X(s)−X(t)|2)∼ E(σ(0)2)Cα|s− t|2α+1Lg (|s− t|)2

as s → t, where Cα = 1
2α+1 +

∫ ∞
0

(
(y+1)α−yα

)2dy.

3. The process X has a modification with locally φ-Hölder
continuous trajectories for any φ ∈ (

0,α+ 1
2

)
.

Definition

We refer to α as the roughness parameter of X .
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Approximation by Riemann sums

In the BSS case, the conventional approximation of X(t) by
Riemann sums can be expressed as

X(t) =
∞∑

k=1

∫ t− k
n+ 1

n

t− k
n

g(t − s)σ(s)dW (s)

≈
Nn∑

k=1
g
( k

n

)
σ

(
t − k

n

)(
W

(
t − k

n
+ 1

n

)
−W

(
t − k

n

))
,

where Nn →∞ as n →∞.

• As mentioned before, this corresponds to approximating g by a
step function.

• The scheme can be very inaccurate when g is singular, α< 0.

• The first summands are the problematic ones, as g is evaluated
near zero therein.
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Approximation by Riemann sums
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Hybrid scheme for BSS processes

The idea behind the hybrid scheme (Bennedsen, Lunde, P., 2015) is
to replace the first κÊ 1 Riemann summands by suitable random
variables that provide a better approximation.

We use for k = 1, . . . ,κ,

g(t − s) ≈ (t − s)αLg

( k

n

)
, t − s ∈

[k−1

n
,

k

n

]
\ {0},

motivated by the properties slowly varying functions, and define

X̌n(t) :=
κ∑

k=1
Lg

( k

n

)
σ

(
t − k

n

)∫ t− k
n+ 1

n

t− k
n

(t − s)αdW (s).
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Hybrid scheme for BSS processes

We retain Riemann summands for the remaining discretisation
cells, but we allow the point at which g is evaluated to be choosen
freely within each cell.

We define

X̂n(t) :=
Nn∑

k=κ+1
g
(bk

n

)
σ

(
t − k

n

)(
W

(
t − k

n
+ 1

n

)
−W

(
t − k

n

))
,

where b = {bk}∞k=κ+1 is a sequence that must satisfy

bk ∈ [k−1,k] \ {0}, k Ê κ+1,

but otherwise can be chosen freely.
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Hybrid scheme for BSS processes
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Hybrid scheme for BSS processes

The hybrid scheme for X(t) is then given by

X(t) ≈ Xn(t) := X̌n(t)+ X̂n(t).

Remark

Define b0 := {k}∞k=κ+1. Then in the case κ= 0 and b = b0 we recover
the approximation by Riemann sums.

Assumption

IV We have Nn ∼ nγ+1 as n →∞ for some γ> 0.

Implementation
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Asymptotics of the mean square error

Theorem (Bennedsen, Lunde, P., 2015)

Suppose that γ>−2α+1
2β+1 and that for some δ> 0,

E
(|σ(s)−σ(0)|2)=O

(
s2α+1+δ), s → 0+ .

Then for all t ∈R,

E
(|X(t)−Xn(t)|2)∼ J(α,κ,b)E

(
σ(0)2)n−(2α+1)Lg (1/n)2, n →∞,

where

J(α,κ,b) :=
∞∑

k=κ+1

∫ k

k−1
(yα−bαk )2dy <∞.

18 / 28
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Asymptotic root mean square error

The quantity
√

J(α,κ,b) can be seen as the asymptotic RMSE of the
hybrid scheme.

For any α ∈ (−1
2 , 1

2

)
\ {0}, we can find b that minimises

√
J(α,κ,b).

We denote the minimiser by b∗.

It is illuminating to assess the asymptotic improvement on the
approximation by Riemann sums:

reduction in asymptotic RMSE =
√

J(α,κ,b)−
√

J(α,0,b0)√
J(α,0,b0)

·100%.
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Simulated trajectories

t
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n
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κ = 0, b = b0

κ = 0, b = b∗

κ = 1, b = b∗

κ = 2, b = b∗

α = 0.450, λ = 20, n = 200

Using g(x) = cα,λxαe−λx, with cα,λ such that
∫ ∞

0 g(x)2dx = 1.
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Volatility-modulated moving average fields

In ongoing work with C. Heinrich and A. Veraart, we have adapted
the hybrid scheme for the following class of random fields:

Definition

A 2-parameter volatility-modulated moving average (VMMA)
field {X(t)}t∈R2 is a covariance stationary random field defined by

X(t) :=
∫
R2

g(t − s)σ(s)W (ds),

where

• g :R2 → [0,∞) is a square-integrable function,

• {σ(t)}t∈R2 is a covariance stationary random field with locally
bounded realisations,

• W is a white noise on R2, independent of σ.
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Class of kernel functions

Our hybrid scheme is applicable when the kernel function g has the
form

g(x) = ‖Ax‖αLg (‖Ax‖), x ∈R2 \ {0},

where α ∈ (−1,0), A ∈ GL(2), and Lg : (0,∞) → [0,∞) is slowly varying
at 0.

The kernel function is isotropic if and only if A is orthogonal.

Example

Choosing A = I2, α= ν−1, L(x) = x
1−ν

2 K 1−ν
2

(λx), results in a Matérn
(1960) covariance function

E
(
X(0)X(h)

)= E(σ(0)2) (λ‖h‖)ν

2ν−1Γ(ν)
Kν(λ‖h‖), h ∈R2,

for ν ∈ (0,1) and λ> 0.
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Hybrid scheme for VMMA fields

The hybrid scheme for X
( i

n

)
is given (in the special case A = I2) by

X
( i

n

)
≈ ∑

k∈Kκ

Lg

(k

n

)
σ

( i

n
− k

n

)
W n

i−k,k +
∑

k∈K κ

g
(bk

n

)
σ

( i

n
− k

n

)
W n

i−k,

where

W n
i,j :=

∫
∆ni

‖(i+ j)/n− s‖αW (ds), W n
i :=

∫
∆ni

W (ds),

∆ni :=
(

i1−1/2
n , i1+1/2

n

]
×

(
i2−1/2

n , i2+1/2
n

]
,

for i, j ∈Z2 and

Kκ := {−κ, . . . ,κ}2, Kκ := {−Nn, . . . ,Nn} \ Kκ,

with Nn > κÊ 0 and bk ∈ (k1 − 1
2 ,k1 + 1

2 ]× (k2 − 1
2 ,k2 + 1

2 ] for k ∈Z2.
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n

]
,

for i, j ∈Z2 and

Kκ := {−κ, . . . ,κ}2, Kκ := {−Nn, . . . ,Nn} \ Kκ,

with Nn > κÊ 0 and bk ∈ (k1 − 1
2 ,k1 + 1

2 ]× (k2 − 1
2 ,k2 + 1

2 ] for k ∈Z2.
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Hybrid scheme for VMMA fields

The hybrid scheme for X
( i

n

)
is given (in the special case A = I2) by

X
( i

n

)
≈ ∑

k∈Kκ

Lg

(k

n

)
σ

( i

n
− k

n

)
W n

i−k,k +
∑

k∈K κ

g
(bk

n

)
σ

( i

n
− k

n

)
W n

i−k,

where

W n
i,j :=

∫
∆ni

‖(i+ j)/n− s‖αW (ds), W n
i :=

∫
∆ni

W (ds),

∆ni :=
(

i1−1/2
n , i1+1/2

n

]
×

(
i2−1/2

n , i2+1/2
n

]
,

for i, j ∈Z2 and

Kκ := {−κ, . . . ,κ}2, Kκ := {−Nn, . . . ,Nn} \ Kκ,

with Nn > κÊ 0 and bk ∈ (k1 − 1
2 ,k1 + 1

2 ]× (k2 − 1
2 ,k2 + 1

2 ] for k ∈Z2.
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Simulated realisations

α=−0.1, A = I2 α=−0.3, A = I2
3

α = −0.1

α = −0.2

4

α = −0.3

α = −0.4

g(x) = ‖Ax‖αe−‖Ax‖, σ(s) = 1.
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Simulated realisations

α=−0.8, A = I2 α=−0.5, A = 1
3

[
2 1
1 1

]

5

α = −0.6

α = −0.8

7

α = −0.3

α = −0.5
g(x) = ‖Ax‖αe−‖Ax‖, σ(s) = 1.
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Slow variation at zero

Definition

A function L : (0,1] → [0,∞) is slowly varying at 0 if for any t > 0,

lim
x→0+

L(tx)

L(x)
= 1.

The intuition is that such a slowly varying function varies “less”
than any power function “near” zero. Examples:

• If limx→0+ L(x) ∈ (0,∞) exists, then L is slowly varying.

• The function L(x) =− logx is slowly varying.

Back to assumptions
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Implementation of the BSS hybrid scheme

Outline of implementation

Generating Xn
( i

n

)
for i = 0,1, . . . ,bnTc involves:

1. sampling bnTc+Nn iid observations from a κ+1 dimensional
Gaussian distribution,

2. generating a discretisation of σ using some appropriate
scheme,

3. computing the observations by summation and discrete
convolution (using FFT).

• Glossing over the simulation of σ, the computational
complexity of this procedure is O (Nn logNn) =O (n1+γ logn).

• The computational complexity of an exact simulation in the
Gaussian case would be O (n3) (using Cholesky decomp.).

Back to hybrid scheme
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