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Ambit Stochastics

General Ambit fields

Yt(p) =µ +
∫
At(p)

F (t,s,p,q)σs(q)L(dsdq)

+
∫
Bt(p)

G (t,s,p,q)as(q)dsdq, (t,p) ∈ R×Rd ,

I L a Lévy basis (infinitely divisible independently scattered random
measure);

I F ,G deterministic functions;
I σ ,a random fields;
I At(p),Bt(p)⊆ (−∞, t]×Rd .

Stationary Ambit fields: Take (a,σ) stationary and
I F (t,s,p,q) = f (t− s,p−q) and G (t,s,p,q) = g(t− s,p−q)
I At(p) = A+ (t,p) and Bt(p) = B + (t,p), with A,B ⊆ (−∞,0)×Rd .
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Ambit Stochastics

Ambit processes: For a curve γ(r) = (tr ,pr ) ∈ R×Rd

Xr = Ytr (pr ), r ∈ R.

Lévy semistationary

Yt = µ +
∫ t

−∞

g(t− s)asds +
∫ t

−∞

f (t− s)σsdLs .
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Ambit fields in 3D turbulence

Key features in pure temporal turbulence:
I Energy spectrum: E (k) ∝ k−5/3;
I Intermittency on the velocity process;
I Negative skewness;

O. Sauri (Aarhus University) 2D Turbulence Aarhus 2016 7 / 41



Ambit fields in turbulence

Non-parametric model: Ferrazzano and Küppelberg (2012), Brockwell
et al. (2013)

Yt = µ +
∫ t

−∞

f (t− s)dLs .

Parametric model: Barndorff-Nielsen and Schmiegel (2008),Márquez
and Schmiegel (2016)

Yt = µ + β

∫ t

−∞

f (t− s)σ
2
s ds +

∫ t

−∞

f (t− s)σsdBs .
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Ambit fields in 3D turbulence

Key features in spatio-temporal turbulence:
I Energy spectrum: E (k) ∝ k−5/3;
I Intermittency on the velocity process;
I Negative skewness;

Universality
I Universal distribution (up to a time-change) on the velocity increments

(Barndorff-Nielsen et al. (2004)).
I The distribution of the logarithm of the energy dissipation does not

depend on the Reynolds number (Hedevang and Schmiegel (2013)).
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Ambit fields in 3D turbulence

Hedevang and Schmiegel (2014) proposed a pure spatial model

Y (p) =
∫
R3

f (p−q)σ(q)L(dq),

where f ∈M3,d(R) and L is Rd -valued.
Schmiegel (2005), Hedevang and Schmiegel (2013) introduced a
model for the energy dissipation

logε(t,p) =
∫
At(p)

L(dsdq).
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Stylized facts in 2D turbulence
Double cascade for homogeneous and isotropic flows: E (k) ∝ k−5/3

and E (k) ∝ k−3;

Figure: Typical behavior of the energy spectrum of 2D flows. Figure
extracted from Smith and Yakhot (1993).
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Stylized facts in 2D turbulence

Vanishing divergence: If Yt(x ,y) =

[
Y1(x ,y)
Y2(x ,y)

]
, then the divergence of

Y is defined as
divY =

∂Y1

∂x
+

∂Y2

∂y
.

Isotropic increments: A random field (Yt(p))t∈R,p∈R2 on R×R2 is
said to have isotropic increments if for any p ∈ R2 it holds

Yt(p)−Yt(0)
d
= Rθ

[
Yt(R

−1
θ

p)−Yt(0)
]
.

Inttermitency in the vorticity but not in the increments.
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Useful references

Review of 2D turbulence:
I Boffetta and Ecke (2012);
I Tabeling (2002);
I Rivera et al. (2001).
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Stream functions

A stream function ψt (x ,y) determines a velocity field ut (x ,y):

ut (x ,y) = (−∂yψt (x ,y) ,∂xψt (x ,y)) . (1)

There is no similar concept on 3D turbulence.
If the velocity field ut (x ,y) is obtained by a stream function, then it
has null-divergence .
The stream function can be found from vorticity using the following
Poisson’s equation

−ωt(x ,y) = ∂
2
x ψt (x ,y) + ∂

2
y ψt (x ,y) .

Intermittency in the vorticity can be reflected by the stream function.
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Ambit-type stream functions

To achieve null-divergence, isotropy and intermittency in the vorticity,
we consider the class of processes

ψt(p) =
∫
Ht

F (t− s,‖p−q‖)Vs(q)L(dsdq),

where V is a random field and Ht = (−∞, t]×R2.
ψ is a valid stream function only if it partially differentiable!
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Ambit-type stream functions

If V ≡ 1, the partial differentiability can be obtained within the
framework of Basse-O’Connor and Rosiński (2013).
However, to get intermittency in the vorticity we require V to be
stochastic.
Fortunately V appears linearly on the stochastic integral.
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Convergence of Ambit fields
Let L be a dispersive Lévy basis with characteristic quadruplet
(γs (q) ,bs (q) ,νs (q;dx) ,c (dqds))s∈R,q∈Rd . For y ,p ≥ 0, put

Φp
L (y ,s,q) := sup

|c|≤1
U (cy ,s,q) + y2b2

s (q)

+
∫
R

(
|yx |p 1{|yx |>1}+ |yx |2 1{|yx |≤1}

)
νs (q;dx) ,

where

U (y ,s,q) :=

∣∣∣∣yγs (q) +
∫
R

[τ (yx)−yτ (x)]νs (q;dx)

∣∣∣∣ .
From Basse-O’Connor et al. (2014), c.f. Rajput and Rosiński (1989)
and Chong and Klüppelberg (2015),∫

R×Rd
ϕn (s,q)L(dqds)

P→ 0,

if and only if ∫
R×Rd

Φ0
L (ϕn (s,q) ,s,q)c (dqds)

P→ 0.
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Convergence of Ambit fields cont.

Proposition
Let

ϕn (s,q) := fn (s,q)σs (q) , (s,q) ∈ R×Rd ,

where (fn)n∈N is a sequence of deterministic functions, and σ a predictable
random field which is bounded in L 2 (Ω,F ,P). Then,∫
R
∫
Rd ϕn (s,q)L(dqds)

P→ 0 if the following two conditions hold:

1
∫
R
∫
Rd fn (s,q)L(dqds)

P→ 0;
2
∫
R
∫
Rd E

[
U (ϕn (s,q) ,s,q)1{|σs(q)|>1}

]
c (dqds)→ 0.
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Differentiable Ambit fields
As a simple application of Basse-O’Connor and Rosiński (2013)

Proposition
Let L be a Lévy basis as above such that E [|L(A)|] < ∞ for every
A ∈Bb

(
R×Rd

)
. Consider the Ambit field

Yt (p) :=
∫
Ht

F (t,p,s,q)σs (q)L(dqds) , (t,p) ∈ R×Rd ,

with σ a predictable and L 2-bounded. Suppose that the mapping
pi ∈ R 7→ F (t,p1, . . . ,pi , . . . ,pd ,s,q) is absolutely continuous. If the
mapping pi 7→

∫
Ht

Φ̃1
L (∂piF (t,p,s,q) ,s,q)c (dsdq) is locally integrable,

then the paths pi 7→ Xt (p) are a.s. absolutely continuous with

∂piXt (p) =
∫
Ht

∂piF (t,p,s,q)σs (q)L(dqds) . (2)

When L is centered and square integrable, we only require the mapping
pi 7→

∫
Ht

∂piF (t,p,s,q)2 c (dsdq) to be locally integrable.
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A model for the velocity field

For our model

ψt(p) =
∫
Ht

F (t− s,‖p−q‖)Vs(q)L(dsdq),

we get

ut (x ,y) =
∫
Ht

f (t− s,‖p−q‖)e(p−q)Vs(q)L(dsdq).

e(x ,y) = (−y ,x);

f (s,u) = u−1∂uF (s,u).
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A model for the velocity field

The impact of e:

−→p

b q ∈ supL

rb

e(p− q)Vs(q)ξ

p− q

Figure: Rotation obtained by V and e.
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Structure functions

Given an isotropic velocity field, let

Xr := Y 1(r(1,0)), r ∈ R. (3)

The structure function of X is defined by

Sn(r) := E [(Xr −X0)n] .

Due to the double cascade, S2(r)∼ r2 near zero, and S2(r) ∝ r2/3

outside of zero.
Equivalently, the energy spectrum must satisfies that E (k) ∝ k−5/3

near zero, and E (k) ∝ k−3 outside of zero .
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A model for the velocity field

Inspired by Márquez and Schmiegel (2016), we consider

ψ(p) =
∫
R2

φα,β ,λ1,λ2(‖p−q‖2)L(dq), p ∈ R2, (4)

where φα,β ,λ1,λ2 = ϕα,λ1 ∗ϕβ ,λ2 with α,β >−1, α + β >−3/2,
λ1∨λ2 > 0 and

ϕα,λ (u) := uαe−λu, u ≥ 0.

We have that

S2(r)∼
{

cα,β r
4(α+β+1) α + β 6= 3/4,−1< α + β <−1/2;

cα,β r
2 −1/2< α + β .
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Energy spectrum

Recall that the energy spectrum behaves as

log k

logE(k)

k−5/3

k−3

Figure: Typical behavior of the energy spectrum of 2D flows.
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Energy spectrum
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Figure: Energy Spectrum
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Energy spectrum
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Building the model from the Energy spectrum

If we consider a general ambit-type stream function, i.e.

ψ(p) =
∫
R2

g(‖p−q‖2)L(dq), p ∈ R2.

its energy spectrum can be written as

EY (k) =

[
8π

∫
∞

0
J1(u ‖k‖)g ′(u2)u2du

]2

, k ∈ R2.

By the properties of the Hankel transform, we get that for
G (u) := g(u2)

G ′(u) =
1
4π

∫
∞

0
J1(ru)E

1/2
Y (r)rdr .
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Building the model from the Energy spectrum cont.

The spectrum

Eµ,ν ,λ ,l(k) = (λk)µ (λ

√
k2 + l2)νKν (λ

√
k2 + l2),

according to (Hedevang and Schmiegel (2014)) behaves as

Eµ,ν ,λ ,l(k)∼


(λk)µ k � l ;

(λk)µ+2(ν∧0) l � k � λ−1

(λk)µ+ν− 1
2 e−λz(1+ cν

λk ) k → ∞.

;
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Building the model from the Energy spectrum cont.

Inverting Eµ,ν ,λ ,l(k), we get:

0 2 4 6 8 10
0

0.5

1.0

1.5

2.0

Energy Spectrum

α,β,λ1,λ2 = {0., -0.04, 0.1, 1}

α,β,λ1,λ2 = {0.45, 0.41, 0.1, 1}

α,β,λ1,λ2 = {-0.45, -0.49, 0.1, 1}

Figure: Kernel associated to Eµ,ν ,λ ,l .
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Vorticity

The concept of vorticity is rooted in that of circulation:

Cρ (p; t) :=
∮

D(ρ,p)

ut
(−→q )d−→q .

From this the rotation or vorticity of u is by definition determined
from the circulation as

ωt (p) := rotut (p) = lim
ρ−→0

1
πρ2Cρ (p; t) .

In the smooth case:
ω = ∇×u= ∇

2
ψ.
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Vorticity in Ambit Stochastics

In our setting

Cρ (p; t) =
∫
Ht

ϕρ (t− s,p−q)σs (q)L(dqds) ,

where

ϕρ (t− s,p−q) : = ρ

∫ 2π

0
f (t− s,‖p−q+ ρε (θ)‖)

×
〈
e(p−q+ ρε (θ)),ε⊥ (θ)

〉
dθ ,

with ε (θ) = (cos(θ) ,sin(θ)) and ε⊥ = (−sin(θ) ,cos(θ)).
Within our framework, the vorticity ωt (p) is determined by the kernel
F .
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Stream function from vorticity

In the smooth case, omitting the time-dependence

1
4

ω (p) =
∫
R2

h
(
||p−q||2

)
V (q)L(dq) . (5)

where
h (z) = F ′ (z) + zF ′′ (z) . (6)

If we start by assuming that the vorticity is given as in (5), we can
obtain model for the vorticity F by solving (6):

g(z) = C0 + [H (z)−h (z) +C ] logz ,

where
H (z) =

∫ z

0
h (u)du.
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Vistas

Another important quantity in 2D turbulence is the determinant of the
Hessian of the stream function:

Λt(x ,y) = ∂
2
x ψt(x ,y)∂

2
y ψt(x ,y)− [∂x∂yψt(x ,y)]2 .

Subject to incompressibility, this quantity uniquely determines the flow.
Rivera et al. (2001) showed empirically that the distributions of Λ
collapse after rescaling by the relative mean square of Λ.
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Disitribution of Λ, the second chaos and infinite divisibility
Within our framework, we get that in general

Λt(x ,y) =
∫
Ht

f1(t,s,p,q)Vs(q)L(dsdq)
∫
Ht

f2(t,s,p,q)Vs(q)L(dsdq)

−
[∫

Ht

f3(t,s,p,q)Vs(q)L(dsdq)

]2

.

When V ≡ 1, the distribution of Λt(x ,y) belongs to the second
Wiener chaos.
Some characterizations for the infinite divisibility of Λt(x ,y) had been
stablished in:

I Griffiths (1970);
I Bapat (1989);
I Eisenbaum and Kaspi (2006).

New characterizations by V. Rhode et al. in the poster session.
Open problem: Characterization for the infinite divisibility of Λt(x ,y)
in terms of fi .
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Thank you!
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