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Ambit Stochastics
@ General Ambit fields
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L a Lévy basis (infinitely divisible independently scattered random
measure);

F, G deterministic functions;

» 0,a random fields;

At(p), Bt(p) c (*ooa t] x RY.

e Stationary Ambit fields: Take (a, o) stationary and

» F(t,s,p,q)=f(t—s,p—q) and G(t,s,p,q) =g(t—s,p—q)
» Ai(p)=A+(t,p) and B:(p) = B+(t,p), with A, B C (—o0,0) x RY.

v
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Ambit Stochastics

o Ambit processes: For a curve y(r) = (t,,p;) € R x R?

Xr = Yt,(Pr)7 rER
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Ambit Stochastics

o Ambit processes: For a curve y(r) = (t,,p;) € R x R?

Xr: Yt,(Pr)7 rER

@ Lévy semistationary

t t
Yt:u—l—/ g(t—s)asds+/ f(t—s)osdLs.
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Ambit fields in 3D turbulence

o Key features in pure temporal turbulence:
» Energy spectrum: E(k) o k=5/3;
» Intermittency on the velocity process;
» Negative skewness;
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Ambit fields in turbulence

o Non-parametric model: Ferrazzano and Kiippelberg (2012), Brockwell
et al. (2013)

t
Ye =H+/ f(t—s)dLs.
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Ambit fields in turbulence

o Non-parametric model: Ferrazzano and Kiippelberg (2012), Brockwell
et al. (2013)

t
Y; =H+/ f(t—s)dLs.

e Parametric model: Barndorff-Nielsen and Schmiegel (2008),Marquez
and Schmiegel (2016)

t t
Yt:u+ﬁ/ f(t—s)ogds+/ F(t —s)0.dBs.
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Ambit fields in 3D turbulence

o Key features in spatio-temporal turbulence:
> Energy spectrum: E(k) o< k=5/3;
» Intermittency on the velocity process;
> Negative skewness;

@ Universality

» Universal distribution (up to a time-change) on the velocity increments
(Barndorff-Nielsen et al. (2004)).

» The distribution of the logarithm of the energy dissipation does not
depend on the Reynolds number (Hedevang and Schmiegel (2013)).
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Ambit fields in 3D turbulence

@ Hedevang and Schmiegel (2014) proposed a pure spatial model
Y(p)= /R3 f(p—q)o(q)L(dg),

where f € M3 4(R) and L is R9-valued.

@ Schmiegel (2005), Hedevang and Schmiegel (2013) introduced a
model for the energy dissipation

loge(t, p) = /A , Hasda)
t\P
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Stylized facts in 2D turbulence

o Double cascade for homogeneous and isotropic flows: E(k) o< k=%/3
and E(k) o< k=3;

i = oz

it

2 4
log I(k) vs tog k

FIG. 1. Time evolution Gncreasing upward) of E (k) for the
20482 run.

Figure: Typical behavior of the energy spectrum of 2D flows. Figure
extracted from Smith and Yakhot (1993).
Y



Stylized facts in 2D turbulence

@ Vanishing divergence: If Yi(x,y) = [ég’i;] then the divergence of
2\ X,

Y is defined as
ox "oy

e Isotropic increments: A random field (Y;(p)):cr perz on R x R? is
said to have isotropic increments if for any p € R? it holds

Ye(p) — Y:(0) £ R [Ye(Ryp) — Y2(0)].

e Inttermitency in the vorticity but not in the increments.
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Useful references

@ Review of 2D turbulence:
» Boffetta and Ecke (2012);
» Tabeling (2002);
» Rivera et al. (2001).
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Stream functions

@ A stream function y;(x,y) determines a velocity field u; (x,y):

ue (%) = (= Wi (x,¥), 0x Wi (x,¥)) - (1)

@ There is no similar concept on 3D turbulence.

o If the velocity field u; (x,y) is obtained by a stream function, then it
has null-divergence .

@ The stream function can be found from vorticity using the following
Poisson’s equation

—(Dt(X,}/) = a)?lllt(xay)_‘_a}gv/t(xa}/)

Intermittency in the vorticity can be reflected by the stream function.
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Ambit-type stream functions

@ To achieve null-divergence, isotropy and intermittency in the vorticity,
we consider the class of processes

vilp) = [ Flt=s.llp—al) Ve()L(dsda),

where V is a random field and H; = (—oo, t] x R?.
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Ambit-type stream functions

@ To achieve null-divergence, isotropy and intermittency in the vorticity,
we consider the class of processes

vilp) = [ Flt=s.llp—al) Ve()L(dsda),

where V is a random field and H; = (—oo, t] x R?.

@ Y is a valid stream function only if it partially differentiable!
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Ambit-type stream functions

o If V =1, the partial differentiability can be obtained within the
framework of Basse-O'Connor and Rosinski (2013).

@ However, to get intermittency in the vorticity we require V to be
stochastic.

o Fortunately V appears linearly on the stochastic integral.
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Convergence of Ambit fields

@ Let L be a dispersive Lévy basis with characteristic quadruplet
(%(q), bs(q), Vs (g:dx), c (dqds)) cp gere- For y,p >0, put

P (y,s,q) = sup U(cy,s,q)+y?b2(q)
c|<

+/]R <|}/X|p 1gyx>1+ |yx|2 1{|yx\§1}> vs(qg;dx),
where

Uly..0) = @)+ [ [e0m - ye (0] v (i)
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Convergence of Ambit fields

@ Let L be a dispersive Lévy basis with characteristic quadruplet
(%(q), bs(q), Vs (g:dx), c (dqds)) cp gere- For y,p >0, put

P (y,s,q) = sup U(cy,s,q)+y?b2(q)
cl<1

+/R <|}/X|p1{|yx|>1}+|yX\21{|yx\g1}> Vs (q;dx),
where

Uly,s,q) = ’yifs (g)+ /R [7(yx) =yt (x)] vs (q;dx)

@ From Basse-O'Connor et al. (2014), c.f. Rajput and Rosinski (1989)
and Chong and Kliippelberg (2015),

P
/ ®n(s,q) L(dgds) — 0,
RxR4
if and only if
P
R q’(L)(‘Pn (s,q),s,q)c(dgds) — 0.
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Convergence of Ambit fields cont.

Let
¢n(s:q) == 1fn(s5,9) 05 (q), (s,q9) ERXRY,

where (f,) o Is a sequence of deterministic functions, and ¢ a predictable
random field which is bounded in £?(Q,.7,P). Then,

Jr Jre ©n(s,q) L(dqds) 50 if the following two conditions hold:
Q@ Ji Jrs fa(5,9) L(dqds) > 0;
Q Jr JreE[U(9n(s5,9),5,9)1{j6,(q)>1}] ¢ (dgds) — 0.
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Differentiable Ambit fields
As a simple application of Basse-O'Connor and Rosinski (2013)

Proposition

Let L be a Lévy basis as above such that E[|L(A)|] < e for every
Ae€ B, (R X Rd). Consider the Ambit field

Yt(p):z/H F(t,p,s,9)0s(q) L(dqds), (t,p) e RxRY,

with ¢ a predictable and £?-bounded. Suppose that the mapping

pi € R F(t,p1,...,pis---,Pd>S,q) is absolutely continuous. If the
mapping pi — [p, &1 (9p, F (t,p,5,9),s,q) c(dsdq) is locally integrable,
then the paths p; — X (p) are a.s. absolutely continuous with

9o Xe (p / 90, F (t,p,5,9) 05 (q) L (dgds). )

4

When L is centered and square integrable, we only require the mapping
pi— [y 8,3,.F(t,p,s,q)2c(dsdq) to be locally integrable.
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A model for the velocity field

e For our model
vilp) = [ F(t=s.llp— al) Ve()L(dsda),

we get

w(xy) = [ Fe=s.llp=al)elp— ) Ve(q)L(dsda).

t

° e(va) = (—y,X);
o f(s,u)=u"td,F(s,u).
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A model for the velocity field

@ The impact of e:

e(p — Vi(9)¢
q € supL

Figure: Rotation obtained by V and e.
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© Building a model
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Structure functions

@ Given an isotropic velocity field, let
X, = Y1(r(1,0)), reR. (3)
@ The structure function of X is defined by

Sa(r) = E[(X — Xo)"].

2 2/3

@ Due to the double cascade, Sy(r) ~ r
outside of zero.

near zero, and Sy(r) o< r

o Equivalently, the energy spectrum must satisfies that E(k) o< k=/3
near zero, and E(k) o< k=3 outside of zero .
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A model for the velocity field

@ Inspired by Marquez and Schmiegel (2016), we consider

V(o) = | apumllp—aldlde).  peR: (4

Where ¢a7ﬁ71’171’2 = (Pa7ll *(pﬁ7l2 With a?ﬁ > _11 a+ﬁ > _3/2l
A1 VA >0 and
Qo (u) = u%e ™ u>0.
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A model for the velocity field

@ Inspired by Marquez and Schmiegel (2016), we consider

V(o) = | apumllp—aldlde).  peR: (4

Where ¢a7ﬁ71’171’2 = (Pa7ll *(pﬁ71'2 With a?ﬁ > _11 a+ﬁ > _3/2l
A1 VA >0 and
Qo (u) = u%e ™ u>0.

o We have that

Capr®@ P o+ B£3/4 1< a+B<-1/2;
Capr’ —-1/2<a+B.

Sz(f)N{
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Energy spectrum

@ Recall that the energy spectrum behaves as

log E(k)

log k

Figure: Typical behavior of the energy spectrum of 2D flows.
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Energy spectrum

Energy Spectrum
o © o000
o
0.100 °
0.001
o a,BA1,A2 ={0.11, 0.11, 0.1, 3.5}
o Qg\
©
o
107 o
o1 05 1 s 10

Figure: Energy Spectrum
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Energy spectrum

Energy Spectrum
0.100

0.001

o aBMAz=1{0.11,0.11,0.1, 3.5)
A aBA A ={0.51,0.51, 0.1, 3.5}
o1

0.5

Figure: Energy Spectrum
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Energy spectrum

20

Energy Spectrum
Dod
!
0.01
107

1078

0.1

o a,BA1,A2 ={0.11, 0.11, 0.1, 3.5}
05

A aBAiA ={051, 051, 0.1, 3.5}

o a,BA,A2 ={-0.29, -0.29, 0.1, 3.5}

Figure: Energy Spectrum
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Building the model from the Energy spectrum

o If we consider a general ambit-type stream function, i.e.

v(e)= [ elp—al’)Lda).  pek?

its energy spectrum can be written as

Ey(k) = [87r/o°° ne ||k||)g’(u2)u2du] S kem

@ By the properties of the Hankel transform, we get that for
G(u) = g(u?)

G'(u) = P /Ooo J1(ru)E:,/2(r)rdr.

O. Sauri (Aarhus University) 2D Turbulence Aarhus 2016 28 / 41



Building the model from the Energy spectrum cont.

@ The spectrum

Eyvii(k)=AKHAVK+12)" Ky (AV K2+ 12),

according to (Hedevang and Schmiegel (2014)) behaves as

Ak)H k< I;
Eyy (k) ~ (Ak)H+2(vA0) l< k<At
(AkpHv-2e (14 £5) koo
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Building the model from the Energy spectrum cont.

o Inverting E;; , 5 /(k), we get:

Energy Spectrum

o= a,BA1,A ={0., -0.04, 0.1, 1}
4 a,BM Az ={0.45, 0.41, 0.1, 1}
<= a,BMAp ={-0.45, -0.49, 0.1, 1}

Figure: Kernel associated to E , 3 /.
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Vorticity

@ The concept of vorticity is rooted in that of circulation:
G (pit) = jl{ ut (7) dq.
D(p,p)

@ From this the rotation or vorticity of u is by definition determined
from the circulation as

o: (p) :=rotu; (p) = ||mOECp (p;t).

@ In the smooth case:
o = Vxu=V3y.

O. Sauri (Aarhus University) 2D Turbulence Aarhus 2016 32 /41



Vorticity in Ambit Stochastics

@ In our setting
Co(pit) = [, oo (t=5.p— )0 (a)L(dqds).
where

Pp(t—s,p—q):=p | f(t=slp—qg+pe(0)l)
< (e(p—q-+pe(6)).' (6))do,
with £(8) = (cos(8),sin(0)) and €+ = (—sin(8),cos(0)).

e Within our framework, the vorticity ®; (p) is determined by the kernel
F.
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Stream function from vorticity

@ In the smooth case, omitting the time-dependence

00 = [ h(lp=alP) V(a)L(de). ©)

where
h(z)=F' (z2)+zF" (2). (6)

o If we start by assuming that the vorticity is given as in (5), we can
obtain model for the vorticity F by solving (6):

g(z) = G+ [H(2) = h(z)+ Cllogz,

where

H(z):/ozh(u)du.
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Vistas

@ Another important quantity in 2D turbulence is the determinant of the
Hessian of the stream function:

Af(Xay) = af‘l’t(X,)/)a}%‘l’t(XJ) - [axaylljt(xay)]2 :

@ Subject to incompressibility, this quantity uniquely determines the flow.

@ Rivera et al. (2001) showed empirically that the distributions of A
collapse after rescaling by the relative mean square of A.
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Disitribution of A, the second chaos and infinite divisibility

@ Within our framework, we get that in general

Mlxy) = [ Alts.p.a)Vela)L(dsda) [ folt.s,p.q)Va(a)L (dsdg)

{AWmmmmmmf.
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Disitribution of A, the second chaos and infinite divisibility

@ Within our framework, we get that in general

Mlxy) = [ Alts.p.a)Vela)L(dsda) [ folt.s,p.q)Va(a)L (dsdg)

-1 @(r,s,p,q)vs(q)udsdq)]2-

@ When V =1, the distribution of A;(x,y) belongs to the second
Wiener chaos.

@ Some characterizations for the infinite divisibility of A¢(x,y) had been
stablished in:
» Griffiths (1970);
» Bapat (1989);
» Eisenbaum and Kaspi (2006).
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Disitribution of A, the second chaos and infinite divisibility

@ Within our framework, we get that in general

Mlxy) = [ Alts.p.a)Vela)L(dsda) [ folt.s,p.q)Va(a)L (dsdg)

-1 @(r,s,p,q)vs(q)udsdq)]2-

@ When V =1, the distribution of A;(x,y) belongs to the second
Wiener chaos.

@ Some characterizations for the infinite divisibility of A¢(x,y) had been
stablished in:
» Griffiths (1970);
» Bapat (1989);
» Eisenbaum and Kaspi (2006).

o New characterizations by V. Rhode et al. in the poster session.
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Disitribution of A, the second chaos and infinite divisibility

@ Within our framework, we get that in general

Mlxy) = [ Alts.p.a)Vela)L(dsda) [ folt.s,p.q)Va(a)L (dsdg)

-1 @(r,s,p,q)vs(q)udsdq)]2-

@ When V =1, the distribution of A;(x,y) belongs to the second
Wiener chaos.

@ Some characterizations for the infinite divisibility of A¢(x,y) had been
stablished in:

» Griffiths (1970);
» Bapat (1989);
» Eisenbaum and Kaspi (2006).
o New characterizations by V. Rhode et al. in the poster session.
@ Open problem: Characterization for the infinite divisibility of A:(x,y)
in terms of f;.
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