

#### Limit theorems for functionals of stationary random fields

E. Spodarev | Institute of Stochastics | 18. 08. 2016

Conference on Ambit Fields and Related Topics, Aarhus

# Random field = Set of random variables indexed by $\mathbb{R}^d$ Aim:

Examine the asymptotic behavior of random variables

$$\int_{W_n} f(X(t)) \, dt,$$

where  $\{X(t)\}_{t \in \mathbb{R}^d}$  is a stationary random field and  $f : \mathbb{R} \to \mathbb{R}$  is a deterministic function

as  $W_n$  tends to the whole space  $\mathbb{R}^d$ .

# Overview

- Motivation
- Excursion sets of random fields and integral geometric functionals
- LTs: state of art
- CLT for the volume of excursion sets of stationary random fields
  - Second order quasi-associated fields
  - Examples: Shot noise, Gaussian case
  - PA- or NA-fields (possibly not second order!)
  - **Examples:** infinitely divisible, max- and  $\alpha$ -stable fields
  - Multivariate CLT with a Gaussianity test
- FCLT
- Open problems

### **Motivation**





Paper surface (Voith Paper, Heidenheim)

Simulated Gaussian field EX(t) = 126 $r(t) = 491 \exp \left(-\frac{\|t\|_2}{56}\right)$ 

Is the paper surface Gaussian?

#### **Excursion sets**

Let *X* be a measurable real-valued random field on  $\mathbb{R}^d$ ,  $d \ge 1$  and let  $W \subset \mathbb{R}^d$  be a measurable subset. Then for  $u \in \mathbb{R}$ 

$$A_{u}(X,W) := \{t \in W : X(t) \geq u\}$$

is called the excursion set of X in W over the level u.

Volume of excursion set:

$$|A_u(X,W)| = \int_W f(X(t)) dt, \qquad f(t) = \mathbb{1}\{t \ge u\},$$

here  $|\cdot|$  is the Lebesgue measure in  $\mathbb{R}^d$  (cardinality of a set in  $\mathbb{Z}^d$ ).





Centered Gaussian random field on  $[0, 1]^2$ ,  $r(t) = \exp(-||t||_2 / 0.3)$ , Levels: u = -1.0, 0.0, 1.0

# LTs for integral geometric functionals of random fields

- Gaussian random fields
  - CLTs:

Seite 7

- Stationary processes, d = 1: Belyaev & Nosko (1969); Cuzick (1976); Elizarov (1988); Kratz (2006)
- ▶ Volume,  $d \ge 2$ : Ivanov & Leonenko (1989)
- FCLT: Meschenmoser & Shashkin (2011)
- Non-Gaussian random fields
  - Integral functionals: Leonenko (1974), Bulinski & Zhurbenko (1976), Gorodetskii (1984).
  - FCLT: Kampf & S. (2015)
  - Volume of excursion sets: Bulinski, S. & Timmermann (2012); Karcher (2012); Leonenko & Olenko (2014); Demichev (2013), Demichev & Olszewski (2015);

Growing sequence of observation windows

A sequence of compact Borel sets  $(W_n)_{n \in \mathbb{N}}$  is called a Van Hove sequence (VH) if  $W_n \uparrow \mathbb{R}^d$  with

$$\lim_{n\to\infty}|W_n|=\infty \text{ and } \lim_{n\to\infty}\frac{|\partial W_n\oplus B_r(0)|}{|W_n|}=0, \ r>0.$$

#### Theorem (Bulinskii & Zhurbenko, 1976)

Let  $\{X(t)\}_{t \in \mathbb{R}^d}$  be a stationary, measurable random field fulfilling some  $\alpha$ -mixing assumptions.

Let  $f : \mathbb{R} \to \mathbb{R}$  be some measurable map such that  $\{f(X(t))\}_{t \in \mathbb{R}^d}$  fulfills integrability assumptions. Let  $\{W_n\}_{n \in \mathbb{N}}$  be a VH-growing sequence of compact sets of  $\mathbb{R}^d$ . Then

$$\frac{\int_{W_n} f(X(t)) \, dt - |W_n| \cdot \mathbb{E}[f(X(0))]}{\sqrt{|W_n|}} \stackrel{d}{\to} \mathcal{N}(0, \sigma^2),$$

as  $n \to \infty$ , where

$$\sigma^2 = \int_{\mathbb{R}^d} \operatorname{Cov} \left( f(X(0)), f(X(t)) \right) dt.$$

Theorem (CLT for the volume of  $A_u$  at a fixed level  $u \in \mathbb{R}$ )

Let *X* be a strictly stationary random field satisfying some additional conditions and  $u \in \mathbb{R}$  fixed. Then, for any sequence of *VH*-growing sets  $W_n \subset \mathbb{R}^d$ , one has

$$\frac{|A_u(X, W_n)| - \mathsf{P}(X(0) \ge u) \cdot |W_n|}{\sqrt{|W_n|}} \stackrel{d}{\to} \mathcal{N}\left(0, \sigma^2(u)\right)$$

as  $n \to \infty$ . Here

$$\sigma^{2}(u) = \int_{\mathbb{R}^{d}} \operatorname{cov} \left( \mathbb{1}\{X(0) \geq u\}, \mathbb{1}\{X(t) \geq u\} \right) \, dt.$$

Second order quasi-associated random fields

Let  $X = \{X(t), t \in \mathbb{R}^d\}$  have the following properties:

- square-integrable
- ▶ has a continuous covariance function  $r(t) = \text{Cov}(X(o), X(t)), t \in \mathbb{R}^d$
- ►  $|r(t)| = O(||t||_2^{-\alpha})$  for some  $\alpha > 3d$  as  $||t||_2 \to \infty$
- X(0) has a bounded density
- quasi-associated.

Then  $\sigma^2(u) \in (0,\infty)$  (Bulinski, S., Timmermann (2012)).

#### Quasi-association

A random field  $X = \{X(t), t \in \mathbb{R}^d\}$  with finite second moments is called quasi-associated if

$$\left| \mathsf{cov}\left( f\left( X_{l} 
ight), g\left( X_{J} 
ight) 
ight) 
ight| \leq \mathsf{Lip}\left( f 
ight) \mathsf{Lip}\left( g 
ight) \sum_{i \in I} \sum_{j \in J} \left| \mathsf{cov}\left( X\left( i 
ight), X\left( j 
ight) 
ight) 
ight|$$

for all finite disjoint subsets  $I, J \subset \mathbb{R}^d$ , and for any Lipschitz functions  $f : \mathbb{R}^{\operatorname{card}(I)} \to \mathbb{R}, g : \mathbb{R}^{\operatorname{card}(J)} \to \mathbb{R}$  where  $X_I = \{X(t), t \in I\}, X_J = \{X(t), t \in J\}.$ 

Idea of the proof of the Theorem: apply a CLT for  $(BL, \theta)$ -dependent stationary centered square-integrable random fields on  $\mathbb{Z}^d$  (Bulinski & Shashkin, 2007).

## $(BL, \theta)$ -dependence

A real-valued random field  $X = \{X(t), t \in \mathbb{Z}^d\}$  is called  $(BL, \theta)$ -dependent, if there exists a sequence  $\theta = \{\theta_r\}_{r \in \mathbb{R}^+_0}$ ,  $\theta_r \downarrow 0$  as  $r \to \infty$  such that for any finite disjoint sets  $I, J \subset \mathbb{Z}^d$  with dist (I, J) = r, and any functions  $f \in BL(|I|), g \in BL(|J|)$ , one has

 $|\operatorname{cov}(f(X_I), g(X_J))| \le \min\{|I|, |J|\} \operatorname{Lip}(f) \operatorname{Lip}(g) \theta_r.$ 

Possible choice of  $\theta_r$ :

$$\theta_{r} = \sup_{i \in \mathbb{Z}^{d}} \sum_{j \in \mathbb{Z}^{d} : ||j-i||_{\infty} \geq r} |\operatorname{cov} (X(i), X(j))|.$$

CLT for  $(BL, \theta)$ -dependent stationary random fields

# Theorem (Bulinski & Shashkin, 2007)

Let  $Z = \{Z(j), j \in \mathbb{Z}^d\}$  be a  $(BL, \theta)$ -dependent strictly stationary centered square-integrable random field. Then, for any sequence of regularly growing sets  $U_n \subset \mathbb{Z}^d$ , one has

$$\sum_{j \in U_n} Z(j) / \sqrt{|U_n|} \xrightarrow{d} \mathcal{N}\left(0, \sigma^2\right)$$

as  $n \to \infty$ , with

$$\sigma^{2} = \sum_{j \in \mathbb{Z}^{d}} \operatorname{cov} \left( Z\left( 0 \right), Z\left( j \right) \right).$$

# Special case - Shot noise random fields

The above CLT holds for a stationary shot noise random field

 $X = \{X(t), t \in \mathbb{R}^d\}$  given by  $X(t) = \sum_{i \in \mathbb{N}} \xi_i \varphi(t - x_i)$  where

- {x<sub>i</sub>} is a homogeneous Poisson point process in ℝ<sup>d</sup> with intensity λ ∈ (0,∞)
- {ξ<sub>i</sub>} is a family of i.i.d. non–negative random variables with Eξ<sub>i</sub><sup>2</sup> < ∞ and the characteristic function φ<sub>ξ</sub>
- $\{\xi_i\}, \{x_i\}$  are independent
- ▶  $\varphi : \mathbb{R}^d \to \mathbb{R}_+$  is a bounded and uniformly continuous Borel function with

$$arphi(t) \leq arphi_0(\|t\|_2) = O\left(\|t\|_2^{-lpha}
ight) ext{ as } \|t\|_2 o \infty$$

for a function  $\varphi_0 : \mathbb{R}_+ \to \mathbb{R}_+, \alpha > 3d$ , and

$$\int\limits_{\mathbb{R}^d} \left| \exp\left\{ \lambda \int_{\mathbb{R}^d} \left( arphi_{\xi}(m{s}arphi(t)) - 1 
ight) \, dt 
ight\} 
ight| \, dm{s} < \infty.$$

# Special case - Gaussian random fields

Consider a stationary Gaussian random field  $X = \{X(t), t \in \mathbb{R}^d\}$  with the following properties:

• 
$$X(0) \sim \mathcal{N}(a, \tau^2)$$

▶ has a continuous covariance function  $r(\cdot)$ 

► 
$$\exists \alpha > d : |r(t)| = \mathcal{O}(||t||_2^{-\alpha}) \text{ as } ||t||_2 \to \infty$$

#### Special case - Gaussian random fields

Let *X* be the above Gaussian random field and  $u \in \mathbb{R}$ . Then,

$$\sigma^{2}(u) = \frac{1}{2\pi} \int_{\mathbb{R}^{d}} \int_{0}^{\rho(t)} \frac{1}{\sqrt{1 - r^{2}}} e^{-\frac{(u-a)^{2}}{\tau^{2}(1+r)}} dr dt$$

where  $\rho(t) = \operatorname{corr}(X(0), X(t))$ . In particular, for u = a

$$\sigma^2(a) = \frac{1}{2\pi} \int_{\mathbb{R}^d} \arcsin\left(\rho(t)\right) \, dt.$$

Positively or negatively associated random fields

Let  $X = \{X(t), t \in \mathbb{R}^d\}$  have the following properties:

- stochastically continuous (evtl. not second order!)
- ►  $\sigma^2(u) \in (0,\infty)$
- ▶ P(X(0) = u) = 0 for the chosen level  $u \in \mathbb{R}$
- ▶ positively (**PA**) or negatively (**NA**) associated.

Then the above CLT holds (Karcher (2012)).

Association

A random field  $X = \{X(t), t \in \mathbb{R}^d\}$  is called positively (PA) or negatively (NA) associated if

$$\operatorname{cov}\left(f\left(X_{I}\right),g\left(X_{J}\right)
ight)\geq0$$
 ( $\leq$  0, resp.)

for all finite disjoint subsets  $I, J \subset \mathbb{R}^d$ , and for any bounded coordinatewise non–decreasing functions  $f : \mathbb{R}^{card(I)} \to \mathbb{R}$ ,  $g : \mathbb{R}^{card(J)} \to \mathbb{R}$  where  $X_I = \{X(t), t \in I\}, X_J = \{X(t), t \in J\}$ .

# Special cases

#### Subclasses of PA or NA

- infinitely divisible
- max-stable
- ► α-stable

random fields

# Special cases: Max-stable random fields

Let  $X = \{X(t), t \in \mathbb{R}^d\}$  be a stationary max-stable random field with spectral representation

$$X(t) = \max_{i \in \mathbb{N}} \xi_i f_t(y_i), \quad t \in \mathbb{R}^d,$$

where  $f_t : E \to \mathbb{R}_+$  is a measurable function defined on the measurable space  $(E, \mu)$  for all  $t \in \mathbb{R}^d$  with

$$\int_E f_t(\mathbf{y})\,\mu(d\mathbf{y}) = \mathbf{1}, \quad t \in \mathbb{R}^d,$$

and  $\{(\xi_i, y_i)\}_{i \in \mathbb{N}}$  is the Poisson point process on  $(0, \infty) \times E$  with intensity measure  $\xi^{-2}d\xi \times \mu(dy)$ . Assume that

$$\int_{\mathbb{R}^d} \int_E \min\{f_0(y), f_t(y)\}\,\mu(dy)\,dt < \infty$$

and  $||f_s - f_t||_{L^1} \to 0$  as  $s \to t$ .

#### Special cases: $\alpha$ -stable random fields

Let  $X = \{X(t), t \in \mathbb{R}^d\}$  be a stationary  $\alpha$ -stable random field  $(\alpha \in (0, 2), \text{ for simplicity } \alpha \neq 1)$  with spectral representation

$$X(t) = \int_E f_t(x) \Lambda(dx), \quad t \in \mathbb{R}^d,$$

where  $\Lambda$  is a centered independently scattered  $\alpha$ -stable random measure on space *E* with control measure *m* and skewness intensity  $\beta : E \rightarrow [-1, 1], f_t : E \rightarrow \mathbb{R}_+$  is a measurable function on (E, m) for all  $t \in \mathbb{R}^d$  with

$$\int_{\mathbb{R}^d} \left( \int_E \min\{|f_0(x)|^{\alpha}, |f_t(x)|^{\alpha}\} m(dx) \right)^{1/(1+\alpha)} dt < \infty$$

and  $\int_E |f_s(x) - f_t(x)|^{\alpha} m(dx) \to 0$  as  $s \to t$ .

# **Multi-dimensional CLT**



$$S_{\vec{u}}(W_n) = \left(\left|A_{u_1}(X, W_n)\right|, \dots, \left|A_{u_r}(X, W_n)\right|\right)^\top$$
$$\Psi(\vec{u}) = \left(\Psi((u_1 - a)/\tau), \dots, \Psi((u_r - a)/\tau)\right)^\top$$

Theorem (Multi-dimensional CLT)

Let *X* be the above Gaussian random field and  $u_k \in \mathbb{R}$ , k = 1, ..., r. Then, for any sequence of *VH*-growing sets  $W_n \subset \mathbb{R}^d$ , one has

$$|W_{n}|^{-1/2} \left(S_{\vec{u}}(W_{n}) - \Psi(\vec{u}) |W_{n}|\right) \stackrel{d}{\to} \mathcal{N}(0, \Sigma(\vec{u}))$$
  
as  $n \to \infty$ . Here,  $\Sigma(\vec{u}) = (\sigma_{lm}(\vec{u}))_{l,m=1}^{r}$  with  
 $\sigma_{lm}(\vec{u}) = \frac{1}{2\pi} \int_{\mathbb{R}^{d}} \int_{0}^{\rho(t)} \frac{1}{\sqrt{1-r^{2}}} \exp\left\{-\frac{(u_{l}-a)^{2}-2r(u_{l}-a)(u_{m}-a)+(u_{m}-a)^{2}}{2\tau^{2}(1-r^{2})}\right\} dr dt.$ 

### Theorem (Statistical version of the CLT)

Let *X* be the above Gaussian random field,  $u_k \in \mathbb{R}$ , k = 1, ..., rand  $(W_n)_{n \in \mathbb{N}}$  be a sequence of *VH*-growing sets. Let  $\hat{C}_n = (\hat{c}_{n/m})_{l,m=1}^r$  be statistical estimates for the nondegenerate asymptotic covariance matrix  $\Sigma(\vec{u})$ , such that for any l, m = 1, ..., r

$$\hat{c}_{nlm} \stackrel{p}{
ightarrow} \sigma_{lm}(\vec{u})$$
 as  $n 
ightarrow \infty$ .

Then

$$\hat{C}_n^{-1/2} |W_n|^{-1/2} (S_{\vec{u}}(W_n) - \Psi(\vec{u}) |W_n|) \stackrel{d}{\to} \mathcal{N}(0, I).$$

Hypothesis testing

### $H_0$ : X Gaussian vs. $H_1$ : X Non-Gaussian

Test statistic:

 $T = |W_n|^{-1} \left( S_{\vec{u}}(W_n) - \Psi(\vec{u}) |W_n| \right)^\top \hat{C}_n^{-1} \left( S_{\vec{u}}(W_n) - \Psi(\vec{u}) |W_n| \right)$ We know  $T \xrightarrow{d} \chi_r^2$ . Reject null-hypothesis if  $T > \chi_{r,1-\nu}^2$ .

# Numerical results

| Series                          | FTR6.3           | FTR6.6           | Sim. Gaussian    |
|---------------------------------|------------------|------------------|------------------|
| Resolution                      | 218 <i>x</i> 138 | 218 <i>x</i> 138 | 218 <i>x</i> 138 |
| Realizations                    | 100              | 100              | 100              |
| 1 level                         |                  |                  |                  |
| Rejected fields ( $\nu = 1\%$ ) | 0                | 0                | 1                |
| 3 levels                        |                  |                  |                  |
| Rejected fields ( $\nu = 1\%$ ) | 5                | 9                | 3                |
| 5 levels                        |                  |                  |                  |
| Rejected fields ( $\nu = 1\%$ ) | 20               | 21               | 3                |
| 7 levels                        |                  |                  |                  |
| Rejected fields ( $\nu = 1\%$ ) | 34               | 31               | 5                |
| 9 levels                        |                  |                  |                  |
| Rejected fields ( $\nu = 1\%$ ) | 62               | 60               | 5                |

#### Further results

- CLT for the volume as level  $u \to \infty$ 
  - Isotropic Gaussian random fields: Ivanov & Leonenko (1989)
  - PA-random fields: Demichev & Olszewski (2015)
- FCLT (variable  $u \in \mathbb{R}$ ):
  - Volume for second order A-random fields with a.s. continuous paths and bounded density in Skorokhod space: Meschenmoser & Shashkin (2011)
  - Volume for random fields with a.s. continuous paths and bounded density in Skorokhod space (evtl. not second order!): Karcher (2012)

FCLT for excursion sets (Meschenmoser & Shashkin, 2011) Let  $\{X(t)\}_{t \in \mathbb{R}^d}$  be a stationary, measurable, associated random field fulfilling some integrability and regularity assumptions. Let  $\{W_n\}_{n \in \mathbb{N}}$  be a VH-growing sequence of compact sets of  $\mathbb{R}^d$ . Then the sequence of stochastic processes defined by

$$Y_n(u) := \frac{\int_{W_n} \mathbf{1}_{[u,\infty)}(X(t)) \, dt - |W_n| \cdot \mathbb{E}[\mathbf{1}_{[u,\infty)}(X(0))]}{\sqrt{|W_n|}}$$

converges in distribution to a centered Gaussian process Y with covariance function

$$Cov(Y(u_1), Y(u_2)) = \int_{\mathbb{R}^d} \mathbb{P}(X(0) > u_1, X(t) > u_2) - \mathbb{P}(X(0) > u_1) \cdot \mathbb{P}(X(t) > u_2) dt$$

as  $n \to \infty$  in the Skorokhod topology.

Replace indicator functions by more general functions? Consider the space V of Lipschitz continuous functions with norm

$$||f||_{Lip} := Lip f + |f(0)|.$$

Theorem (Kampf & S. (2015)) Let  $\{X(t)\}_{t \in \mathbb{R}^d}$  be a stationary and measurable random field. Assume there  $n \in \mathbb{N}$ ,  $\delta > 4$  and C, I > 0 with  $n/d > \max\{I + \delta/(\delta - 2), \delta/(\delta - 4)\}$  such that

$$lpha_{\gamma}(\mathbf{r}) \leq \mathbf{C}\mathbf{r}^{-\mathbf{n}}\gamma^{l}$$
 for all  $\gamma \geq 2\kappa_{d}, \ \mathbf{r} > \mathbf{0},$ 

and

$$\mathbb{E}X(0)^{\delta} < \infty.$$

Let  $\{W_n\}_{n\in\mathbb{N}}$  be a VH-growing sequence of compact sets of  $\mathbb{R}^d$ . Then the sequence of stochastic processes defined by

$$\Phi_n(f) := \frac{\int_{W_n} f(X(t)) dt - |W_n| \cdot \mathbb{E}[f(X(0))]}{\sqrt{|W_n|}}, f \in V,$$

converges in distribution to a centered Gaussian process  $\boldsymbol{\Phi}$  with covariance function

$$\operatorname{Cov}(\Phi(f), \Phi(g)) = \int_{\mathbb{R}^d} \operatorname{Cov}\left(f(X(0)), g(X(t))\right) dt$$

as  $n \to \infty$  in the weak topology.

# Sketch of the proof:

According to Oppel (1973) it suffices to show:

- 1. The finite-dimensional distributions converge appropriately.
- 2. The processes  $\Phi_n$  have linear and continuous paths.
- The process Φ exists and has a version with linear and continuous paths.

#### How we show it?

- 1. Employ Cramér-Wold-technique
- 2. Trivial

Show 3. (Continuity of limiting process): Employ theory of GB- and GC-sets

What is this theory about? For a Hilbert space *H* with scalar product  $\langle \cdot, \cdot \rangle$  the isonormal process is the centered Gaussian process  $\Phi$  with

 $\operatorname{Cov}(\Phi(f), \Phi(g)) = \langle f, g \rangle.$ 

Sets, on which a version of the isonormal process has bounded / continuous paths, are called GB / GC -sets.

How to apply this theory to our problem?

Define scalar product such that  $\Phi$  becomes the isonormal process:

$$egin{aligned} \langle f,g
angle &= \operatorname{Cov}(\Phi(f),\Phi(g)) \ &= \int_{\mathbb{R}^d} \operatorname{Cov}\left(f(X(0)),g(X(t))
ight) dt \end{aligned}$$

This is a symmetric, non-negative definite, bilinear form. Passing to equivalence classes and completion we obtain a Hilbert space.

We have to show that (the projection of)

$$B := \{ f \in V \mid ||f||_{Lip} \le 1 \}$$

is a GB-set.

Let  $N(\epsilon)$  be the minimal number of elements of an  $\epsilon$ -net on B. An  $\epsilon$ -net on B are elements  $f_1, \ldots, f_n \in B$  such that

$$\forall_{g\in B}: \exists_{i\in\{1,\ldots,n\}}: \|f_i-g\|_{\langle\cdot,\cdot\rangle}<\epsilon.$$

It is well known (see e.g. Dudley, 1999) that it suffices to show

$$\int_0^1 (\log N(\epsilon))^{1/2} d\epsilon < \infty.$$
 (1)

For  $m \in \mathbb{N}$  and c > 0 consider the Lipschitz functions f with

- ► f(0) = 0
- On each interval [(k − 1)c, kc], k = −m + 1,..., m, the function f is either increasing with constant slope 1 or decreasing with constant slope −1.
- On (−∞, −mc] and [mc, ∞), the function f is constant.

Under appropriate inequalities on  $\epsilon$ , *c* and *m*, these functions form an  $\epsilon$ -net with (1).

#### Does the asymptotic variance $Var(\Phi(f)), f \in V$ , vanish?

For Gaussian random fields with non-negative covariance function:

$$Var(\Phi(f)) = 0 \iff Var(X(0)) = 0$$
  
or f is constant

Construction of a field  $X(t)_{t \in \mathbb{R}^d}$  that fulfills all assumptions of our theorem, but  $Var(\Phi(f)) = 0$  for all  $f \in V$ :

Consider a Poisson-Voronoi-mosaic, i.e. a random partition of  $\mathbb{R}^d$  into convex polytopes.

 $X(t) := |\{v \in C(t) \mid ||v - \xi_t|| \le ||t - \xi_t||\}|/|C(t)|, \quad t \in \mathbb{R}^d,$ 

where C(t) is the cell in which *t* lies and  $\xi_t$  is its nucleus.



$$\int_C f(X(t)) \, dt = \int_0^1 f(x) \, dx \cdot |C|$$

for each (random) cell C.

$$\int_W f(X(t)) dt \approx \int_0^1 f(x) dx \cdot |W|$$

for each (large, deterministic) compact set  $W \subseteq \mathbb{R}^d$ , strengthened by mixing properties of Poisson-Voronoi-mosaic.

 $\Rightarrow$  The variance vanishes asymptotically.

Further issue: Orthogonality in  $(V, \langle \cdot, \cdot \rangle)$ 

For a certain class of random fields constructed with help of Lévy-Meixner-systems we obtained explicit ONBs.

#### Open problems

- Proof of the last theorem (FCLT) for a space larger than V and under association instead of mixing
- LTs for stationary long range dependent random fields

#### References

- A. Bulinski, E. Spodarev, F. Timmermann: "Central limit theorems for the excursion sets volumes of weakly dependent random fields", Bernoulli (2012) 18, 100-118.
- A. Bulinskii, I. Zurbenko: "A central limit theorem for additive random functions", Theory of Probability and its Applications 21, 1976, 707–717.
- R. Dudley: "Uniform Central Limit Theorems", Cambridge University Press, 1999.
- V. Gorodetskii: "The central limit theorem and an invariance principle for weakly dependent random fields", Soviet Math. Dokl. 29(3), 1984, 529–532.
- A. V. Ivanov and N. N. Leonenko: "Statistical Analysis of Random Fields", Kluwer, Dordrecht, 1989.
- J. Kampf, E. Spodarev: "A functional central limit theorem for integrals of stationary mixing random fields", 2015, http://arxiv.org/abs/1512.03663.
- W. Karcher: "On Infinitely Divisible Random Fields with an Application in Insurance", PhD thesis, Ulm University, 2012.
- M. Kratz: "Level crossings and other level functionals of stationary Gaussian processes", Probab. Surv. 3 (2006), 230–288.

#### References

- D. Meschenmoser and A. Shashkin: "Functional central limit theorem for the volume of excursion sets generated by associated random fields", Statist. & Probab. Letters (2011) 81 (6), 642-646.
- V. Demichev and J. Olszewski: "A central limit theorem for the volumes of high excursions of stationary associated random fields", Stat. Optim. Inf. Comput. 3 (2015), no. 2, 138–146.
- V. Demichev: "A functional central limit theorem for the volumes of excursion sets of quasi-associated random fields" Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 412 (2013), Veroyatnost i Statistika. 19, 109–120, 275; translation in J. Math. Sci. (N. Y.) 204 (2015), no. 1, 69–77.
- U. Oppel: "Schwache Konvergenz kanonischer zufälliger Funktionale", Manuscripta Math. 8, 1973, 323 – 334.
- E. Spodarev: "Limit theorems for excursion sets of stationary random fields", in Modern Stochastics and Applications, (V. Korolyuk et al., ed.), Springer Optimization and its Applications, v. 90, p.221–244, 2014.