Conference

Ambit Fields and Related Topics

Aarhus, August 15-18, 2016

Scaling transition for nonlinear random fields with long-range dependence

Donatas Surgailis (Vilnius University)
Joint work with Vytautė Pilipauskaitė (Nantes/Vilnius)

Outline:

Outline:

1. Scaling limit: 'a summary of dependence structure'

Outline:

1. Scaling limit: 'a summary of dependence structure'
2. Scaling transition for Gaussian LRD RFs

Outline:

1. Scaling limit: 'a summary of dependence structure'
2. Scaling transition for Gaussian LRD RFs
3. Scaling transition for linear LRD RFs

Outline:

1. Scaling limit: 'a summary of dependence structure'
2. Scaling transition for Gaussian LRD RFs
3. Scaling transition for linear LRD RFs
4. Nonlinear LRD RFs

Outline:

1. Scaling limit: 'a summary of dependence structure'
2. Scaling transition for Gaussian LRD RFs
3. Scaling transition for linear LRD RFs
4. Nonlinear LRD RFs
5. Scaling transition for nonlinear LRD RFs
6. Scaling limit: 'a summary of dependence structure’
7. Scaling limit: 'a summary of dependence structure'

- Scaling (zooming out): getting a distant view of the object

1. Scaling limit: 'a summary of dependence structure'

- Scaling (zooming out): getting a distant view of the object
- Involves some kind of smoothing (integration)

1. Scaling limit: 'a summary of dependence structure'

- Scaling (zooming out): getting a distant view of the object
- Involves some kind of smoothing (integration)
- At large scales, short-range details ('dependences', 'correlations') disappear but long-range 'correlations' may prevail

1. Scaling limit: 'a summary of dependence structure'

- Scaling (zooming out): getting a distant view of the object
- Involves some kind of smoothing (integration)
- At large scales, short-range details ('dependences', 'correlations') disappear but long-range 'correlations' may prevail
- Scaling (partial sums) limits of any weakly dependent 2nd order process X coincide with Brownian motion (Donsker's theorem)

1. Scaling limit: 'a summary of dependence structure'

- Scaling (zooming out): getting a distant view of the object
- Involves some kind of smoothing (integration)
- At large scales, short-range details ('dependences', 'correlations') disappear but long-range 'correlations' may prevail
- Scaling (partial sums) limits of any weakly dependent 2nd order process X coincide with Brownian motion (Donsker's theorem)
- Scaling limit of a stationary process X is self-similar (Lamperti, 1962) and provides a 'large-scale summary of dependence structure of X^{\prime}

Anisotropic scaling limit: as $\lambda \rightarrow \infty$

$$
\begin{equation*}
A_{\lambda, \gamma}^{-1} \sum_{(t, s) \in K_{[\lambda x, \lambda} \gamma_{y]}} X(t, s) \xrightarrow{\mathrm{fdd}} V_{\gamma}^{X}(x, y), \quad(x, y) \in \mathbb{R}_{+}^{2} \tag{1}
\end{equation*}
$$

Anisotropic scaling limit: as $\lambda \rightarrow \infty$

$$
\begin{equation*}
A_{\lambda, \gamma}^{-1} \sum_{(t, s) \in K_{\left[\lambda x, \lambda^{\gamma} y\right]}} X(t, s) \xrightarrow{\mathrm{fdd}} V_{\gamma}^{X}(x, y), \quad(x, y) \in \mathbb{R}_{+}^{2} \tag{1}
\end{equation*}
$$

- $X=\left\{X(t, s) ;(t, s) \in \mathbb{Z}^{2}\right\}:$ a stationary random field (RF) on \mathbb{Z}^{2}

Anisotropic scaling limit: as $\lambda \rightarrow \infty$

$$
\begin{equation*}
A_{\lambda, \gamma}^{-1} \sum_{(t, s) \in K_{[\lambda x, \lambda} \gamma_{y]}} X(t, s) \xrightarrow{\mathrm{fdd}} V_{\gamma}^{X}(x, y), \quad(x, y) \in \mathbb{R}_{+}^{2} \tag{1}
\end{equation*}
$$

- $X=\left\{X(t, s) ;(t, s) \in \mathbb{Z}^{2}\right\}$: a stationary random field (RF) on \mathbb{Z}^{2}
- $K_{\left[\lambda x, \lambda^{\gamma} y\right]}:=[1, \lambda x] \times\left[1, \lambda^{\gamma} y\right]$ is a family of rectangles with sides growing at possibly different rate $O(\lambda)$ and $O\left(\lambda^{\gamma}\right)$

Anisotropic scaling limit: as $\lambda \rightarrow \infty$

$$
\begin{equation*}
A_{\lambda, \gamma}^{-1} \sum_{(t, s) \in K_{\left[\lambda x, \lambda \gamma_{y]}\right.}} X(t, s) \xrightarrow{\mathrm{fdd}} V_{\gamma}^{X}(x, y), \quad(x, y) \in \mathbb{R}_{+}^{2} \tag{1}
\end{equation*}
$$

- $X=\left\{X(t, s) ;(t, s) \in \mathbb{Z}^{2}\right\}:$ a stationary random field (RF) on \mathbb{Z}^{2}
- $K_{\left[\lambda x, \lambda^{\gamma} y\right]}:=[1, \lambda x] \times\left[1, \lambda^{\gamma} y\right]$ is a family of rectangles with sides growing at possibly different rate $O(\lambda)$ and $O\left(\lambda^{\gamma}\right)$
- $\gamma>0$: characterizes anisotropy of scaling procedure

Anisotropic scaling limit: as $\lambda \rightarrow \infty$

$$
\begin{equation*}
A_{\lambda, \gamma}^{-1} \sum_{(t, s) \in K_{\left[\lambda x, \lambda \gamma_{y]}\right.}} X(t, s) \xrightarrow{\mathrm{fdd}} V_{\gamma}^{X}(x, y), \quad(x, y) \in \mathbb{R}_{+}^{2} . \tag{1}
\end{equation*}
$$

- $X=\left\{X(t, s) ;(t, s) \in \mathbb{Z}^{2}\right\}$: a stationary random field (RF) on \mathbb{Z}^{2}
- $K_{\left[\lambda x, \lambda \gamma_{y}\right]}:=[1, \lambda x] \times\left[1, \lambda^{\gamma} y\right]$ is a family of rectangles with sides growing at possibly different rate $O(\lambda)$ and $O\left(\lambda^{\gamma}\right)$
- $\gamma>0$: characterizes anisotropy of scaling procedure
- $\gamma=1$: 'isotropic scaling'

Anisotropic scaling limit: as $\lambda \rightarrow \infty$

$$
\begin{equation*}
A_{\lambda, \gamma}^{-1} \sum_{(t, s) \in K_{\left[\lambda x, \lambda \gamma_{y]}\right.}} X(t, s) \xrightarrow{\text { fdd }} V_{\gamma}^{X}(x, y), \quad(x, y) \in \mathbb{R}_{+}^{2} . \tag{1}
\end{equation*}
$$

- $X=\left\{X(t, s) ;(t, s) \in \mathbb{Z}^{2}\right\}$: a stationary random field (RF) on \mathbb{Z}^{2}
- $K_{\left[\lambda x, \lambda \gamma_{y}\right]}:=[1, \lambda x] \times\left[1, \lambda^{\gamma} y\right]$ is a family of rectangles with sides growing at possibly different rate $O(\lambda)$ and $O\left(\lambda^{\gamma}\right)$
- $\gamma>0$: characterizes anisotropy of scaling procedure
- $\gamma=1$: 'isotropic scaling'
- $A_{\lambda, \gamma} \rightarrow \infty$: normalization (usually $A_{\lambda, \gamma}=\lambda^{H(\gamma)}$)

Anisotropic scaling limit: as $\lambda \rightarrow \infty$

$$
\begin{equation*}
A_{\lambda, \gamma}^{-1} \sum_{(t, s) \in K_{\left[\lambda x, \lambda \gamma_{y]}\right.}} X(t, s) \xrightarrow{\mathrm{fdd}} V_{\gamma}^{X}(x, y), \quad(x, y) \in \mathbb{R}_{+}^{2} . \tag{1}
\end{equation*}
$$

- $X=\left\{X(t, s) ;(t, s) \in \mathbb{Z}^{2}\right\}$: a stationary random field (RF) on \mathbb{Z}^{2}
- $K_{[\lambda x, \lambda \gamma y]}:=[1, \lambda x] \times\left[1, \lambda^{\gamma} y\right]$ is a family of rectangles with sides growing at possibly different rate $O(\lambda)$ and $O\left(\lambda^{\gamma}\right)$
- $\gamma>0$: characterizes anisotropy of scaling procedure
- $\gamma=1$: 'isotropic scaling'
- $A_{\lambda, \gamma} \rightarrow \infty$: normalization (usually $A_{\lambda, \gamma}=\lambda^{H(\gamma)}$)
- $\xrightarrow{\text { fdd }}:$ convergence of (all) finite-dimensional distributions, $\mathbb{R}_{+}^{2}=\left\{(x, y) \in \mathbb{R}^{2}: x \geq 0, y \geq 0\right\}$

Anisotropic scaling limit: as $\lambda \rightarrow \infty$

$$
\begin{equation*}
A_{\lambda, \gamma}^{-1} \sum_{(t, s) \in K_{\left[\lambda x, \lambda \gamma_{y]}\right.}} X(t, s) \xrightarrow{\mathrm{fdd}} V_{\gamma}^{X}(x, y), \quad(x, y) \in \mathbb{R}_{+}^{2} . \tag{1}
\end{equation*}
$$

- $X=\left\{X(t, s) ;(t, s) \in \mathbb{Z}^{2}\right\}:$ a stationary random field (RF) on \mathbb{Z}^{2}
- $K_{\left[\lambda x, \lambda^{\gamma} y\right]}:=[1, \lambda x] \times\left[1, \lambda^{\gamma} y\right]$ is a family of rectangles with sides growing at possibly different rate $O(\lambda)$ and $O\left(\lambda^{\gamma}\right)$
- $\gamma>0$: characterizes anisotropy of scaling procedure
- $\gamma=1$: 'isotropic scaling'
- $A_{\lambda, \gamma} \rightarrow \infty$: normalization (usually $A_{\lambda, \gamma}=\lambda^{H(\gamma)}$)
- $\xrightarrow{\text { fdd }}:$ convergence of (all) finite-dimensional distributions, $\mathbb{R}_{+}^{2}=\left\{(x, y) \in \mathbb{R}^{2}: x \geq 0, y \geq 0\right\}$
- limit RF V_{γ}^{X} depends on γ (also on the law of X)

Surprising fact:

Surprising fact:

For many RFs X in \mathbb{Z}^{2}, nontrivial scaling limits V_{γ}^{X} exist for any $\gamma>0$

Surprising fact:

For many RFs X in \mathbb{Z}^{2}, nontrivial scaling limits V_{γ}^{X} exist for any $\gamma>0$

- With a given RF X one can associate a one-parameter family of scaling limits $V^{X}=\left\{V_{\gamma}^{X}, \gamma>0\right\}$ (the 'scaling diagram of X^{\prime})

Surprising fact:

For many RFs X in \mathbb{Z}^{2}, nontrivial scaling limits V_{γ}^{X} exist for any $\gamma>0$

- With a given RF X one can associate a one-parameter family of scaling limits $V^{X}=\left\{V_{\gamma}^{X}, \gamma>0\right\}$ (the 'scaling diagram of X^{\prime})
- scaling diagram of X : a complete summary of large-scale properties of X ?

Surprising fact:

For many RFs X in \mathbb{Z}^{2}, nontrivial scaling limits V_{γ}^{X} exist for any $\gamma>0$

- With a given RF X one can associate a one-parameter family of scaling limits $V^{X}=\left\{V_{\gamma}^{X}, \gamma>0\right\}$ (the 'scaling diagram of X^{\prime})
- scaling diagram of X : a complete summary of large-scale properties of X ?
- What is the structure of $V^{X}=\left\{V_{\gamma}^{X}, \gamma>0\right\}$?

Surprising fact:

For many RFs X in \mathbb{Z}^{2}, nontrivial scaling limits V_{γ}^{X} exist for any $\gamma>0$

- With a given RF X one can associate a one-parameter family of scaling limits $V^{X}=\left\{V_{\gamma}^{X}, \gamma>0\right\}$ (the 'scaling diagram of X^{\prime})
- scaling diagram of X : a complete summary of large-scale properties of X ?
- What is the structure of $V^{X}=\left\{V_{\gamma}^{X}, \gamma>0\right\}$?
- Does and how $V^{X}=\left\{V_{\gamma}^{X}, \gamma>0\right\}$ reflect the dependence in X along different directions?

General facts about $V^{X}=\left\{V_{\gamma}^{X}, \gamma>0\right\}$:

General facts about $V^{X}=\left\{V_{\gamma}^{X}, \gamma>0\right\}$:
Increment of $\mathrm{RF} V=\left\{V(x, y),(x, y) \in \mathbb{R}^{2}\right\}$ on rectangle $(u, x] \times(v, y] \subset \mathbb{R}^{2}$:

$$
V(K):=V(x, y)-V(u, y)-V(x, v)+V(u, v)
$$

General facts about $V^{X}=\left\{V_{\gamma}^{X}, \gamma>0\right\}$:
Increment of $\operatorname{RF} V=\left\{V(x, y),(x, y) \in \mathbb{R}^{2}\right\}$ on rectangle $(u, x] \times(v, y] \subset \mathbb{R}^{2}$:

$$
V(K):=V(x, y)-V(u, y)-V(x, v)+V(u, v) .
$$

- (Operator) scaling property: let $A_{\lambda, \gamma}=\lambda^{H(\gamma)}$ then

$$
\begin{equation*}
\lambda^{H(\gamma)} V(x, y) \stackrel{\text { fdd }}{=} V\left(\lambda x, \lambda^{\gamma} y\right) \quad \forall \lambda>0 . \tag{2}
\end{equation*}
$$

Simplest case of OSRF (Biermé, Meerschaert, Scheffler, 2007)

General facts about $V^{X}=\left\{V_{\gamma}^{X}, \gamma>0\right\}$:
Increment of $\operatorname{RF} V=\left\{V(x, y),(x, y) \in \mathbb{R}^{2}\right\}$ on rectangle $(u, x] \times(v, y] \subset \mathbb{R}^{2}$:

$$
V(K):=V(x, y)-V(u, y)-V(x, v)+V(u, v) .
$$

- (Operator) scaling property: let $A_{\lambda, \gamma}=\lambda^{H(\gamma)}$ then

$$
\begin{equation*}
\lambda^{H(\gamma)} V(x, y) \stackrel{\text { fdd }}{=} V\left(\lambda x, \lambda^{\gamma} y\right) \quad \forall \lambda>0 . \tag{2}
\end{equation*}
$$

Simplest case of OSRF (Biermé, Meerschaert, Scheffler, 2007)

- Stationary rectangular increments (if X is stationary)

General facts about $V^{X}=\left\{V_{\gamma}^{X}, \gamma>0\right\}$:
Increment of $\operatorname{RF} V=\left\{V(x, y),(x, y) \in \mathbb{R}^{2}\right\}$ on rectangle $(u, x] \times(v, y] \subset \mathbb{R}^{2}$:

$$
V(K):=V(x, y)-V(u, y)-V(x, v)+V(u, v)
$$

- (Operator) scaling property: let $A_{\lambda, \gamma}=\lambda^{H(\gamma)}$ then

$$
\begin{equation*}
\lambda^{H(\gamma)} V(x, y) \stackrel{\text { fdd }}{=} V\left(\lambda x, \lambda^{\gamma} y\right) \quad \forall \lambda>0 \tag{2}
\end{equation*}
$$

Simplest case of OSRF (Biermé, Meerschaert, Scheffler, 2007)

- Stationary rectangular increments (if X is stationary)
- For i.i.d. RF $X, V^{X}=\left\{V_{\gamma}^{X}, \gamma>0\right\}$ consists of a single element: Lévy sheet (or is empty)

General facts about $V^{X}=\left\{V_{\gamma}^{X}, \gamma>0\right\}$:
Increment of $\operatorname{RF} V=\left\{V(x, y),(x, y) \in \mathbb{R}^{2}\right\}$ on rectangle $(u, x] \times(v, y] \subset \mathbb{R}^{2}$:

$$
V(K):=V(x, y)-V(u, y)-V(x, v)+V(u, v)
$$

- (Operator) scaling property: let $A_{\lambda, \gamma}=\lambda^{H(\gamma)}$ then

$$
\begin{equation*}
\lambda^{H(\gamma)} V(x, y) \stackrel{\text { fdd }}{=} V\left(\lambda x, \lambda^{\gamma} y\right) \quad \forall \lambda>0 \tag{2}
\end{equation*}
$$

Simplest case of OSRF (Biermé, Meerschaert, Scheffler, 2007)

- Stationary rectangular increments (if X is stationary)
- For i.i.d. RF $X, V^{X}=\left\{V_{\gamma}^{X}, \gamma>0\right\}$ consists of a single element: Lévy sheet (or is empty)
- 'Nontrivial' scaling diagram is intrinsically related to long-range dependence (LRD): $\sum_{(t, s) \in \mathbb{Z}^{2}}|\operatorname{cov}(X(0,0), X(t, s))|=\infty$

Motivation:

Motivation:

- Panel data: $\{X(t, s), 1 \leq t \leq T, 1 \leq s \leq n\}$. T ($=$ horizontal panel length) and n ($=$ vertical panel length) may increase at different rate, e.g. $T=[\lambda], n=\left[\lambda^{\gamma}\right]$, for some $\gamma>0$

Motivation:

- Panel data: $\{X(t, s), 1 \leq t \leq T, 1 \leq s \leq n\}$. T ($=$ horizontal panel length) and n ($=$ vertical panel length) may increase at different rate, e.g. $T=[\lambda], n=\left[\lambda^{\gamma}\right]$, for some $\gamma>0$
- Aggregation of teletraffic and macroeconomic models Willinger et al. (1997), Mikosch et al. (2002), Gaigalas and Kaj (2003), Pipiras et al. (2004), Kaj and Taqqu (2008), Dombry and Kaj (2011), Pilipauskaitè, S. $(2014,2015)$

Motivation:

- Panel data: $\{X(t, s), 1 \leq t \leq T, 1 \leq s \leq n\}$. T ($=$ horizontal panel length) and n ($=$ vertical panel length) may increase at different rate, e.g. $T=[\lambda], n=\left[\lambda^{\gamma}\right]$, for some $\gamma>0$
- Aggregation of teletraffic and macroeconomic models Willinger et al. (1997), Mikosch et al. (2002), Gaigalas and Kaj (2003), Pipiras et al. (2004), Kaj and Taqqu (2008), Dombry and Kaj (2011), Pilipauskaitė, S. $(2014,2015)$
- Infill inference: based on increments (quadratic variations) of increasingly dense observations of a RF X in a fixed (bounded) domain, e.g. unit square $[0,1]^{2}$.

Motivation:

- Panel data: $\{X(t, s), 1 \leq t \leq T, 1 \leq s \leq n\}$. T ($=$ horizontal panel length) and n ($=$ vertical panel length) may increase at different rate, e.g. $T=[\lambda], n=\left[\lambda^{\gamma}\right]$, for some $\gamma>0$
- Aggregation of teletraffic and macroeconomic models Willinger et al. (1997), Mikosch et al. (2002), Gaigalas and Kaj (2003), Pipiras et al. (2004), Kaj and Taqqu (2008), Dombry and Kaj (2011), Pilipauskaitè, S. $(2014,2015)$
- Infill inference: based on increments (quadratic variations) of increasingly dense observations of a RF X in a fixed (bounded) domain, e.g. unit square $[0,1]^{2}$.
- Assume that RF $X=\left\{X(t, s),(t, s) \in[0,1]^{2}\right\}$ is observed on discrete increasingly dense mesh $(i / n, j / m) \in[0,1]^{2}$, where n, m increase at possibly different rate: $m=n^{\gamma}(\exists \gamma>0)$.

Motivation:

- Panel data: $\{X(t, s), 1 \leq t \leq T, 1 \leq s \leq n\}$. T ($=$ horizontal panel length) and n ($=$ vertical panel length) may increase at different rate, e.g. $T=[\lambda], n=\left[\lambda^{\gamma}\right]$, for some $\gamma>0$
- Aggregation of teletraffic and macroeconomic models Willinger et al. (1997), Mikosch et al. (2002), Gaigalas and Kaj (2003), Pipiras et al. (2004), Kaj and Taqqu (2008), Dombry and Kaj (2011), Pilipauskaitè, S. $(2014,2015)$
- Infill inference: based on increments (quadratic variations) of increasingly dense observations of a RF X in a fixed (bounded) domain, e.g. unit square $[0,1]^{2}$.
- Assume that RF $X=\left\{X(t, s),(t, s) \in[0,1]^{2}\right\}$ is observed on discrete increasingly dense mesh $(i / n, j / m) \in[0,1]^{2}$, where n, m increase at possibly different rate: $m=n^{\gamma}(\exists \gamma>0)$.
Anisotropic quadratic variations:

$$
Q V_{n, m}^{X}:=\sum_{(i / n, j / m) \in[0,1]^{2}}\left|\Delta_{1 / n, 1 / m} X(i / n, j / m)\right|^{2},
$$

$\Delta_{1 / n, 1 / m} X(t, s):=X(t+1 / n, s+1 / m)-X(t, s+1 / m)-X(t+1 / n, s)+X(t, s)$ is the double difference

Questions:

Questions:

- Limit distribution of anisotropic quadratic variations $Q V_{n, m}^{X}$ for $m=n^{\gamma}, \gamma>0$

Questions:

- Limit distribution of anisotropic quadratic variations $Q V_{n, m}^{X}$ for $m=n^{\gamma}, \gamma>0$
- Limit distribution of normalized increments $\Delta_{1 / n, 1 / m} X(t, s)$

Questions:

- Limit distribution of anisotropic quadratic variations $Q V_{n, m}^{X}$ for $m=n^{\gamma}, \gamma>0$
- Limit distribution of normalized increments $\Delta_{1 / n, 1 / m} X(t, s)$
- Existence and properties of anisotropic tangent RF:

$$
\begin{aligned}
& \lambda^{H(\gamma)}\left(X\left(t+\lambda x, s+\lambda^{\gamma} y\right)-X(t+\lambda x, s)-X\left(t, s+\lambda^{\gamma} y\right)+X(t, s)\right) \\
& \xrightarrow{\text { fdd }} V_{\gamma ; t, s}^{X}(x, y), \quad \lambda \rightarrow 0
\end{aligned}
$$

Questions:

- Limit distribution of anisotropic quadratic variations $Q V_{n, m}^{X}$ for $m=n^{\gamma}, \gamma>0$
- Limit distribution of normalized increments $\Delta_{1 / n, 1 / m} X(t, s)$
- Existence and properties of anisotropic tangent RF:

$$
\begin{aligned}
& \lambda^{H(\gamma)}\left(X\left(t+\lambda x, s+\lambda^{\gamma} y\right)-X(t+\lambda x, s)-X\left(t, s+\lambda^{\gamma} y\right)+X(t, s)\right) \\
& \xrightarrow{\text { fdd }} V_{\gamma ; t, s}^{X}(x, y), \quad \lambda \rightarrow 0
\end{aligned}
$$

Model: Lévy driven moving average RF:

$$
X(t, s)=\int_{\mathbb{R}^{2}}\left(g(t-u, s-v)-\tilde{g}_{1}(-u, s-v)-\tilde{g}_{2}(t-u,-v)+\tilde{g}_{12}(-u,-v)\right) L(\mathrm{~d} u, \mathrm{~d} v)
$$

Questions:

- Limit distribution of anisotropic quadratic variations $Q V_{n, m}^{X}$ for $m=n^{\gamma}, \gamma>0$
- Limit distribution of normalized increments $\Delta_{1 / n, 1 / m} X(t, s)$
- Existence and properties of anisotropic tangent RF:

$$
\begin{aligned}
& \lambda^{H(\gamma)}\left(X\left(t+\lambda x, s+\lambda^{\gamma} y\right)-X(t+\lambda x, s)-X\left(t, s+\lambda^{\gamma} y\right)+X(t, s)\right) \\
& \xrightarrow{\text { fdd }} V_{\gamma ; t, s}^{X}(x, y), \quad \lambda \rightarrow 0
\end{aligned}
$$

Model: Lévy driven moving average RF:

$$
X(t, s)=\int_{\mathbb{R}^{2}}\left(g(t-u, s-v)-\tilde{g}_{1}(-u, s-v)-\tilde{g}_{2}(t-u,-v)+\tilde{g}_{12}(-u,-v)\right) L(\mathrm{~d} u, \mathrm{~d} v)
$$

- $\{L(\mathrm{~d} u, \mathrm{~d} v)\}$: infinitely divisible random measure, $g, \tilde{g}_{1}, \tilde{g}_{2}, \tilde{g}_{12}$: deterministic functions

Questions:

- Limit distribution of anisotropic quadratic variations $Q V_{n, m}^{X}$ for $m=n^{\gamma}, \gamma>0$
- Limit distribution of normalized increments $\Delta_{1 / n, 1 / m} X(t, s)$
- Existence and properties of anisotropic tangent RF:

$$
\begin{aligned}
& \lambda^{H(\gamma)}\left(X\left(t+\lambda x, s+\lambda^{\gamma} y\right)-X(t+\lambda x, s)-X\left(t, s+\lambda^{\gamma} y\right)+X(t, s)\right) \\
& \xrightarrow{\text { fdd }} V_{\gamma ; t, s}^{X}(x, y), \quad \lambda \rightarrow 0
\end{aligned}
$$

Model: Lévy driven moving average RF:
$X(t, s)=\int_{\mathbb{R}^{2}}\left(g(t-u, s-v)-\tilde{g}_{1}(-u, s-v)-\tilde{g}_{2}(t-u,-v)+\tilde{g}_{12}(-u,-v)\right) L(\mathrm{~d} u, \mathrm{~d} v)$,

- $\{L(\mathrm{~d} u, \mathrm{~d} v)\}$: infinitely divisible random measure, $g, \tilde{g}_{1}, \tilde{g}_{2}, \tilde{g}_{12}$: deterministic functions
- $g(t, s) \sim \operatorname{const}\left(|t|^{2}+|s|^{2 / \varpi}\right)^{\kappa / 2},(t, s) \rightarrow(0,0)$

Questions:

- Limit distribution of anisotropic quadratic variations $Q V_{n, m}^{X}$ for $m=n^{\gamma}, \gamma>0$
- Limit distribution of normalized increments $\Delta_{1 / n, 1 / m} X(t, s)$
- Existence and properties of anisotropic tangent RF:

$$
\begin{aligned}
& \lambda^{H(\gamma)}\left(X\left(t+\lambda x, s+\lambda^{\gamma} y\right)-X(t+\lambda x, s)-X\left(t, s+\lambda^{\gamma} y\right)+X(t, s)\right) \\
& \xrightarrow{\text { fdd }} V_{\gamma ; t, s}^{X}(x, y), \quad \lambda \rightarrow 0
\end{aligned}
$$

Model: Lévy driven moving average RF:
$X(t, s)=\int_{\mathbb{R}^{2}}\left(g(t-u, s-v)-\tilde{g}_{1}(-u, s-v)-\tilde{g}_{2}(t-u,-v)+\tilde{g}_{12}(-u,-v)\right) L(\mathrm{~d} u, \mathrm{~d} v)$,

- $\{L(\mathrm{~d} u, \mathrm{~d} v)\}$: infinitely divisible random measure, $g, \tilde{g}_{1}, \tilde{g}_{2}, \tilde{g}_{12}$: deterministic functions
- $g(t, s) \sim \operatorname{const}\left(|t|^{2}+|s|^{2 / \varpi}\right)^{\kappa / 2},(t, s) \rightarrow(0,0)$

2. Scaling transition for Gaussian LRD RFs

2. Scaling transition for Gaussian LRD RFs

$X=\left\{X(t, s) ;(t, s) \in \mathbb{Z}^{2}\right\}$: a stationary random field (RF) on \mathbb{Z}^{2} s.t. scaling limits $V_{\gamma}^{X}=\left\{V_{\gamma}^{X}(x, y) ;(x, y) \in \mathbb{R}_{+}^{2}\right\}$ (1) exist for any $\gamma>0$

2. Scaling transition for Gaussian LRD RFs

$X=\left\{X(t, s) ;(t, s) \in \mathbb{Z}^{2}\right\}$: a stationary random field (RF) on \mathbb{Z}^{2} s.t. scaling limits $V_{\gamma}^{X}=\left\{V_{\gamma}^{X}(x, y) ;(x, y) \in \mathbb{R}_{+}^{2}\right\}$ (1) exist for any $\gamma>0$

Def We say that X exhibits scaling transition if $\exists \gamma_{0}>0$ s.t.

2. Scaling transition for Gaussian LRD RFs

$X=\left\{X(t, s) ;(t, s) \in \mathbb{Z}^{2}\right\}$: a stationary random field (RF) on \mathbb{Z}^{2} s.t. scaling limits $V_{\gamma}^{X}=\left\{V_{\gamma}^{X}(x, y) ;(x, y) \in \mathbb{R}_{+}^{2}\right\}$ (1) exist for any $\gamma>0$

Def We say that X exhibits scaling transition if $\exists \gamma_{0}>0$ s.t.

$$
V_{\gamma}^{X} \stackrel{\text { fdd }}{=} V_{+}^{X} \quad\left(\forall \gamma>\gamma_{0}\right),
$$

2. Scaling transition for Gaussian LRD RFs

$X=\left\{X(t, s) ;(t, s) \in \mathbb{Z}^{2}\right\}$: a stationary random field (RF) on \mathbb{Z}^{2} s.t. scaling limits $V_{\gamma}^{X}=\left\{V_{\gamma}^{X}(x, y) ;(x, y) \in \mathbb{R}_{+}^{2}\right\}$ (1) exist for any $\gamma>0$

Def We say that X exhibits scaling transition if $\exists \gamma_{0}>0$ s.t.

$$
V_{\gamma}^{X} \stackrel{\text { fdd }}{=} V_{+}^{X}\left(\forall \gamma>\gamma_{0}\right), \quad V_{\gamma}^{X} \stackrel{\text { fdd }}{=} V_{-}^{X}\left(\forall \gamma<\gamma_{0}\right),
$$

2. Scaling transition for Gaussian LRD RFs

$X=\left\{X(t, s) ;(t, s) \in \mathbb{Z}^{2}\right\}$: a stationary random field (RF) on \mathbb{Z}^{2} s.t. scaling limits $V_{\gamma}^{X}=\left\{V_{\gamma}^{X}(x, y) ;(x, y) \in \mathbb{R}_{+}^{2}\right\}$ (1) exist for any $\gamma>0$

Def We say that X exhibits scaling transition if $\exists \gamma_{0}>0$ s.t.

$$
\begin{aligned}
& V_{\gamma}^{X} \stackrel{\text { fdd }}{=} V_{+}^{X} \quad\left(\forall \gamma>\gamma_{0}\right), \quad V_{\gamma}^{X} \stackrel{\text { fdd }}{=} V_{-}^{X} \quad\left(\forall \gamma<\gamma_{0}\right), \\
& V_{+}^{X} \stackrel{\text { fdd }}{\neq} a V_{-}^{X} \quad(\forall a>0) .
\end{aligned}
$$

2. Scaling transition for Gaussian LRD RFs

$X=\left\{X(t, s) ;(t, s) \in \mathbb{Z}^{2}\right\}$: a stationary random field (RF) on \mathbb{Z}^{2} s.t. scaling limits $V_{\gamma}^{X}=\left\{V_{\gamma}^{X}(x, y) ;(x, y) \in \mathbb{R}_{+}^{2}\right\}$ (1) exist for any $\gamma>0$

Def We say that X exhibits scaling transition if $\exists \gamma_{0}>0$ s.t.

$$
\begin{aligned}
& V_{\gamma}^{X} \stackrel{\text { fdd }}{=} V_{+}^{X} \quad\left(\forall \gamma>\gamma_{0}\right), \quad V_{\gamma}^{X} \stackrel{\text { fdd }}{=} V_{-}^{X} \quad\left(\forall \gamma<\gamma_{0}\right), \\
& V_{+}^{X} \stackrel{\text { fdd }}{\neq} a V_{-}^{X} \quad(\forall a>0) .
\end{aligned}
$$

- $V_{ \pm}^{X}$ called the unbalanced scaling limits of X

2. Scaling transition for Gaussian LRD RFs

$X=\left\{X(t, s) ;(t, s) \in \mathbb{Z}^{2}\right\}$: a stationary random field (RF) on \mathbb{Z}^{2} s.t. scaling limits $V_{\gamma}^{X}=\left\{V_{\gamma}^{X}(x, y) ;(x, y) \in \mathbb{R}_{+}^{2}\right\}$ (1) exist for any $\gamma>0$

Def We say that X exhibits scaling transition if $\exists \gamma_{0}>0$ s.t.

$$
\begin{aligned}
& V_{\gamma}^{X} \stackrel{\text { fdd }}{=} V_{+}^{X} \quad\left(\forall \gamma>\gamma_{0}\right), \quad V_{\gamma}^{X} \stackrel{\text { fdd }}{=} V_{-}^{X} \quad\left(\forall \gamma<\gamma_{0}\right), \\
& V_{+}^{X} \stackrel{\text { fdd }}{\neq} a V_{-}^{X} \quad(\forall a>0) .
\end{aligned}
$$

- $V_{ \pm}^{X}$ called the unbalanced scaling limits of X
- $V_{\gamma_{0}}^{X}$ called the well-balanced scaling limit of X

2. Scaling transition for Gaussian LRD RFs

$X=\left\{X(t, s) ;(t, s) \in \mathbb{Z}^{2}\right\}$: a stationary random field (RF) on \mathbb{Z}^{2} s.t. scaling limits $V_{\gamma}^{X}=\left\{V_{\gamma}^{X}(x, y) ;(x, y) \in \mathbb{R}_{+}^{2}\right\}$ (1) exist for any $\gamma>0$

Def We say that X exhibits scaling transition if $\exists \gamma_{0}>0$ s.t.

$$
\begin{aligned}
& V_{\gamma}^{X} \stackrel{\text { fdd }}{=} V_{+}^{X} \quad\left(\forall \gamma>\gamma_{0}\right), \quad V_{\gamma}^{X} \stackrel{\text { fdd }}{=} V_{-}^{X} \quad\left(\forall \gamma<\gamma_{0}\right), \\
& V_{+}^{X} \stackrel{\text { fdd }}{\neq} a V_{-}^{X} \quad(\forall a>0) .
\end{aligned}
$$

- $V_{ \pm}^{X}$ called the unbalanced scaling limits of X
- $V_{\gamma_{0}}^{X}$ called the well-balanced scaling limit of X
- If $V_{\gamma}^{X} \stackrel{\text { fdd }}{=} V^{X}$ are the same for any $\gamma>0, X$ does not exhibit scaling transition

Scaling transition for Gaussian LRD RFs on \mathbb{Z}^{2}
A zero mean stationary Gaussian RF $X=\left\{X(t, s) ;(t, s) \in \mathbb{Z}^{2}\right\}$ is completely described by spectral density $f=f(x, y) \geq 0,(x, y) \in[-\pi, \pi]^{2}$

Scaling transition for Gaussian LRD RFs on \mathbb{Z}^{2}

A zero mean stationary Gaussian RF $X=\left\{X(t, s) ;(t, s) \in \mathbb{Z}^{2}\right\}$ is completely described by spectral density $f=f(x, y) \geq 0,(x, y) \in[-\pi, \pi]^{2}$

Type I and II spectral densities:

$$
f_{\mathrm{I}}(x, y)=\frac{g(x, y)}{\left(|x|^{2}+|y|^{2 H_{2} / H_{1}}\right)^{H_{1} / 2}},
$$

Scaling transition for Gaussian LRD RFs on \mathbb{Z}^{2}

A zero mean stationary Gaussian RF $X=\left\{X(t, s) ;(t, s) \in \mathbb{Z}^{2}\right\}$ is completely described by spectral density $f=f(x, y) \geq 0,(x, y) \in[-\pi, \pi]^{2}$

Type I and II spectral densities:

$$
\begin{equation*}
f_{\mathrm{I}}(x, y)=\frac{g(x, y)}{\left(|x|^{2}+|y|^{2 H_{2} / H_{1}}\right)^{H_{1} / 2}}, \quad f_{\mathrm{II}}(x, y)=\frac{g(x, y)}{|x|^{2 d_{1}}|y|^{2 d_{2}}} \tag{3}
\end{equation*}
$$

Scaling transition for Gaussian LRD RFs on \mathbb{Z}^{2}

A zero mean stationary Gaussian RF $X=\left\{X(t, s) ;(t, s) \in \mathbb{Z}^{2}\right\}$ is completely described by spectral density $f=f(x, y) \geq 0,(x, y) \in[-\pi, \pi]^{2}$

Type I and II spectral densities:

$$
\begin{equation*}
f_{\mathrm{I}}(x, y)=\frac{g(x, y)}{\left(|x|^{2}+|y|^{2 H_{2} / H_{1}}\right)^{H_{1} / 2}}, \quad f_{\mathrm{II}}(x, y)=\frac{g(x, y)}{|x|^{2 d_{1}}|y|^{2 d_{2}}}, \tag{3}
\end{equation*}
$$

- $H_{1}, H_{2}>0, H_{1} H_{2}<H_{1}+H_{2}$

Scaling transition for Gaussian LRD RFs on \mathbb{Z}^{2}

A zero mean stationary Gaussian RF $X=\left\{X(t, s) ;(t, s) \in \mathbb{Z}^{2}\right\}$ is completely described by spectral density $f=f(x, y) \geq 0,(x, y) \in[-\pi, \pi]^{2}$

Type I and II spectral densities:

$$
\begin{equation*}
f_{\mathrm{I}}(x, y)=\frac{g(x, y)}{\left(|x|^{2}+|y|^{2 H_{2} / H_{1}}\right)^{H_{1} / 2}}, \quad f_{\mathrm{II}}(x, y)=\frac{g(x, y)}{|x|^{2 d_{1}}|y|^{2 d_{2}}}, \tag{3}
\end{equation*}
$$

- $H_{1}, H_{2}>0, H_{1} H_{2}<H_{1}+H_{2}$
- $0<d_{1}, d_{2}<1 / 2$

Scaling transition for Gaussian LRD RFs on \mathbb{Z}^{2}

A zero mean stationary Gaussian RF $X=\left\{X(t, s) ;(t, s) \in \mathbb{Z}^{2}\right\}$ is completely described by spectral density $f=f(x, y) \geq 0,(x, y) \in[-\pi, \pi]^{2}$

Type I and II spectral densities:

$$
\begin{equation*}
f_{\mathrm{I}}(x, y)=\frac{g(x, y)}{\left(|x|^{2}+|y|^{2 H_{2} / H_{1}}\right)^{H_{1} / 2}}, \quad f_{\mathrm{II}}(x, y)=\frac{g(x, y)}{|x|^{2 d_{1}}|y|^{2 d_{2}}}, \tag{3}
\end{equation*}
$$

- $H_{1}, H_{2}>0, H_{1} H_{2}<H_{1}+H_{2}$
- $0<d_{1}, d_{2}<1 / 2$
- g : bdd\& ctn, $g(0,0)>0$
$H_{-} 1=0.5, H _2=1$

Type I sp. density $f_{\mathrm{I}}, H_{1}=0.5, H_{2}=1$
$d _1=0.2, d _2=0.4$

Type II sp. density $f_{\mathrm{II}}, d_{1}=0.2, d_{2}=0.4$
$H_{-} 1=0.5, H_{-}=1$

Type I sp. density $f_{\mathrm{I}}, H_{1}=0.5, H_{2}=1$
d_1=0.2, d_2=0.4

Type II sp. density $f_{\mathrm{II}}, d_{1}=0.2, d_{2}=0.4$

- f_{I} has a unique singularity at $(0,0)$
$H_{-} 1=0.5, H_{-} 2=1$

Type I sp. density $f_{\mathrm{I}}, H_{1}=0.5, H_{2}=1$
d_1 $=0.2$, d_2 $=0.4$

Type II sp. density $f_{\mathrm{II}}, d_{1}=0.2, d_{2}=0.4$

- f_{I} has a unique singularity at $(0,0)$
- $f_{\text {II }}$ is singular on both coordinate axes and factorizes at low frequencies into a product of two functions depending on x and y alone.

Type I sp. density $f_{\mathrm{I}}, H_{1}=0.5, H_{2}=1$
d_1 $=0.2$, d_2 $=0.4$

Type II sp. density $f_{\mathrm{II}}, d_{1}=0.2, d_{2}=0.4$

- f_{I} has a unique singularity at $(0,0)$
- $f_{\text {II }}$ is singular on both coordinate axes and factorizes at low frequencies into a product of two functions depending on x and y alone.
- $f_{\text {II }}$ include fractionally integrated class $\left|1-\mathrm{e}^{-\mathrm{i} x}\right|^{-2 d_{1}}\left|1-\mathrm{e}^{-\mathrm{i} y}\right|^{-2 d_{2}}$

Thm 1 (Puplinskaite \& S., 2015)

Thm 1 (Puplinskaite \& S., 2015)
(i) Let X be a stationary zero mean Gaussian RF on \mathbb{Z}^{2} with Type I spectral density in (3), $H_{1}, H_{2}>0, H_{1} H_{2}<H_{1}+H_{2}, H_{i} \neq 1$.

Thm 1 (Puplinskaite \& S., 2015)
(i) Let X be a stationary zero mean Gaussian RF on \mathbb{Z}^{2} with Type I spectral density in (3), $H_{1}, H_{2}>0, H_{1} H_{2}<H_{1}+H_{2}, H_{i} \neq 1$.

Then X exhibits scaling transition at $\gamma_{0}=H_{1} / H_{2}$.

Thm 1 (Puplinskaite \& S., 2015)
(i) Let X be a stationary zero mean Gaussian RF on \mathbb{Z}^{2} with Type I spectral density in (3), $H_{1}, H_{2}>0, H_{1} H_{2}<H_{1}+H_{2}, H_{i} \neq 1$.

Then X exhibits scaling transition at $\gamma_{0}=H_{1} / H_{2}$.
Moreover, the unbalanced scaling limits $V_{ \pm}^{X}$ of X agree with a fractional Brownian sheet $B_{\mathcal{H}_{1}, \mathcal{H}_{2}}$ where at least one of the two parameters $\mathcal{H}_{1}, \mathcal{H}_{2}$ equals $1 / 2$ or 1 .

Thm 1 (Puplinskaite \& S., 2015)
(i) Let X be a stationary zero mean Gaussian RF on \mathbb{Z}^{2} with Type I spectral density in (3), $H_{1}, H_{2}>0, H_{1} H_{2}<H_{1}+H_{2}, H_{i} \neq 1$.

Then X exhibits scaling transition at $\gamma_{0}=H_{1} / H_{2}$.
Moreover, the unbalanced scaling limits $V_{ \pm}^{X}$ of X agree with a fractional Brownian sheet $B_{\mathcal{H}_{1}, \mathcal{H}_{2}}$ where at least one of the two parameters $\mathcal{H}_{1}, \mathcal{H}_{2}$ equals $1 / 2$ or 1 .
(ii) Let X be a stationary zero mean Gaussian RF on \mathbb{Z}^{2} with Type II spectral density in (3), $0<d_{1}, d_{2}<1 / 2$. Then X does not exhibit scaling transition.

Def 2 Fractional Brownian Sheet (FBS) $B_{\mathcal{H}_{1}, \mathcal{H}_{2}}$ with parameters $0<\mathcal{H}_{1}, \mathcal{H}_{2} \leq 1$ is a Gaussian process on \mathbb{R}_{+}^{2} with zero mean and covariance

$$
\begin{aligned}
\mathrm{E} B_{\mathcal{H}_{1}, \mathcal{H}_{2}}(x, y) B_{\mathcal{H}_{1}, \mathcal{H}_{2}}\left(x^{\prime}, y^{\prime}\right)= & (1 / 2)\left(x^{2 \mathcal{H}_{1}}+x^{\prime 2 \mathcal{H}_{1}}-\left|x-x^{\prime}\right|^{2 \mathcal{H}_{1}}\right) \\
& \times(1 / 2)\left(y^{2 \mathcal{H}_{2}}+y^{\prime 2 \mathcal{H}_{2}}-\left|y-y^{\prime}\right|^{2 \mathcal{H}_{2}}\right)
\end{aligned}
$$

Def 2 Fractional Brownian Sheet (FBS) $B_{\mathcal{H}_{1}, \mathcal{H}_{2}}$ with parameters $0<\mathcal{H}_{1}, \mathcal{H}_{2} \leq 1$ is a Gaussian process on \mathbb{R}_{+}^{2} with zero mean and covariance

$$
\begin{aligned}
\mathrm{E} B_{\mathcal{H}_{1}, \mathcal{H}_{2}}(x, y) B_{\mathcal{H}_{1}, \mathcal{H}_{2}}\left(x^{\prime}, y^{\prime}\right)= & (1 / 2)\left(x^{2 \mathcal{H}_{1}}+x^{\prime 2 \mathcal{H}_{1}}-\left|x-x^{\prime}\right|^{2 \mathcal{H}_{1}}\right) \\
& \times(1 / 2)\left(y^{2 \mathcal{H}_{2}}+y^{\prime 2 \mathcal{H}_{2}}-\left|y-y^{\prime}\right|^{2 \mathcal{H}_{2}}\right)
\end{aligned}
$$

Two cases of FBSheet:

Def 2 Fractional Brownian Sheet (FBS) $B_{\mathcal{H}_{1}, \mathcal{H}_{2}}$ with parameters $0<\mathcal{H}_{1}, \mathcal{H}_{2} \leq 1$ is a Gaussian process on \mathbb{R}_{+}^{2} with zero mean and covariance

$$
\begin{aligned}
\mathrm{E} B_{\mathcal{H}_{1}, \mathcal{H}_{2}}(x, y) B_{\mathcal{H}_{1}, \mathcal{H}_{2}}\left(x^{\prime}, y^{\prime}\right)= & (1 / 2)\left(x^{2 \mathcal{H}_{1}}+x^{\prime 2 \mathcal{H}_{1}}-\left|x-x^{\prime}\right|^{2 \mathcal{H}_{1}}\right) \\
& \times(1 / 2)\left(y^{2 \mathcal{H}_{2}}+y^{\prime 2 \mathcal{H}_{2}}-\left|y-y^{\prime}\right|^{2 \mathcal{H}_{2}}\right)
\end{aligned}
$$

Two cases of FBSheet:

1. $\mathcal{H}_{1}=1 / 2\left(\right.$ or $\left.\mathcal{H}_{2}=1 / 2\right)$:

Def 2 Fractional Brownian Sheet (FBS) $B_{\mathcal{H}_{1}, \mathcal{H}_{2}}$ with parameters $0<\mathcal{H}_{1}, \mathcal{H}_{2} \leq 1$ is a Gaussian process on \mathbb{R}_{+}^{2} with zero mean and covariance

$$
\begin{aligned}
\mathrm{E} B_{\mathcal{H}_{1}, \mathcal{H}_{2}}(x, y) B_{\mathcal{H}_{1}, \mathcal{H}_{2}}\left(x^{\prime}, y^{\prime}\right)= & (1 / 2)\left(x^{2 \mathcal{H}_{1}}+x^{\prime 2 \mathcal{H}_{1}}-\left|x-x^{\prime}\right|^{2 \mathcal{H}_{1}}\right) \\
& \times(1 / 2)\left(y^{2 \mathcal{H}_{2}}+y^{\prime 2 \mathcal{H}_{2}}-\left|y-y^{\prime}\right|^{2 \mathcal{H}_{2}}\right)
\end{aligned}
$$

Two cases of FBSheet:

1. $\mathcal{H}_{1}=1 / 2\left(\right.$ or $\left.\mathcal{H}_{2}=1 / 2\right)$:

For fixed $y,\left\{B_{1 / 2, \mathcal{H}_{2}}(x, y), x \geq 0\right\}$ is a usual indep. incr. BM in $x \geq 0$

Def 2 Fractional Brownian Sheet (FBS) $B_{\mathcal{H}_{1}, \mathcal{H}_{2}}$ with parameters $0<\mathcal{H}_{1}, \mathcal{H}_{2} \leq 1$ is a Gaussian process on \mathbb{R}_{+}^{2} with zero mean and covariance

$$
\begin{aligned}
\mathrm{E} B_{\mathcal{H}_{1}, \mathcal{H}_{2}}(x, y) B_{\mathcal{H}_{1}, \mathcal{H}_{2}}\left(x^{\prime}, y^{\prime}\right)= & (1 / 2)\left(x^{2 \mathcal{H}_{1}}+x^{\prime 2 \mathcal{H}_{1}}-\left|x-x^{\prime}\right|^{2 \mathcal{H}_{1}}\right) \\
& \times(1 / 2)\left(y^{2 \mathcal{H}_{2}}+y^{\prime 2 \mathcal{H}_{2}}-\left|y-y^{\prime}\right|^{2 \mathcal{H}_{2}}\right)
\end{aligned}
$$

Two cases of FBSheet:

1. $\mathcal{H}_{1}=1 / 2\left(\right.$ or $\left.\mathcal{H}_{2}=1 / 2\right)$:

For fixed $y,\left\{B_{1 / 2, \mathcal{H}_{2}}(x, y), x \geq 0\right\}$ is a usual indep. incr. BM in $x \geq 0$
2. $\mathcal{H}_{1}=1\left(\right.$ or $\left.\mathcal{H}_{2}=1\right)$:

Def 2 Fractional Brownian Sheet (FBS) $B_{\mathcal{H}_{1}, \mathcal{H}_{2}}$ with parameters $0<\mathcal{H}_{1}, \mathcal{H}_{2} \leq 1$ is a Gaussian process on \mathbb{R}_{+}^{2} with zero mean and covariance

$$
\begin{aligned}
\mathrm{E} B_{\mathcal{H}_{1}, \mathcal{H}_{2}}(x, y) B_{\mathcal{H}_{1}, \mathcal{H}_{2}}\left(x^{\prime}, y^{\prime}\right)= & (1 / 2)\left(x^{2 \mathcal{H}_{1}}+x^{\prime 2 \mathcal{H}_{1}}-\left|x-x^{\prime}\right|^{2 \mathcal{H}_{1}}\right) \\
& \times(1 / 2)\left(y^{2 \mathcal{H}_{2}}+y^{\prime 2 \mathcal{H}_{2}}-\left|y-y^{\prime}\right|^{2 \mathcal{H}_{2}}\right)
\end{aligned}
$$

Two cases of FBSheet:

1. $\mathcal{H}_{1}=1 / 2\left(\right.$ or $\left.\mathcal{H}_{2}=1 / 2\right)$:

For fixed $y,\left\{B_{1 / 2, \mathcal{H}_{2}}(x, y), x \geq 0\right\}$ is a usual indep. incr. BM in $x \geq 0$
2. $\mathcal{H}_{1}=1\left(\right.$ or $\left.\mathcal{H}_{2}=1\right)$:

For fixed $y,\left\{B_{1, \mathcal{H}_{2}}(x, y)=x B_{\mathcal{H}_{2}}(y), x \geq 0\right\}$ is a random line in $x \geq 0$ ('FBSlide')
3. Scaling transition for linear LRD RFs
3. Scaling transition for linear LRD RFs

Linear RF:

$$
\begin{equation*}
Y(t, s)=\sum_{(u, v) \in \mathbb{Z}^{2}} a(t-u, s-v) \varepsilon(u, v), \quad(t, s) \in \mathbb{Z}^{2} \tag{4}
\end{equation*}
$$

3. Scaling transition for linear LRD RFs

Linear RF:

$$
\begin{equation*}
Y(t, s)=\sum_{(u, v) \in \mathbb{Z}^{2}} a(t-u, s-v) \varepsilon(u, v), \quad(t, s) \in \mathbb{Z}^{2} \tag{4}
\end{equation*}
$$

Assumption (A1) $\left\{\varepsilon, \varepsilon(t, s),(t, s) \in \mathbb{Z}^{2}\right\}$: i.i.d, $\mathrm{E} \varepsilon=0, \mathrm{E} \varepsilon^{2}=1$

3. Scaling transition for linear LRD RFs

Linear RF:

$$
\begin{equation*}
Y(t, s)=\sum_{(u, v) \in \mathbb{Z}^{2}} a(t-u, s-v) \varepsilon(u, v), \quad(t, s) \in \mathbb{Z}^{2} \tag{4}
\end{equation*}
$$

Assumption (A1) $\left\{\varepsilon, \varepsilon(t, s),(t, s) \in \mathbb{Z}^{2}\right\}$: i.i.d, $\mathrm{E} \varepsilon=0, \mathrm{E} \varepsilon^{2}=1$
Assumption (A2) moving-average coefficients:

$$
\begin{equation*}
a(t, s)=\frac{1}{\left(|t|^{2}+|s|^{2 q_{2} / q_{1}}\right)^{q_{1} / 2}}\left(L_{0}\left(\frac{t}{\left(|t|^{2}+|s|^{2 q_{2} / q_{1}}\right)^{1 / 2}}\right)+o(1)\right), \quad|t|+|s| \rightarrow \infty \tag{5}
\end{equation*}
$$

where $q_{i}>0, i=1,2$ satisfy

3. Scaling transition for linear LRD RFs

Linear RF:

$$
\begin{equation*}
Y(t, s)=\sum_{(u, v) \in \mathbb{Z}^{2}} a(t-u, s-v) \varepsilon(u, v), \quad(t, s) \in \mathbb{Z}^{2} \tag{4}
\end{equation*}
$$

Assumption (A1) $\left\{\varepsilon, \varepsilon(t, s),(t, s) \in \mathbb{Z}^{2}\right\}$: i.i.d, $\mathrm{E} \varepsilon=0, \mathrm{E} \varepsilon^{2}=1$
Assumption (A2) moving-average coefficients:

$$
\begin{equation*}
a(t, s)=\frac{1}{\left(|t|^{2}+|s|^{2 q_{2} / q_{1}}\right)^{q_{1} / 2}}\left(L_{0}\left(\frac{t}{\left(|t|^{2}+|s|^{2 q_{2} / q_{1}}\right)^{1 / 2}}\right)+o(1)\right), \quad|t|+|s| \rightarrow \infty \tag{5}
\end{equation*}
$$

where $q_{i}>0, i=1,2$ satisfy

$$
\begin{equation*}
1<Q:=\frac{1}{q_{1}}+\frac{1}{q_{2}}<2 \tag{6}
\end{equation*}
$$

3. Scaling transition for linear LRD RFs

Linear RF:

$$
\begin{equation*}
Y(t, s)=\sum_{(u, v) \in \mathbb{Z}^{2}} a(t-u, s-v) \varepsilon(u, v), \quad(t, s) \in \mathbb{Z}^{2} \tag{4}
\end{equation*}
$$

Assumption (A1) $\left\{\varepsilon, \varepsilon(t, s),(t, s) \in \mathbb{Z}^{2}\right\}$: i.i.d, $\mathrm{E} \varepsilon=0, \mathrm{E} \varepsilon^{2}=1$
Assumption (A2) moving-average coefficients:
$a(t, s)=\frac{1}{\left(|t|^{2}+|s|^{2 q_{2} / q_{1}}\right)^{q_{1} / 2}}\left(L_{0}\left(\frac{t}{\left(|t|^{2}+|s|^{2 q_{2} / q_{1}}\right)^{1 / 2}}\right)+o(1)\right), \quad|t|+|s| \rightarrow \infty$,
where $q_{i}>0, i=1,2$ satisfy

$$
\begin{equation*}
1<Q:=\frac{1}{q_{1}}+\frac{1}{q_{2}}<2 \tag{6}
\end{equation*}
$$

$L_{0}(u) \geq 0, u \in[-1,1]$ is a bounded piece-wise continuous function on $[-1,1]$.

3. Scaling transition for linear LRD RFs

Linear RF:

$$
\begin{equation*}
Y(t, s)=\sum_{(u, v) \in \mathbb{Z}^{2}} a(t-u, s-v) \varepsilon(u, v), \quad(t, s) \in \mathbb{Z}^{2} \tag{4}
\end{equation*}
$$

Assumption (A1) $\left\{\varepsilon, \varepsilon(t, s),(t, s) \in \mathbb{Z}^{2}\right\}$: i.i.d, $\mathrm{E} \varepsilon=0, \mathrm{E} \varepsilon^{2}=1$
Assumption (A2) moving-average coefficients:
$a(t, s)=\frac{1}{\left(|t|^{2}+|s|^{2 q_{2} / q_{1}}\right)^{q_{1} / 2}}\left(L_{0}\left(\frac{t}{\left(|t|^{2}+|s|^{2 q_{2} / q_{1}}\right)^{1 / 2}}\right)+o(1)\right), \quad|t|+|s| \rightarrow \infty$,
where $q_{i}>0, i=1,2$ satisfy

$$
\begin{equation*}
1<Q:=\frac{1}{q_{1}}+\frac{1}{q_{2}}<2 \tag{6}
\end{equation*}
$$

$L_{0}(u) \geq 0, u \in[-1,1]$ is a bounded piece-wise continuous function on $[-1,1]$.

- $a(t, 0)=O\left(|t|^{-q_{1}}\right), a(0, s)=O\left(|s|^{-q_{2}}\right)$ decay at different rate in the horizontal and vertical directions if $q_{1} \neq q_{2}$ (strong anisotropy)

3. Scaling transition for linear LRD RFs

Linear RF:

$$
\begin{equation*}
Y(t, s)=\sum_{(u, v) \in \mathbb{Z}^{2}} a(t-u, s-v) \varepsilon(u, v), \quad(t, s) \in \mathbb{Z}^{2} \tag{4}
\end{equation*}
$$

Assumption (A1) $\left\{\varepsilon, \varepsilon(t, s),(t, s) \in \mathbb{Z}^{2}\right\}$: i.i.d, $\mathrm{E} \varepsilon=0, \mathrm{E} \varepsilon^{2}=1$
Assumption (A2) moving-average coefficients:
$a(t, s)=\frac{1}{\left(|t|^{2}+|s|^{2 q_{2} / q_{1}}\right)^{q_{1} / 2}}\left(L_{0}\left(\frac{t}{\left(|t|^{2}+|s|^{2 q_{2} / q_{1}}\right)^{1 / 2}}\right)+o(1)\right), \quad|t|+|s| \rightarrow \infty$,
where $q_{i}>0, i=1,2$ satisfy

$$
\begin{equation*}
1<Q:=\frac{1}{q_{1}}+\frac{1}{q_{2}}<2 \tag{6}
\end{equation*}
$$

$L_{0}(u) \geq 0, u \in[-1,1]$ is a bounded piece-wise continuous function on $[-1,1]$.

- $a(t, 0)=O\left(|t|^{-q_{1}}\right), a(0, s)=O\left(|s|^{-q_{2}}\right)$ decay at different rate in the horizontal and vertical directions if $q_{1} \neq q_{2}$ (strong anisotropy)
- L_{0} in (5) called the angular function

3. Scaling transition for linear LRD RFs

Linear RF:

$$
\begin{equation*}
Y(t, s)=\sum_{(u, v) \in \mathbb{Z}^{2}} a(t-u, s-v) \varepsilon(u, v), \quad(t, s) \in \mathbb{Z}^{2} \tag{4}
\end{equation*}
$$

Assumption (A1) $\left\{\varepsilon, \varepsilon(t, s),(t, s) \in \mathbb{Z}^{2}\right\}$: i.i.d, $\mathrm{E} \varepsilon=0, \mathrm{E} \varepsilon^{2}=1$
Assumption (A2) moving-average coefficients:
$a(t, s)=\frac{1}{\left(|t|^{2}+|s|^{2 q_{2} / q_{1}}\right)^{q_{1} / 2}}\left(L_{0}\left(\frac{t}{\left(|t|^{2}+|s|^{2 q_{2} / q_{1}}\right)^{1 / 2}}\right)+o(1)\right), \quad|t|+|s| \rightarrow \infty$,
where $q_{i}>0, i=1,2$ satisfy

$$
1<Q:=\frac{1}{q_{1}}+\frac{1}{q_{2}}<2
$$

$L_{0}(u) \geq 0, u \in[-1,1]$ is a bounded piece-wise continuous function on $[-1,1]$.

- $a(t, 0)=O\left(|t|^{-q_{1}}\right), a(0, s)=O\left(|s|^{-q_{2}}\right)$ decay at different rate in the horizontal and vertical directions if $q_{1} \neq q_{2}$ (strong anisotropy)
- L_{0} in (5) called the angular function
- (6) implies $\sum_{(t, s) \in \mathbb{Z}^{2}} a(t, s)^{2}<\infty, \sum_{(t, s) \in \mathbb{Z}^{2}}|a(t, s)|=\infty$, i.e. Y in (4)-(5) is a well-defined LRD RF

Examples: fractionally integrated RFs

Examples: fractionally integrated RFs

Ex 1 Isotropic fractionally integrated random field (Koul \& S, 2016):

$$
\begin{equation*}
(-\Delta)^{d} Y(t, s)=\varepsilon(t, s), \quad(t, s) \in \mathbb{Z}^{2} \tag{7}
\end{equation*}
$$

Examples: fractionally integrated RFs

Ex 1 Isotropic fractionally integrated random field (Koul \& S, 2016):

$$
\begin{equation*}
(-\Delta)^{d} Y(t, s)=\varepsilon(t, s), \quad(t, s) \in \mathbb{Z}^{2} \tag{7}
\end{equation*}
$$

- $\Delta Y(t, s):=(1 / 4) \sum_{|u|+|v|=1}(Y(t+u, s+v)-Y(t, s)):$ (discrete) Laplace operator (elliptic)

Examples: fractionally integrated RFs

Ex 1 Isotropic fractionally integrated random field (Koul \& S, 2016):

$$
\begin{equation*}
(-\Delta)^{d} Y(t, s)=\varepsilon(t, s), \quad(t, s) \in \mathbb{Z}^{2} \tag{7}
\end{equation*}
$$

- $\Delta Y(t, s):=(1 / 4) \sum_{|u|+|v|=1}(Y(t+u, s+v)-Y(t, s)):$ (discrete) Laplace operator (elliptic)
- $0<d<1 / 2$: order of fractional integration

Examples: fractionally integrated RFs

Ex 1 Isotropic fractionally integrated random field (Koul \& S, 2016):

$$
\begin{equation*}
(-\Delta)^{d} Y(t, s)=\varepsilon(t, s), \quad(t, s) \in \mathbb{Z}^{2} \tag{7}
\end{equation*}
$$

- $\Delta Y(t, s):=(1 / 4) \sum_{|u|+|v|=1}(Y(t+u, s+v)-Y(t, s)):$ (discrete) Laplace operator (elliptic)
- $0<d<1 / 2$: order of fractional integration
- $(1-z)^{d}=\sum_{j=0}^{\infty} \psi_{j}(d) z^{j}, \psi_{j}(d):=\Gamma(j-d) / \Gamma(j+1) \Gamma(-d)$

Examples: fractionally integrated RFs

Ex 1 Isotropic fractionally integrated random field (Koul \& S, 2016):

$$
\begin{equation*}
(-\Delta)^{d} Y(t, s)=\varepsilon(t, s), \quad(t, s) \in \mathbb{Z}^{2} \tag{7}
\end{equation*}
$$

- $\Delta Y(t, s):=(1 / 4) \sum_{|u|+|v|=1}(Y(t+u, s+v)-Y(t, s)):$ (discrete) Laplace operator (elliptic)
- $0<d<1 / 2$: order of fractional integration
- $(1-z)^{d}=\sum_{j=0}^{\infty} \psi_{j}(d) z^{j}, \psi_{j}(d):=\Gamma(j-d) / \Gamma(j+1) \Gamma(-d)$
- $\left\{\varepsilon(t, s),(t, s) \in \mathbb{Z}^{2}\right\}$: standardized i.i.d.
- Stationary solution of (7): zero-mean finite variance RF:

$$
Y(t, s)=(-\Delta)^{-d} \varepsilon(t, s)=\sum_{(u, v) \in \mathbb{Z}^{2}} a(u, v) \varepsilon(t-u, s-v)
$$

- Stationary solution of (7): zero-mean finite variance RF:

$$
Y(t, s)=(-\Delta)^{-d} \varepsilon(t, s)=\sum_{(u, v) \in \mathbb{Z}^{2}} a(u, v) \varepsilon(t-u, s-v)
$$

- MA coefficients:

$$
a(u, v)=\sum_{j=0}^{\infty} \psi_{j}(-d) p_{j}(u, v), \quad \sum_{(u, v) \in \mathbb{Z}^{2}} a(u, v)^{2}<\infty
$$

- Stationary solution of (7): zero-mean finite variance RF:

$$
Y(t, s)=(-\Delta)^{-d} \varepsilon(t, s)=\sum_{(u, v) \in \mathbb{Z}^{2}} a(u, v) \varepsilon(t-u, s-v)
$$

- MA coefficients:

$$
a(u, v)=\sum_{j=0}^{\infty} \psi_{j}(-d) p_{j}(u, v), \quad \sum_{(u, v) \in \mathbb{Z}^{2}} a(u, v)^{2}<\infty
$$

- $p_{j}(u, v): j$-step transition probabilities of symmetric nearest-neighbor random walk on \mathbb{Z}^{2} with equal 1-step probabilities $1 / 4,|u|+|v|=1$
- Stationary solution of (7): zero-mean finite variance RF:

$$
Y(t, s)=(-\Delta)^{-d} \varepsilon(t, s)=\sum_{(u, v) \in \mathbb{Z}^{2}} a(u, v) \varepsilon(t-u, s-v)
$$

- MA coefficients:

$$
a(u, v)=\sum_{j=0}^{\infty} \psi_{j}(-d) p_{j}(u, v), \quad \sum_{(u, v) \in \mathbb{Z}^{2}} a(u, v)^{2}<\infty
$$

- $p_{j}(u, v): j$-step transition probabilities of symmetric nearest-neighbor random walk on \mathbb{Z}^{2} with equal 1-step probabilities $1 / 4,|u|+|v|=1$
- Explicit spectral density: $f(x, y)=(2 \pi)^{-2} 2^{-2 d}|(1-\cos x)+(1-\cos y)|^{-2 d},(x, y) \in[-\pi, \pi]^{2}$ which behaves as const $\left(x^{2}+y^{2}\right)^{-2 d}$ as $x^{2}+y^{2} \rightarrow 0$
- Stationary solution of (7): zero-mean finite variance RF:

$$
Y(t, s)=(-\Delta)^{-d} \varepsilon(t, s)=\sum_{(u, v) \in \mathbb{Z}^{2}} a(u, v) \varepsilon(t-u, s-v)
$$

- MA coefficients:

$$
a(u, v)=\sum_{j=0}^{\infty} \psi_{j}(-d) p_{j}(u, v), \quad \sum_{(u, v) \in \mathbb{Z}^{2}} a(u, v)^{2}<\infty
$$

- $p_{j}(u, v): j$-step transition probabilities of symmetric nearest-neighbor random walk on \mathbb{Z}^{2} with equal 1-step probabilities $1 / 4,|u|+|v|=1$
- Explicit spectral density: $f(x, y)=(2 \pi)^{-2} 2^{-2 d}|(1-\cos x)+(1-\cos y)|^{-2 d},(x, y) \in[-\pi, \pi]^{2}$ which behaves as const $\left(x^{2}+y^{2}\right)^{-2 d}$ as $x^{2}+y^{2} \rightarrow 0$
- MA coefficients satisfy the isotropic asymptotics:

$$
a(t, s)=(A+o(1))\left(t^{2}+s^{2}\right)^{-(1-d)}, \quad t^{2}+s^{2} \rightarrow \infty
$$

where $A:=\pi^{-1} \Gamma(1-d) / \Gamma(d)$

- Stationary solution of (7): zero-mean finite variance RF:

$$
Y(t, s)=(-\Delta)^{-d} \varepsilon(t, s)=\sum_{(u, v) \in \mathbb{Z}^{2}} a(u, v) \varepsilon(t-u, s-v)
$$

- MA coefficients:

$$
a(u, v)=\sum_{j=0}^{\infty} \psi_{j}(-d) p_{j}(u, v), \quad \sum_{(u, v) \in \mathbb{Z}^{2}} a(u, v)^{2}<\infty
$$

- $p_{j}(u, v): j$-step transition probabilities of symmetric nearest-neighbor random walk on \mathbb{Z}^{2} with equal 1-step probabilities $1 / 4,|u|+|v|=1$
- Explicit spectral density:
$f(x, y)=(2 \pi)^{-2} 2^{-2 d}|(1-\cos x)+(1-\cos y)|^{-2 d},(x, y) \in[-\pi, \pi]^{2}$ which behaves as const $\left(x^{2}+y^{2}\right)^{-2 d}$ as $x^{2}+y^{2} \rightarrow 0$
- MA coefficients satisfy the isotropic asymptotics:

$$
a(t, s)=(A+o(1))\left(t^{2}+s^{2}\right)^{-(1-d)}, \quad t^{2}+s^{2} \rightarrow \infty
$$

where $A:=\pi^{-1} \Gamma(1-d) / \Gamma(d)$

- Y satisfies Assumption (A2) with
$q_{1}=q_{2}=2(1-d) \in(1,2), Q=1 /(1-d) \in(1,2)$ and a constant angular function $L_{0}(z)=A, z \in[-1,1]$.

Ex 2 Anisotropic fractionally integrated random field:

$$
\begin{equation*}
\Delta_{1,2}^{d} Y(t, s)=\varepsilon(t, s), \quad(t, s) \in \mathbb{Z}^{2} \tag{8}
\end{equation*}
$$

Ex 2 Anisotropic fractionally integrated random field:

$$
\begin{equation*}
\Delta_{1,2}^{d} Y(t, s)=\varepsilon(t, s), \quad(t, s) \in \mathbb{Z}^{2} \tag{8}
\end{equation*}
$$

- $\Delta_{1,2} Y(t, s)=Y(t, s)-\theta Y(t-1, s)-\frac{1-\theta}{2}(Y(t-1, s+1)+Y(t-1, s-1))$, $0<\theta<1$: discrete heat operator ('parabolic')

Ex 2 Anisotropic fractionally integrated random field:

$$
\begin{equation*}
\Delta_{1,2}^{d} Y(t, s)=\varepsilon(t, s), \quad(t, s) \in \mathbb{Z}^{2} \tag{8}
\end{equation*}
$$

- $\Delta_{1,2} Y(t, s)=Y(t, s)-\theta Y(t-1, s)-\frac{1-\theta}{2}(Y(t-1, s+1)+Y(t-1, s-1))$, $0<\theta<1$: discrete heat operator ('parabolic')
- $0<d<3 / 4$: order of fractional integration

Ex 2 Anisotropic fractionally integrated random field:

$$
\begin{equation*}
\Delta_{1,2}^{d} Y(t, s)=\varepsilon(t, s), \quad(t, s) \in \mathbb{Z}^{2} \tag{8}
\end{equation*}
$$

- $\Delta_{1,2} Y(t, s)=Y(t, s)-\theta Y(t-1, s)-\frac{1-\theta}{2}(Y(t-1, s+1)+Y(t-1, s-1))$, $0<\theta<1$: discrete heat operator ('parabolic')
- $0<d<3 / 4$: order of fractional integration
- $(1-z)^{d}=\sum_{j=0}^{\infty} \psi_{j}(d) z^{j}, \psi_{j}(d):=\Gamma(j-d) / \Gamma(j+1) \Gamma(-d)$

Ex 2 Anisotropic fractionally integrated random field:

$$
\begin{equation*}
\Delta_{1,2}^{d} Y(t, s)=\varepsilon(t, s), \quad(t, s) \in \mathbb{Z}^{2} \tag{8}
\end{equation*}
$$

- $\Delta_{1,2} Y(t, s)=Y(t, s)-\theta Y(t-1, s)-\frac{1-\theta}{2}(Y(t-1, s+1)+Y(t-1, s-1))$, $0<\theta<1$: discrete heat operator ('parabolic')
- $0<d<3 / 4$: order of fractional integration
- $(1-z)^{d}=\sum_{j=0}^{\infty} \psi_{j}(d) z^{j}, \psi_{j}(d):=\Gamma(j-d) / \Gamma(j+1) \Gamma(-d)$
- $\left\{\varepsilon(t, s),(t, s) \in \mathbb{Z}^{2}\right\}$: standardized i.i.d.
- Stationary solution of (8): zero-mean finite variance RF:

$$
Y(t, s)=\Delta_{1,2}^{-d} \varepsilon(t, s)=\sum_{(u, v) \in \mathbb{Z}_{+} \times \mathbb{Z}} a(u, v) \varepsilon(t-u, s-v),
$$

- Stationary solution of (8): zero-mean finite variance RF:

$$
Y(t, s)=\Delta_{1,2}^{-d} \varepsilon(t, s)=\sum_{(u, v) \in \mathbb{Z}_{+} \times \mathbb{Z}} a(u, v) \varepsilon(t-u, s-v)
$$

- MA coefficients:

$$
a(u, v)=\psi_{u}(-d) q_{u}(v), \quad \sum_{(u, v) \in \mathbb{Z}^{2}} a(u, v)^{2}<\infty
$$

- Stationary solution of (8): zero-mean finite variance RF:

$$
Y(t, s)=\Delta_{1,2}^{-d} \varepsilon(t, s)=\sum_{(u, v) \in \mathbb{Z}_{+} \times \mathbb{Z}} a(u, v) \varepsilon(t-u, s-v),
$$

- MA coefficients:

$$
a(u, v)=\psi_{u}(-d) q_{u}(v), \quad \sum_{(u, v) \in \mathbb{Z}^{2}} a(u, v)^{2}<\infty
$$

- $q_{u}(v): u$-step transition probabilities of random walk $\left\{W_{u}, u=0,1, \cdots\right\}$ on \mathbb{Z} with 1-step probabilities $\mathrm{P}\left(W_{1}=v \mid W_{0}=0\right)=\theta$ if $v=0$, $=(1-\theta) / 2$ if $v= \pm 1$
- Stationary solution of (8): zero-mean finite variance RF:

$$
Y(t, s)=\Delta_{1,2}^{-d} \varepsilon(t, s)=\sum_{(u, v) \in \mathbb{Z}_{+} \times \mathbb{Z}} a(u, v) \varepsilon(t-u, s-v)
$$

- MA coefficients:

$$
a(u, v)=\psi_{u}(-d) q_{u}(v), \quad \sum_{(u, v) \in \mathbb{Z}^{2}} a(u, v)^{2}<\infty
$$

- $q_{u}(v): u$-step transition probabilities of random walk $\left\{W_{u}, u=0,1, \cdots\right\}$ on \mathbb{Z} with 1-step probabilities $\mathrm{P}\left(W_{1}=v \mid W_{0}=0\right)=\theta$ if $v=0$, $=(1-\theta) / 2$ if $v= \pm 1$
- MA coefficients satisfy Assumption (A2) with $q_{1}=3 / 2-d, q_{2}=2 q_{1}$ and a continuous angular function $L_{0}(z), z \in[-1,1]$ given by

$$
L_{0}(z)= \begin{cases}\frac{z^{d-3 / 2}}{\Gamma(d) \sqrt{2 \pi(1-\theta)}} \exp \left\{-\frac{\sqrt{(1 / z)^{2}-1}}{2(1-\theta)}\right\}, & 0<z \leq 1 \\ 0, & -1 \leq z \leq 0\end{cases}
$$

Thm 2 Let Y be a linear RF in (4)-(5) satisfying Assumptions (A1)-(A2), $\frac{1}{2 q_{1}}+\frac{1}{q_{2}} \neq 1, \frac{1}{q_{1}}+\frac{1}{2 q_{2}} \neq 1$.

Thm 2 Let Y be a linear RF in (4)-(5) satisfying Assumptions (A1)-(A2), $\frac{1}{2 q_{1}}+\frac{1}{q_{2}} \neq 1, \frac{1}{q_{1}}+\frac{1}{2 q_{2}} \neq 1$.
Then for any $\gamma>0$ scaling limits V_{γ}^{Y} in (1) exist with normalization $A_{\lambda}(\gamma)=\lambda^{H(\gamma)}$ and (explicit) $H(\gamma)>0$. Moreover, Y exhibits scaling transition at

$$
\gamma_{0}=q_{1} / q_{2} .
$$

Thm 2 Let Y be a linear RF in (4)-(5) satisfying Assumptions (A1)-(A2), $\frac{1}{2 q_{1}}+\frac{1}{q_{2}} \neq 1, \frac{1}{q_{1}}+\frac{1}{2 q_{2}} \neq 1$.
Then for any $\gamma>0$ scaling limits V_{γ}^{Y} in (1) exist with normalization $A_{\lambda}(\gamma)=\lambda^{H(\gamma)}$ and (explicit) $H(\gamma)>0$. Moreover, Y exhibits scaling transition at

$$
\gamma_{0}=q_{1} / q_{2} .
$$

- The unbalanced scaling limits $V_{ \pm}^{Y}$ agree with FBSheet with one of the two parameters equal 1 or $1 / 2$

Thm 2 Let Y be a linear RF in (4)-(5) satisfying Assumptions (A1)-(A2), $\frac{1}{2 q_{1}}+\frac{1}{q_{2}} \neq 1, \frac{1}{q_{1}}+\frac{1}{2 q_{2}} \neq 1$.
Then for any $\gamma>0$ scaling limits V_{γ}^{Y} in (1) exist with normalization $A_{\lambda}(\gamma)=\lambda^{H(\gamma)}$ and (explicit) $H(\gamma)>0$. Moreover, Y exhibits scaling transition at

$$
\gamma_{0}=q_{1} / q_{2} .
$$

- The unbalanced scaling limits $V_{ \pm}^{Y}$ agree with FBSheet with one of the two parameters equal 1 or $1 / 2$
- Thm 2 is similar to Thm 1

Thm 2 Let Y be a linear RF in (4)-(5) satisfying Assumptions (A1)-(A2), $\frac{1}{2 q_{1}}+\frac{1}{q_{2}} \neq 1, \frac{1}{q_{1}}+\frac{1}{2 q_{2}} \neq 1$.
Then for any $\gamma>0$ scaling limits V_{γ}^{Y} in (1) exist with normalization $A_{\lambda}(\gamma)=\lambda^{H(\gamma)}$ and (explicit) $H(\gamma)>0$. Moreover, Y exhibits scaling transition at

$$
\gamma_{0}=q_{1} / q_{2} .
$$

- The unbalanced scaling limits $V_{ \pm}^{Y}$ agree with FBSheet with one of the two parameters equal 1 or $1 / 2$
- Thm 2 is similar to Thm 1
- There is a 'heuristic' 1-1 correspondence between parameters H_{1}, H_{2} in Thm 1 and q_{1}, q_{2} in Thm 2:

$$
H_{i}=2 q_{i}\left(\frac{1}{q_{1}}+\frac{1}{q_{2}}-1\right), \quad q_{i}=H_{i}\left(\frac{1}{H_{1}}+\frac{1}{H_{2}}-\frac{1}{2}\right), \quad i=1,2 .
$$

- Internal scale ratio: $\gamma_{0}=H_{1} / H_{2}=q_{1} / q_{2}$
- Internal scale ratio: $\gamma_{0}=H_{1} / H_{2}=q_{1} / q_{2}$
- Anisotropic scaling determined by external scale ratio γ
- Internal scale ratio: $\gamma_{0}=H_{1} / H_{2}=q_{1} / q_{2}$
- Anisotropic scaling determined by external scale ratio γ
- Well-balanced scaling: external scale ratio $\gamma=$ internal scale ratio γ_{0}
- Internal scale ratio: $\gamma_{0}=H_{1} / H_{2}=q_{1} / q_{2}$
- Anisotropic scaling determined by external scale ratio γ
- Well-balanced scaling: external scale ratio $\gamma=$ internal scale ratio γ_{0}
- Unbalanced scaling: external scale ratio $\gamma \neq$ internal scale ratio γ_{0}
- Internal scale ratio: $\gamma_{0}=H_{1} / H_{2}=q_{1} / q_{2}$
- Anisotropic scaling determined by external scale ratio γ
- Well-balanced scaling: external scale ratio $\gamma=$ internal scale ratio γ_{0}
- Unbalanced scaling: external scale ratio $\gamma \neq$ internal scale ratio γ_{0}
- Unbalanced scaling limits have a very special dependence structure (independent/invariant increments along one of the coordinate axes)
- Internal scale ratio: $\gamma_{0}=H_{1} / H_{2}=q_{1} / q_{2}$
- Anisotropic scaling determined by external scale ratio γ
- Well-balanced scaling: external scale ratio $\gamma=$ internal scale ratio γ_{0}
- Unbalanced scaling: external scale ratio $\gamma \neq$ internal scale ratio γ_{0}
- Unbalanced scaling limits have a very special dependence structure (independent/invariant increments along one of the coordinate axes)
- Either complete independence, or complete dependence in one of the two directions
- Internal scale ratio: $\gamma_{0}=H_{1} / H_{2}=q_{1} / q_{2}$
- Anisotropic scaling determined by external scale ratio γ
- Well-balanced scaling: external scale ratio $\gamma=$ internal scale ratio γ_{0}
- Unbalanced scaling: external scale ratio $\gamma \neq$ internal scale ratio γ_{0}
- Unbalanced scaling limits have a very special dependence structure (independent/invariant increments along one of the coordinate axes)
- Either complete independence, or complete dependence in one of the two directions
- All scaling limits V_{γ}^{Y} are Gaussian RFs
- Internal scale ratio: $\gamma_{0}=H_{1} / H_{2}=q_{1} / q_{2}$
- Anisotropic scaling determined by external scale ratio γ
- Well-balanced scaling: external scale ratio $\gamma=$ internal scale ratio γ_{0}
- Unbalanced scaling: external scale ratio $\gamma \neq$ internal scale ratio γ_{0}
- Unbalanced scaling limits have a very special dependence structure (independent/invariant increments along one of the coordinate axes)
- Either complete independence, or complete dependence in one of the two directions
- All scaling limits V_{γ}^{Y} are Gaussian RFs

Question: what happens if RF X is nonlinear?
4. Nonlinear LRD RFs

4. Nonlinear LRD RFs

Assumption (A3) ${ }_{k}$ For $k \in \mathbb{N}_{+}, \mathrm{E}|\varepsilon|^{2 k}<\infty$ and

$$
\begin{equation*}
X(t, s):=A_{k}(Y(t, s)), \quad(t, s) \in \mathbb{Z}^{2} \tag{9}
\end{equation*}
$$

where A_{k} is the k th Appell polynomial relative to the (marginal) distribution of linear $\operatorname{RF}\{Y(t, s)\}$ in (4).

4. Nonlinear LRD RFs

Assumption (A3) ${ }_{k}$ For $k \in \mathbb{N}_{+}, \mathrm{E}|\varepsilon|^{2 k}<\infty$ and

$$
\begin{equation*}
X(t, s):=A_{k}(Y(t, s)), \quad(t, s) \in \mathbb{Z}^{2} \tag{9}
\end{equation*}
$$

where A_{k} is the k th Appell polynomial relative to the (marginal) distribution of linear $\operatorname{RF}\{Y(t, s)\}$ in (4).

Assumption (A4) ${ }_{k} \varepsilon(0,0) \stackrel{\mathrm{d}}{=} Z$ and $Y(0,0) \stackrel{\mathrm{d}}{=} Z$ have standard normal distribution $Z \sim N(0,1)$ and

$$
X(t, s)=G(Y(t, s)), \quad(t, s) \in \mathbb{Z}^{2}
$$

where $G=G(x), x \in \mathbb{R}$ is a measurable function with $\mathrm{E} G(Z)^{2}<\infty, \mathrm{E} G(Z)=0$ and Hermite rank $k \geq 1$.

4. Nonlinear LRD RFs

Assumption (A3) ${ }_{k}$ For $k \in \mathbb{N}_{+}, \mathrm{E}|\varepsilon|^{2 k}<\infty$ and

$$
\begin{equation*}
X(t, s):=A_{k}(Y(t, s)), \quad(t, s) \in \mathbb{Z}^{2} \tag{9}
\end{equation*}
$$

where A_{k} is the k th Appell polynomial relative to the (marginal) distribution of linear $\operatorname{RF}\{Y(t, s)\}$ in (4).

Assumption (A4) ${ }_{k} \varepsilon(0,0) \stackrel{\mathrm{d}}{=} Z$ and $Y(0,0) \stackrel{\mathrm{d}}{=} Z$ have standard normal distribution $Z \sim N(0,1)$ and

$$
X(t, s)=G(Y(t, s)), \quad(t, s) \in \mathbb{Z}^{2}
$$

where $G=G(x), x \in \mathbb{R}$ is a measurable function with
$\mathrm{E} G(Z)^{2}<\infty, \mathrm{E} G(Z)=0$ and Hermite rank $k \geq 1$.
Central and noncentral limit theorems for nonlinear functionals (Gaussian and polynomial chaos):
Dobrushin and Major (1979), Taqqu (1975, 1979), S. (1982), Breuer and Major (1983), Giraitis and S. (1985), Avram and Taqqu (1987), Ho and Hsing (1997), Leonenko (1999), Arcones (2000), Nualart and Peccati (2005), Bai and Taqqu (2014) + many more

First question: when $X=A_{k}(Y)$ is LRD RF?

First question: when $X=A_{k}(Y)$ is LRD RF?

First question: when $X=A_{k}(Y)$ is LRD RF?

$$
r_{Y}(t, s):=\operatorname{E} Y(0,0) Y(t, s)=\sum_{(u, v) \in \mathbb{Z}^{2}} a(u, v) a(t+u, s+v)
$$

First question: when $X=A_{k}(Y)$ is LRD RF?

$$
\begin{aligned}
& r_{Y}(t, s):=\mathrm{E} Y(0,0) Y(t, s)=\sum_{(u, v) \in \mathbb{Z}^{2}} a(u, v) a(t+u, s+v) \\
& r_{X}(t, s):=\mathrm{E} X(0,0) X(t, s)=\operatorname{E} A_{k}(Y(0,0)) A_{k}(Y(t, s)) \\
& \left(=r_{Y}^{k}(t, s) \text { if } Y \text { is Gaussian }\right)
\end{aligned}
$$

First question: when $X=A_{k}(Y)$ is LRD RF?
$r_{Y}(t, s):=\mathrm{E} Y(0,0) Y(t, s)=\sum_{(u, v) \in \mathbb{Z}^{2}} a(u, v) a(t+u, s+v)$
$r_{X}(t, s):=\mathrm{E} X(0,0) X(t, s)=\mathrm{E} A_{k}(Y(0,0)) A_{k}(Y(t, s))$
($=r_{Y}^{k}(t, s)$ if Y is Gaussian)
Recall:

$$
\begin{aligned}
& \quad a(t, s)=O\left(\left(|t|^{2}+|s|^{2 q_{2} / q_{1}}\right)^{-q_{1} / 2}\right), \quad|t|+|s| \rightarrow \infty, \\
& 1<Q:=\frac{1}{q_{1}}+\frac{1}{q_{2}}<2
\end{aligned}
$$

First question: when $X=A_{k}(Y)$ is LRD RF?
$r_{Y}(t, s):=\mathrm{E} Y(0,0) Y(t, s)=\sum_{(u, v) \in \mathbb{Z}^{2}} a(u, v) a(t+u, s+v)$
$r_{X}(t, s):=\mathrm{E} X(0,0) X(t, s)=\mathrm{E} A_{k}(Y(0,0)) A_{k}(Y(t, s))$
($=r_{Y}^{k}(t, s)$ if Y is Gaussian)
Recall:

$$
\begin{aligned}
& \quad a(t, s)=O\left(\left(|t|^{2}+|s|^{2 q_{2} / q_{1}}\right)^{-q_{1} / 2}\right), \quad|t|+|s| \rightarrow \infty \\
& 1<Q:=\frac{1}{q_{1}}+\frac{1}{q_{2}}<2
\end{aligned}
$$

Then:

$$
r_{Y}(t, s)=O\left(\left(|t|^{2}+|s|^{2 p_{2} / p_{1}}\right)^{-p_{1} / 2}\right), \quad|t|+|s| \rightarrow \infty
$$

where $p_{i}:=q_{i}(2-Q), i=1,2$

First question: when $X=A_{k}(Y)$ is LRD RF?
$r_{Y}(t, s):=\mathrm{E} Y(0,0) Y(t, s)=\sum_{(u, v) \in \mathbb{Z}^{2}} a(u, v) a(t+u, s+v)$
$r_{X}(t, s):=\mathrm{E} X(0,0) X(t, s)=\mathrm{E} A_{k}(Y(0,0)) A_{k}(Y(t, s))$
($=r_{Y}^{k}(t, s)$ if Y is Gaussian)
Recall:

$$
\begin{aligned}
& \quad a(t, s)=O\left(\left(|t|^{2}+|s|^{2 q_{2} / q_{1}}\right)^{-q_{1} / 2}\right), \quad|t|+|s| \rightarrow \infty, \\
& 1<Q:=\frac{1}{q_{1}}+\frac{1}{q_{2}}<2
\end{aligned}
$$

Then:

$$
r_{Y}(t, s)=O\left(\left(|t|^{2}+|s|^{2 p_{2} / p_{1}}\right)^{-p_{1} / 2}\right), \quad|t|+|s| \rightarrow \infty
$$

where $p_{i}:=q_{i}(2-Q), i=1,2$

- $\left(q_{1}, q_{2}\right) \leftrightarrow\left(p_{1}, p_{1}\right): 1 \rightarrow 1$ map

First question: when $X=A_{k}(Y)$ is LRD RF?
$r_{Y}(t, s):=\mathrm{E} Y(0,0) Y(t, s)=\sum_{(u, v) \in \mathbb{Z}^{2}} a(u, v) a(t+u, s+v)$
$r_{X}(t, s):=\mathrm{E} X(0,0) X(t, s)=\mathrm{E} A_{k}(Y(0,0)) A_{k}(Y(t, s))$
($=r_{Y}^{k}(t, s)$ if Y is Gaussian)
Recall:

$$
\begin{aligned}
& \quad a(t, s)=O\left(\left(|t|^{2}+|s|^{2 q_{2} / q_{1}}\right)^{-q_{1} / 2}\right), \quad|t|+|s| \rightarrow \infty, \\
& 1<Q:=\frac{1}{q_{1}}+\frac{1}{q_{2}}<2
\end{aligned}
$$

Then:

$$
r_{Y}(t, s)=O\left(\left(|t|^{2}+|s|^{2 p_{2} / p_{1}}\right)^{-p_{1} / 2}\right), \quad|t|+|s| \rightarrow \infty
$$

where $p_{i}:=q_{i}(2-Q), i=1,2$

- $\left(q_{1}, q_{2}\right) \leftrightarrow\left(p_{1}, p_{1}\right): 1 \rightarrow 1$ map
- $Q>1 \Leftrightarrow P:=\frac{1}{p_{1}}+\frac{1}{p_{2}}>1$

First question: when $X=A_{k}(Y)$ is LRD RF?
$r_{Y}(t, s):=\mathrm{E} Y(0,0) Y(t, s)=\sum_{(u, v) \in \mathbb{Z}^{2}} a(u, v) a(t+u, s+v)$
$r_{X}(t, s):=\mathrm{E} X(0,0) X(t, s)=\mathrm{E} A_{k}(Y(0,0)) A_{k}(Y(t, s))$
($=r_{Y}^{k}(t, s)$ if Y is Gaussian)
Recall:

$$
\begin{aligned}
& \quad a(t, s)=O\left(\left(|t|^{2}+|s|^{2 q_{2} / q_{1}}\right)^{-q_{1} / 2}\right), \quad|t|+|s| \rightarrow \infty, \\
& 1<Q:=\frac{1}{q_{1}}+\frac{1}{q_{2}}<2
\end{aligned}
$$

Then:

$$
r_{Y}(t, s)=O\left(\left(|t|^{2}+|s|^{2 p_{2} / p_{1}}\right)^{-p_{1} / 2}\right), \quad|t|+|s| \rightarrow \infty
$$

where $p_{i}:=q_{i}(2-Q), i=1,2$

- $\left(q_{1}, q_{2}\right) \leftrightarrow\left(p_{1}, p_{1}\right): 1 \rightarrow 1$ map
- $Q>1 \Leftrightarrow P:=\frac{1}{p_{1}}+\frac{1}{p_{2}}>1$
- $p_{1} / p_{2}=q_{1} / q_{2}$

Let

$$
\rho(t, s):=\left(|t|^{2}+|s|^{2 q_{2} / q_{1}}\right)^{1 / 2}=\left(|t|^{2}+|s|^{2 p_{2} / p_{1}}\right)^{1 / 2}, \quad(t, s) \in \mathbb{Z}^{2}
$$

Recall $P=\frac{1}{p_{1}}+\frac{1}{p_{2}}\left(\right.$ larger $p_{i}, i=1,2$ mean smaller $\left.P\right)$

Let

$$
\rho(t, s):=\left(|t|^{2}+|s|^{2 q_{2} / q_{1}}\right)^{1 / 2}=\left(|t|^{2}+|s|^{2 p_{2} / p_{1}}\right)^{1 / 2}, \quad(t, s) \in \mathbb{Z}^{2}
$$

Recall $P=\frac{1}{p_{1}}+\frac{1}{p_{2}}\left(\right.$ larger $p_{i}, i=1,2$ mean smaller $\left.P\right)$
Prop 1 Let RF $X=A_{k}(Y)$ satisfy assumptions (A1), (A2) and (A3) ${ }_{k}$.

Let

$$
\rho(t, s):=\left(|t|^{2}+|s|^{2 q_{2} / q_{1}}\right)^{1 / 2}=\left(|t|^{2}+|s|^{2 p_{2} / p_{1}}\right)^{1 / 2}, \quad(t, s) \in \mathbb{Z}^{2}
$$

Recall $P=\frac{1}{p_{1}}+\frac{1}{p_{2}}\left(\right.$ larger $p_{i}, i=1,2$ mean smaller $\left.P\right)$
Prop 1 Let RF $X=A_{k}(Y)$ satisfy assumptions (A1), (A2) and (A3) ${ }_{k}$.
(i) (LRD) Let $1 \leq k<P$. Then

$$
\begin{equation*}
r_{X}(t, s)=\rho(t, s)^{-k p_{1}}\left(L_{X}(t / \rho(t, s))+o(1)\right), \quad|t|+|s| \rightarrow \infty \tag{10}
\end{equation*}
$$

where $L_{X}(z), z \in[-1,1]$ is a strictly positive continuous function.

Let

$$
\rho(t, s):=\left(|t|^{2}+|s|^{2 q_{2} / q_{1}}\right)^{1 / 2}=\left(|t|^{2}+|s|^{2 p_{2} / p_{1}}\right)^{1 / 2}, \quad(t, s) \in \mathbb{Z}^{2}
$$

Recall $P=\frac{1}{p_{1}}+\frac{1}{p_{2}}\left(\right.$ larger $p_{i}, i=1,2$ mean smaller $\left.P\right)$
Prop 1 Let RF $X=A_{k}(Y)$ satisfy assumptions (A1), (A2) and (A3) ${ }_{k}$.
(i) (LRD) Let $1 \leq k<P$. Then

$$
\begin{equation*}
r_{X}(t, s)=\rho(t, s)^{-k p_{1}}\left(L_{X}(t / \rho(t, s))+o(1)\right), \quad|t|+|s| \rightarrow \infty \tag{10}
\end{equation*}
$$

where $L_{X}(z), z \in[-1,1]$ is a strictly positive continuous function.
Moreover,

$$
\sum_{(t, s) \in \mathbb{Z}^{2}}\left|r_{X}(t, s)\right|=\infty
$$

Let

$$
\rho(t, s):=\left(|t|^{2}+|s|^{2 q_{2} / q_{1}}\right)^{1 / 2}=\left(|t|^{2}+|s|^{2 p_{2} / p_{1}}\right)^{1 / 2}, \quad(t, s) \in \mathbb{Z}^{2}
$$

Recall $P=\frac{1}{p_{1}}+\frac{1}{p_{2}}\left(\right.$ larger $p_{i}, i=1,2$ mean smaller $\left.P\right)$
Prop 1 Let RF $X=A_{k}(Y)$ satisfy assumptions (A1), (A2) and (A3) ${ }_{k}$.
(i) (LRD) Let $1 \leq k<P$. Then

$$
\begin{equation*}
r_{X}(t, s)=\rho(t, s)^{-k p_{1}}\left(L_{X}(t / \rho(t, s))+o(1)\right), \quad|t|+|s| \rightarrow \infty \tag{10}
\end{equation*}
$$

where $L_{X}(z), z \in[-1,1]$ is a strictly positive continuous function.
Moreover,

$$
\sum_{(t, s) \in \mathbb{Z}^{2}}\left|r_{X}(t, s)\right|=\infty
$$

(ii) (SRD) Let $k>P$. Then $\sum_{(t, s) \in \mathbb{Z}^{2}}\left|r_{X}(t, s)\right|<\infty$.

5. Scaling transition for nonlinear LRD RFs

5. Scaling transition for nonlinear LRD RFs

Summary of results (Thms 3-7 below):

5. Scaling transition for nonlinear LRD RFs

Summary of results (Thms 3-7 below):
(R1) Subordinated RFs $X=A_{k}(Y), 1 \leq k<P$ exhibit scaling transition at the same point $\gamma_{0}:=p_{1} / p_{2}=q_{1} / q_{2}$ independent of k.

5. Scaling transition for nonlinear LRD RFs

Summary of results (Thms 3-7 below):
(R1) Subordinated RFs $X=A_{k}(Y), 1 \leq k<P$ exhibit scaling transition at the same point $\gamma_{0}:=p_{1} / p_{2}=q_{1} / q_{2}$ independent of k.
(R2) The well-balanced scaling limit $V_{\gamma_{0}}^{X}$ of $X=A_{k}(Y)$ is non-gaussian unless $k=1$ and is given by a k-tuple Itô-Wiener integral.

5. Scaling transition for nonlinear LRD RFs

Summary of results (Thms 3-7 below):
(R1) Subordinated RFs $X=A_{k}(Y), 1 \leq k<P$ exhibit scaling transition at the same point $\gamma_{0}:=p_{1} / p_{2}=q_{1} / q_{2}$ independent of k.
(R2) The well-balanced scaling limit $V_{\gamma_{0}}^{X}$ of $X=A_{k}(Y)$ is non-gaussian unless $k=1$ and is given by a k-tuple Itô-Wiener integral.
(R3) Unbalanced scaling limits $V_{+}^{X}=V_{\gamma}^{X}, \gamma>\gamma_{0}$ of $X=A_{k}(Y)$ agree with FBS $B_{H_{1 k}^{+}, 1 / 2}$ with Hurst parameter $H_{1 k}^{+} \in(1 / 2,1)$ if $k p_{2}>1$, and with a 'generalized Hermite slide' $V_{+}^{X}(x, y)=x Z_{k}^{+}(y)$ if $k p_{2}<1$, where Z_{k}^{+}is a self-similar process written as a k-tuple Itô-Wiener integral. A similar fact holds for unbalanced limits $V_{-}^{X}=V_{\gamma}^{X}, \gamma<\gamma_{0}$.

5. Scaling transition for nonlinear LRD RFs

Summary of results (Thms 3-7 below):
(R1) Subordinated RFs $X=A_{k}(Y), 1 \leq k<P$ exhibit scaling transition at the same point $\gamma_{0}:=p_{1} / p_{2}=q_{1} / q_{2}$ independent of k.
(R2) The well-balanced scaling limit $V_{\gamma_{0}}^{X}$ of $X=A_{k}(Y)$ is non-gaussian unless $k=1$ and is given by a k-tuple Itô-Wiener integral.
(R3) Unbalanced scaling limits $V_{+}^{X}=V_{\gamma}^{X}, \gamma>\gamma_{0}$ of $X=A_{k}(Y)$ agree with FBS $B_{H_{1 k}^{+}, 1 / 2}$ with Hurst parameter $H_{1 k}^{+} \in(1 / 2,1)$ if $k p_{2}>1$, and with a 'generalized Hermite slide' $V_{+}^{X}(x, y)=x Z_{k}^{+}(y)$ if $k p_{2}<1$, where Z_{k}^{+}is a self-similar process written as a k-tuple Itô-Wiener integral. A similar fact holds for unbalanced limits $V_{-}^{X}=V_{\gamma}^{X}, \gamma<\gamma_{0}$.
(R4) For $k>P$, RF $X=A_{k}(Y)$ does not exhibit scaling transition and all scaling limits $V_{\gamma}^{X}, \gamma>0$ agree with Brownian sheet $B_{1 / 2,1 / 2}$.

5. Scaling transition for nonlinear LRD RFs

Summary of results (Thms 3-7 below):
(R1) Subordinated RFs $X=A_{k}(Y), 1 \leq k<P$ exhibit scaling transition at the same point $\gamma_{0}:=p_{1} / p_{2}=q_{1} / q_{2}$ independent of k.
(R2) The well-balanced scaling limit $V_{\gamma_{0}}^{X}$ of $X=A_{k}(Y)$ is non-gaussian unless $k=1$ and is given by a k-tuple Itô-Wiener integral.
(R3) Unbalanced scaling limits $V_{+}^{X}=V_{\gamma}^{X}, \gamma>\gamma_{0}$ of $X=A_{k}(Y)$ agree with FBS $B_{H_{1 k}^{+}, 1 / 2}$ with Hurst parameter $H_{1 k}^{+} \in(1 / 2,1)$ if $k p_{2}>1$, and with a 'generalized Hermite slide' $V_{+}^{X}(x, y)=x Z_{k}^{+}(y)$ if $k p_{2}<1$, where Z_{k}^{+}is a self-similar process written as a k-tuple Itô-Wiener integral. A similar fact holds for unbalanced limits $V_{-}^{X}=V_{\gamma}^{X}, \gamma<\gamma_{0}$.
(R4) For $k>P$, RF $X=A_{k}(Y)$ does not exhibit scaling transition and all scaling limits $V_{\gamma}^{X}, \gamma>0$ agree with Brownian sheet $B_{1 / 2,1 / 2}$.
(R5) In the case of Gaussian underlying RF Y in (4), the above conclusions hold for $X=G(Y)$ and a general nonlinear function G with k equal to the Hermite rank of G

Comments:

Comments:

- (R2), (R4) and (R5) are new in the 'anisotropic' case $p_{1} \neq p_{2}$

Comments:

- (R2), (R4) and (R5) are new in the 'anisotropic' case $p_{1} \neq p_{2}$
- For $k=1$ (or $X=A_{1}(Y)=Y$ (R3) agrees with Thm 2

Comments:

- (R2), (R4) and (R5) are new in the 'anisotropic' case $p_{1} \neq p_{2}$
- For $k=1$ (or $\left.X=A_{1}(Y)=Y\right)(\mathrm{R} 3)$ agrees with Thm 2
- In the general case $1 \leq k<P$ unbalanced limits in (R3) have either independent or completely dependent increments along one of the coordinate axes similarly as in the case $k=1$

Comments:

- (R2), (R4) and (R5) are new in the 'anisotropic' case $p_{1} \neq p_{2}$
- For $k=1$ (or $\left.X=A_{1}(Y)=Y\right)(\mathrm{R} 3)$ agrees with Thm 2
- In the general case $1 \leq k<P$ unbalanced limits in (R3) have either independent or completely dependent increments along one of the coordinate axes similarly as in the case $k=1$
- The variance of $S_{\lambda, \gamma}=\sum_{(t, s) \in K_{\left[\lambda, \lambda^{\gamma}\right]}} X(t, s)$ in (R3) grows faster than $O\left(\lambda^{1+\gamma}\right)$ (= the number of summands) also when $S_{\lambda, \gamma}$ has a Gaussian limit

Comments:

- (R2), (R4) and (R5) are new in the 'anisotropic' case $p_{1} \neq p_{2}$
- For $k=1$ (or $\left.X=A_{1}(Y)=Y\right)(\mathrm{R} 3)$ agrees with Thm 2
- In the general case $1 \leq k<P$ unbalanced limits in (R3) have either independent or completely dependent increments along one of the coordinate axes similarly as in the case $k=1$
- The variance of $S_{\lambda, \gamma}=\sum_{(t, s) \in K_{\left[\lambda, \lambda^{\gamma}\right]}} X(t, s)$ in (R3) grows faster than $O\left(\lambda^{1+\gamma}\right)$ (= the number of summands) also when $S_{\lambda, \gamma}$ has a Gaussian limit
- The dichotomy of the limit distribution in (R3) is related to the presence or absence of the vertical/horizontal LRD property of X

Comments:

- (R2), (R4) and (R5) are new in the 'anisotropic' case $p_{1} \neq p_{2}$
- For $k=1$ (or $\left.X=A_{1}(Y)=Y\right)(\mathrm{R} 3)$ agrees with Thm 2
- In the general case $1 \leq k<P$ unbalanced limits in (R3) have either independent or completely dependent increments along one of the coordinate axes similarly as in the case $k=1$
- The variance of $S_{\lambda, \gamma}=\sum_{(t, s) \in K_{[\lambda, \lambda} \gamma^{\prime}} X(t, s)$ in (R3) grows faster than $O\left(\lambda^{1+\gamma}\right)$ ($=$ the number of summands) also when $S_{\lambda, \gamma}$ has a Gaussian limit
- The dichotomy of the limit distribution in (R3) is related to the presence or absence of the vertical/horizontal LRD property of X
- Proofs of the central limit results in (R3) and (R4) use rather simple approximation by m-dependent r.v.'s and do not require a combinatorial argument or Malliavin's calculus as in Breuer and Major (1983) or Nualart and Peccati (2005)

Rigorous formulations
Multiple Itô-Wiener integral:

Rigorous formulations
Multiple Itô-Wiener integral:

- $L^{2}\left(\mathbb{R}^{2 k}\right)=$ the space of real-valued functions
$h=h\left((u, v)_{k}\right),(u, v)_{k}=\left(u_{1}, v_{1}, \cdots, u_{k}, v_{k}\right) \in \mathbb{R}^{2 k}$ with finite norm $\|h\|_{k}:=\left\{\int_{\mathbb{R}^{2 k}} h^{2}\left((u, v)_{k}\right) \mathrm{d}(u, v)_{k}\right\}^{1 / 2}, \mathrm{~d}(u, v)_{k}=\mathrm{d} u_{1} \mathrm{~d} v_{1} \cdots \mathrm{~d} u_{k} \mathrm{~d} v_{k}$.

Rigorous formulations
Multiple Itô-Wiener integral:

- $L^{2}\left(\mathbb{R}^{2 k}\right)=$ the space of real-valued functions
$h=h\left((u, v)_{k}\right),(u, v)_{k}=\left(u_{1}, v_{1}, \cdots, u_{k}, v_{k}\right) \in \mathbb{R}^{2 k}$ with finite norm $\|h\|_{k}:=\left\{\int_{\mathbb{R}^{2 k}} h^{2}\left((u, v)_{k}\right) \mathrm{d}(u, v)_{k}\right\}^{1 / 2}, \mathrm{~d}(u, v)_{k}=\mathrm{d} u_{1} \mathrm{~d} v_{1} \cdots \mathrm{~d} u_{k} \mathrm{~d} v_{k}$.
- $W=\left\{W(\mathrm{~d} u, \mathrm{~d} v),(u, v) \in \mathbb{R}^{2}\right\}$: real-valued Gaussian white noise with zero mean and variance $\mathrm{E} W(\mathrm{~d} u, \mathrm{~d} v)^{2}=\mathrm{d} u \mathrm{~d} v$

Rigorous formulations
Multiple Itô-Wiener integral:

- $L^{2}\left(\mathbb{R}^{2 k}\right)=$ the space of real-valued functions
$h=h\left((u, v)_{k}\right),(u, v)_{k}=\left(u_{1}, v_{1}, \cdots, u_{k}, v_{k}\right) \in \mathbb{R}^{2 k}$ with finite norm
$\|h\|_{k}:=\left\{\int_{\mathbb{R}^{2 k}} h^{2}\left((u, v)_{k}\right) \mathrm{d}(u, v)_{k}\right\}^{1 / 2}, \mathrm{~d}(u, v)_{k}=\mathrm{d} u_{1} \mathrm{~d} v_{1} \cdots \mathrm{~d} u_{k} \mathrm{~d} v_{k}$.
- $W=\left\{W(\mathrm{~d} u, \mathrm{~d} v),(u, v) \in \mathbb{R}^{2}\right\}$: real-valued Gaussian white noise with zero mean and variance $\mathrm{E} W(\mathrm{~d} u, \mathrm{~d} v)^{2}=\mathrm{d} u \mathrm{~d} v$
- For any $h \in L^{2}\left(\mathbb{R}^{2 k}\right)$ the k-tuple Itô-Wiener integral

$$
\int_{\mathbb{R}^{2 k}} h\left((u, v)_{k}\right) \mathrm{d}^{k} W=\int_{\mathbb{R}^{2 k}} h\left(u_{1}, v_{1}, \cdots, u_{k}, v_{k}\right) W\left(\mathrm{~d} u_{1}, \mathrm{~d} v_{1}\right) \cdots W\left(\mathrm{~d} u_{k}, \mathrm{~d} v_{k}\right)
$$

is well-defined and satisfies

$$
\mathrm{E} \int_{\mathbb{R}^{2 k}} h\left((u, v)_{k}\right) \mathrm{d}^{k} W=0, \quad \mathrm{E}\left(\int_{\mathbb{R}^{2 k}} h\left((u, v)_{k}\right) \mathrm{d}^{k} W\right)^{2} \leq k!\|h\|_{k}^{2}
$$

Denote:

$$
S_{\lambda, \gamma}^{X}(x, y):=\sum_{(t, s) \in K_{\left[\lambda x, \lambda \gamma_{y]}\right.}} X(t, s),
$$

Denote:

$$
\begin{align*}
S_{\lambda, \gamma}^{X}(x, y) & :=\sum_{\left.\left.(t, s) \in K_{[\lambda x, \lambda \gamma}\right]\right]} X(t, s) \\
V_{k, \gamma_{0}}(x, y) & :=\int_{\mathbb{R}^{2 k}} h\left(x, y ;(u, v)_{k}\right) \mathrm{d}^{k} W, \quad(x, y) \in \mathbb{R}_{+}^{2} \tag{11}
\end{align*}
$$

Denote:

$$
\begin{align*}
S_{\lambda, \gamma}^{X}(x, y) & :=\sum_{(t, s) \in K_{\left[\lambda x, \lambda \gamma_{y]}\right.}} X(t, s), \\
V_{k, \gamma_{0}}(x, y) & :=\int_{\mathbb{R}^{2 k}} h\left(x, y ;(u, v)_{k}\right) \mathrm{d}^{k} W, \quad(x, y) \in \mathbb{R}_{+}^{2}, \tag{11}\\
h\left(x, y ;(u, v)_{k}\right) & :=\int_{(0, x] \times(0, y]} \prod_{\ell=1}^{k} a_{\infty}\left(t-u_{\ell}, s-v_{\ell}\right) \mathrm{d} t \mathrm{~d} s,
\end{align*}
$$

Denote:

$$
\begin{align*}
S_{\lambda, \gamma}^{X}(x, y) & :=\sum_{(t, s) \in K_{\left[\lambda x, \lambda \gamma_{y]}\right.}} X(t, s), \\
V_{k, \gamma_{0}}(x, y) & :=\int_{\mathbb{R}^{2 k}} h\left(x, y ;(u, v)_{k}\right) \mathrm{d}^{k} W, \quad(x, y) \in \mathbb{R}_{+}^{2}, \tag{11}\\
h\left(x, y ;(u, v)_{k}\right) & :=\int_{(0, x] \times(0, y]} \prod_{\ell=1}^{k} a_{\infty}\left(t-u_{\ell}, s-v_{\ell}\right) \mathrm{d} t \mathrm{~d} s, \\
a_{\infty}(t, s) & :=\rho(t, s)^{-q_{1}} L_{0}(t / \rho(t, s)), \quad(t, s) \in \mathbb{R}^{2}, \tag{12}
\end{align*}
$$

Denote:

$$
\begin{align*}
S_{\lambda, \gamma}^{X}(x, y) & :=\sum_{(t, s) \in K_{\left[\lambda x, \lambda \gamma_{y]}\right.}} X(t, s), \\
V_{k, \gamma_{0}}(x, y) & :=\int_{\mathbb{R}^{2 k}} h\left(x, y ;(u, v)_{k}\right) \mathrm{d}^{k} W, \quad(x, y) \in \mathbb{R}_{+}^{2}, \tag{11}\\
h\left(x, y ;(u, v)_{k}\right) & :=\int_{(0, x] \times(0, y]} \prod_{\ell=1}^{k} a_{\infty}\left(t-u_{\ell}, s-v_{\ell}\right) \mathrm{d} t \mathrm{~d} s \\
a_{\infty}(t, s) & :=\rho(t, s)^{-q_{1}} L_{0}(t / \rho(t, s)), \quad(t, s) \in \mathbb{R}^{2} \tag{12}\\
\rho(t, s) & =\left(|t|^{2}+|s|^{2 q_{2} / q_{1}}\right)^{1 / 2}
\end{align*}
$$

Case $\gamma=\gamma_{0}:=q_{1} / q_{2}, 1 \leq k<P: ~$

Case $\gamma=\gamma_{0}:=q_{1} / q_{2}, 1 \leq k<P: ~$
Thm 3 (i) The RF $V_{k, \gamma_{0}}$ in (11) is well-defined for $1 \leq k<P$ as Itô-Wiener stochastic integral and has zero mean $\mathrm{E} V_{k, \gamma_{0}}(x, y)=0$ and finite variance $\mathrm{E} V_{k, \gamma_{0}}^{2}(x, y)=k!\|h(x, y ; \cdot)\|_{k}^{2}$. Moreover, RF $V_{k, \gamma_{0}}$ has stationary rectangular increments and satisfies the OSRF property:

$$
V_{k, \gamma_{0}}\left(\lambda x, \lambda^{\gamma_{0}} y\right) \stackrel{\text { fdd }}{=} \lambda^{H\left(\gamma_{0}\right)} V_{k, \gamma_{0}}(x, y), \quad \forall \lambda>0,
$$

where $H\left(\gamma_{0}\right):=1+\gamma_{0}-k p_{1} / 2$.

Case $\gamma=\gamma_{0}:=q_{1} / q_{2}, 1 \leq k<P: ~$

Thm 3 (i) The RF $V_{k, \gamma_{0}}$ in (11) is well-defined for $1 \leq k<P$ as Itô-Wiener stochastic integral and has zero mean $\mathrm{E} V_{k, \gamma_{0}}(x, y)=0$ and finite variance $\mathrm{E} V_{k, \gamma_{0}}^{2}(x, y)=k!\|h(x, y ; \cdot)\|_{k}^{2}$. Moreover, RF $V_{k, \gamma_{0}}$ has stationary rectangular increments and satisfies the OSRF property:

$$
V_{k, \gamma_{0}}\left(\lambda x, \lambda^{\gamma_{0}} y\right) \stackrel{\text { fdd }}{=} \lambda^{H\left(\gamma_{0}\right)} V_{k, \gamma_{0}}(x, y), \quad \forall \lambda>0
$$

where $H\left(\gamma_{0}\right):=1+\gamma_{0}-k p_{1} / 2$.
(ii) Let RFs Y and $X=A_{k}(Y)$ satisfy Assumptions (A1), (A2) and (A3) ${ }_{k}$, $1 \leq k<P$. Then

$$
\operatorname{Var}\left(S_{\lambda, \gamma_{0}}^{X}\right) \sim c\left(\gamma_{0}\right) \lambda^{2 H\left(\gamma_{0}\right)}, \quad c\left(\gamma_{0}\right):=\|h(1,1 ; \cdot)\|_{k}^{2}
$$

and

$$
\lambda^{-H\left(\gamma_{0}\right)} S_{\lambda, \gamma_{0}}^{X}(x, y) \quad \xrightarrow{\text { fdd }} \quad V_{\gamma_{0}}(x, y) .
$$

Case $\gamma \neq \gamma_{0}=q_{1} / q_{2}, 1 \leq k<P:$

Case $\gamma \neq \gamma_{0}=q_{1} / q_{2}, 1 \leq k<P$:

Four subcases: (C1): $\gamma>\gamma_{0}, P>k>1 / p_{2}$, (C2): $\gamma>\gamma_{0}, 1 \leq k<1 / p_{2}$, (C3): $\gamma<\gamma_{0}, P>k>1 / p_{1}$, and (C4): $\gamma<\gamma_{0}, 1 \leq k<1 / p_{1}$

Case $\gamma \neq \gamma_{0}=q_{1} / q_{2}, 1 \leq k<P$:

Four subcases: (C1): $\gamma>\gamma_{0}, P>k>1 / p_{2}$, (C2): $\gamma>\gamma_{0}, 1 \leq k<1 / p_{2}$, (C3): $\gamma<\gamma_{0}, P>k>1 / p_{1}$, and (C4): $\gamma<\gamma_{0}, 1 \leq k<1 / p_{1}$
(C3) and (C4) are symmetric to (C1) and (C2) and essentially follow by exchanging the coordinates t and s.

Case $\gamma \neq \gamma_{0}=q_{1} / q_{2}, 1 \leq k<P$:

Four subcases: (C1): $\gamma>\gamma_{0}, P>k>1 / p_{2}$, (C2): $\gamma>\gamma_{0}, 1 \leq k<1 / p_{2}$, (C3): $\gamma<\gamma_{0}, P>k>1 / p_{1}$, and (C4): $\gamma<\gamma_{0}, 1 \leq k<1 / p_{1}$
(C3) and (C4) are symmetric to (C1) and (C2) and essentially follow by exchanging the coordinates t and s.

Define random processes $Z_{k}^{ \pm}$with one-dimensional time:
$Z_{k}^{+}(y):=\int_{\mathbb{R}^{2 k}} h_{+}\left(y ;(u, v)_{k}\right) \mathrm{d}^{k} W$,

Case $\gamma \neq \gamma_{0}=q_{1} / q_{2}, 1 \leq k<P$:

Four subcases: (C1): $\gamma>\gamma_{0}, P>k>1 / p_{2}$, (C2): $\gamma>\gamma_{0}, 1 \leq k<1 / p_{2}$, (C3): $\gamma<\gamma_{0}, P>k>1 / p_{1}$, and (C4): $\gamma<\gamma_{0}, 1 \leq k<1 / p_{1}$
(C3) and (C4) are symmetric to (C1) and (C2) and essentially follow by exchanging the coordinates t and s.

Define random processes $Z_{k}^{ \pm}$with one-dimensional time:
$Z_{k}^{+}(y):=\int_{\mathbb{R}^{2 k}} h_{+}\left(y ;(u, v)_{k}\right) \mathrm{d}^{k} W, \quad Z_{k}^{-}(x):=\int_{\mathbb{R}^{2 k}} h_{-}\left(x ;(u, v)_{k}\right) \mathrm{d}^{k} W, \quad x, y \geq 0$
where

Case $\gamma \neq \gamma_{0}=q_{1} / q_{2}, 1 \leq k<P$:

Four subcases: $(\mathrm{C} 1): \gamma>\gamma_{0}, P>k>1 / p_{2}$, (C2): $\gamma>\gamma_{0}, 1 \leq k<1 / p_{2}$, (C3): $\gamma<\gamma_{0}, P>k>1 / p_{1}$, and (C4): $\gamma<\gamma_{0}, 1 \leq k<1 / p_{1}$
(C3) and (C4) are symmetric to (C1) and (C2) and essentially follow by exchanging the coordinates t and s.

Define random processes $Z_{k}^{ \pm}$with one-dimensional time:
$Z_{k}^{+}(y):=\int_{\mathbb{R}^{2 k}} h_{+}\left(y ;(u, v)_{k}\right) \mathrm{d}^{k} W, \quad Z_{k}^{-}(x):=\int_{\mathbb{R}^{2 k}} h_{-}\left(x ;(u, v)_{k}\right) \mathrm{d}^{k} W, \quad x, y \geq 0$
where
$h_{+}\left(y ;(u, v)_{k}\right):=\int_{0}^{y} \prod_{i=1}^{k} a_{\infty}\left(u_{i}, s-v_{i}\right) \mathrm{d} s, \quad h_{-}\left(x ;(u, v)_{k}\right):=\int_{0}^{x} \prod_{i=1}^{k} a_{\infty}\left(t-u_{i}, v_{i}\right) \mathrm{d} t$,
and $a_{\infty}(t, s)$ is defined in (12).

Thm 4 (i) Z_{k}^{+}and Z_{k}^{-}are well-defined for $1 \leq k<1 / p_{2}$ and $1 \leq k<1 / p_{1}$, respectively, as Itô-Wiener stochastic integrals.

Thm 4 (i) Z_{k}^{+}and Z_{k}^{-}are well-defined for $1 \leq k<1 / p_{2}$ and $1 \leq k<1 / p_{1}$, respectively, as Itô-Wiener stochastic integrals. They have zero mean, finite variance, stationary increments and are self-similar with respective indices $H_{2 k}^{+}:=1-k p_{2} / 2 \in(1 / 2,1)$ and $H_{1 k}^{-}:=1-k p_{1} / 2 \in(1 / 2,1)$.

Thm 4 (i) Z_{k}^{+}and Z_{k}^{-}are well-defined for $1 \leq k<1 / p_{2}$ and $1 \leq k<1 / p_{1}$, respectively, as Itô-Wiener stochastic integrals. They have zero mean, finite variance, stationary increments and are self-similar with respective indices $H_{2 k}^{+}:=1-k p_{2} / 2 \in(1 / 2,1)$ and $H_{1 k}^{-}:=1-k p_{1} / 2 \in(1 / 2,1)$.
(ii) Let RFs Y and $X=A_{k}(Y)$ satisfy Assumptions (A1), (A2) and (A3) ${ }_{k}$ and $1 \leq k<1 / p_{2}$.

Thm 4 (i) Z_{k}^{+}and Z_{k}^{-}are well-defined for $1 \leq k<1 / p_{2}$ and $1 \leq k<1 / p_{1}$, respectively, as Itô-Wiener stochastic integrals. They have zero mean, finite variance, stationary increments and are self-similar with respective indices $H_{2 k}^{+}:=1-k p_{2} / 2 \in(1 / 2,1)$ and $H_{1 k}^{-}:=1-k p_{1} / 2 \in(1 / 2,1)$.
(ii) Let RFs Y and $X=A_{k}(Y)$ satisfy Assumptions (A1), (A2) and (A3) ${ }_{k}$ and $1 \leq k<1 / p_{2}$. Then for any $\gamma>\gamma_{0}$

$$
\begin{equation*}
\operatorname{Var}\left(S_{\lambda, \gamma}^{X}\right) \sim c(\gamma) \lambda^{2 H(\gamma)}, \tag{13}
\end{equation*}
$$

where $H(\gamma):=1+\gamma H_{2 k}^{+}$and $c(\gamma):=\left\|h_{+}(1 ; \cdot)\right\|_{k}^{2}$.

Thm 4 (i) Z_{k}^{+}and Z_{k}^{-}are well-defined for $1 \leq k<1 / p_{2}$ and $1 \leq k<1 / p_{1}$, respectively, as Itô-Wiener stochastic integrals. They have zero mean, finite variance, stationary increments and are self-similar with respective indices $H_{2 k}^{+}:=1-k p_{2} / 2 \in(1 / 2,1)$ and $H_{1 k}^{-}:=1-k p_{1} / 2 \in(1 / 2,1)$.
(ii) Let RFs Y and $X=A_{k}(Y)$ satisfy Assumptions (A1), (A2) and (A3) ${ }_{k}$ and $1 \leq k<1 / p_{2}$. Then for any $\gamma>\gamma_{0}$

$$
\begin{equation*}
\operatorname{Var}\left(S_{\lambda, \gamma}^{X}\right) \sim c(\gamma) \lambda^{2 H(\gamma)} \tag{13}
\end{equation*}
$$

where $H(\gamma):=1+\gamma H_{2 k}^{+}$and $c(\gamma):=\left\|h_{+}(1 ; \cdot)\right\|_{k}^{2}$. Moreover,

$$
\begin{equation*}
\lambda^{-H(\gamma)} S_{\lambda, \gamma}^{X}(x, y) \quad \xrightarrow{\text { fdd }} \quad x Z_{k}^{+}(y) . \tag{14}
\end{equation*}
$$

Thm 4 (i) Z_{k}^{+}and Z_{k}^{-}are well-defined for $1 \leq k<1 / p_{2}$ and $1 \leq k<1 / p_{1}$, respectively, as Itô-Wiener stochastic integrals. They have zero mean, finite variance, stationary increments and are self-similar with respective indices $H_{2 k}^{+}:=1-k p_{2} / 2 \in(1 / 2,1)$ and $H_{1 k}^{-}:=1-k p_{1} / 2 \in(1 / 2,1)$.
(ii) Let RFs Y and $X=A_{k}(Y)$ satisfy Assumptions (A1), (A2) and (A3) ${ }_{k}$ and $1 \leq k<1 / p_{2}$. Then for any $\gamma>\gamma_{0}$

$$
\begin{equation*}
\operatorname{Var}\left(S_{\lambda, \gamma}^{X}\right) \sim c(\gamma) \lambda^{2 H(\gamma)} \tag{13}
\end{equation*}
$$

where $H(\gamma):=1+\gamma H_{2 k}^{+}$and $c(\gamma):=\left\|h_{+}(1 ; \cdot)\right\|_{k}^{2}$. Moreover,

$$
\begin{equation*}
\lambda^{-H(\gamma)} S_{\lambda, \gamma}^{X}(x, y) \quad \xrightarrow{\text { fdd }} \quad x Z_{k}^{+}(y) . \tag{14}
\end{equation*}
$$

(iii) Let RFs Y and $X=A_{k}(Y)$ satisfy Assumptions (A1), (A2) and (A3) ${ }_{k}$ and $1 \leq k<1 / p_{1}$.

Thm 4 (i) Z_{k}^{+}and Z_{k}^{-}are well-defined for $1 \leq k<1 / p_{2}$ and $1 \leq k<1 / p_{1}$, respectively, as Itô-Wiener stochastic integrals. They have zero mean, finite variance, stationary increments and are self-similar with respective indices $H_{2 k}^{+}:=1-k p_{2} / 2 \in(1 / 2,1)$ and $H_{1 k}^{-}:=1-k p_{1} / 2 \in(1 / 2,1)$.
(ii) Let RFs Y and $X=A_{k}(Y)$ satisfy Assumptions (A1), (A2) and (A3) ${ }_{k}$ and $1 \leq k<1 / p_{2}$. Then for any $\gamma>\gamma_{0}$

$$
\begin{equation*}
\operatorname{Var}\left(S_{\lambda, \gamma}^{X}\right) \sim c(\gamma) \lambda^{2 H(\gamma)} \tag{13}
\end{equation*}
$$

where $H(\gamma):=1+\gamma H_{2 k}^{+}$and $c(\gamma):=\left\|h_{+}(1 ; \cdot)\right\|_{k}^{2}$. Moreover,

$$
\begin{equation*}
\lambda^{-H(\gamma)} S_{\lambda, \gamma}^{X}(x, y) \quad \xrightarrow{\text { fdd }} \quad x Z_{k}^{+}(y) . \tag{14}
\end{equation*}
$$

(iii) Let RFs Y and $X=A_{k}(Y)$ satisfy Assumptions (A1), (A2) and (A3) k and $1 \leq k<1 / p_{1}$. Then for any $\gamma<\gamma_{0}$

$$
\begin{equation*}
\operatorname{Var}\left(S_{\lambda, \gamma}^{X}\right) \sim c(\gamma) \lambda^{2 H(\gamma)} \tag{15}
\end{equation*}
$$

where $H(\gamma):=\gamma+H_{1 k}^{-}$and $c(\gamma):=\left\|h_{-}(1 ; \cdot)\right\|_{k}^{2}>0$.

Thm 4 (i) Z_{k}^{+}and Z_{k}^{-}are well-defined for $1 \leq k<1 / p_{2}$ and $1 \leq k<1 / p_{1}$, respectively, as Itô-Wiener stochastic integrals. They have zero mean, finite variance, stationary increments and are self-similar with respective indices $H_{2 k}^{+}:=1-k p_{2} / 2 \in(1 / 2,1)$ and $H_{1 k}^{-}:=1-k p_{1} / 2 \in(1 / 2,1)$.
(ii) Let RFs Y and $X=A_{k}(Y)$ satisfy Assumptions (A1), (A2) and (A3) ${ }_{k}$ and $1 \leq k<1 / p_{2}$. Then for any $\gamma>\gamma_{0}$

$$
\begin{equation*}
\operatorname{Var}\left(S_{\lambda, \gamma}^{X}\right) \sim c(\gamma) \lambda^{2 H(\gamma)} \tag{13}
\end{equation*}
$$

where $H(\gamma):=1+\gamma H_{2 k}^{+}$and $c(\gamma):=\left\|h_{+}(1 ; \cdot)\right\|_{k}^{2}$. Moreover,

$$
\begin{equation*}
\lambda^{-H(\gamma)} S_{\lambda, \gamma}^{X}(x, y) \quad \xrightarrow{\text { fdd }} \quad x Z_{k}^{+}(y) . \tag{14}
\end{equation*}
$$

(iii) Let RFs Y and $X=A_{k}(Y)$ satisfy Assumptions (A1), (A2) and (A3) k and $1 \leq k<1 / p_{1}$. Then for any $\gamma<\gamma_{0}$

$$
\begin{equation*}
\operatorname{Var}\left(S_{\lambda, \gamma}^{X}\right) \sim c(\gamma) \lambda^{2 H(\gamma)} \tag{15}
\end{equation*}
$$

where $H(\gamma):=\gamma+H_{1 k}^{-}$and $c(\gamma):=\left\|h_{-}(1 ; \cdot)\right\|_{k}^{2}>0$. Moreover,

$$
\begin{equation*}
\lambda^{-H(\gamma)} S_{\lambda, \gamma}^{X}(x, y) \xrightarrow{\mathrm{fdd}} y Z_{k}^{-}(x) . \tag{16}
\end{equation*}
$$

Thm 5 (i) Let RFs Y and $X=A_{k}(Y)$ satisfy Assumptions (A1), (A2) and (A3) ${ }_{k}$ and

$$
1 / p_{2}<k<P .
$$

Thm 5 (i) Let RFs Y and $X=A_{k}(Y)$ satisfy Assumptions (A1), (A2) and (A3) ${ }_{k}$ and

$$
1 / p_{2}<k<P .
$$

Then for any $\gamma>\gamma_{0}$

$$
\operatorname{Var}\left(S_{\lambda, \gamma}^{X}\right) \sim c(\gamma) \lambda^{2 H(\gamma)},
$$

where $H(\gamma):=H_{1 k}^{+}+\gamma / 2, H_{1 k}^{+}:=1+\gamma_{0} / 2-k p_{1} / 2 \in(1 / 2,1)$ and $c(\gamma):=\int_{(0,1]^{2} \times \mathbb{R}}\left(\left(a_{\infty} * a_{\infty}\right)\left(t_{1}-t_{2}, s\right)\right)^{k} \mathrm{~d} t_{1} \mathrm{~d} t_{2} \mathrm{~d} s>0$.

Thm 5 (i) Let RFs Y and $X=A_{k}(Y)$ satisfy Assumptions (A1), (A2) and (A3) k and

$$
1 / p_{2}<k<P .
$$

Then for any $\gamma>\gamma_{0}$

$$
\operatorname{Var}\left(S_{\lambda, \gamma}^{X}\right) \sim c(\gamma) \lambda^{2 H(\gamma)},
$$

where $H(\gamma):=H_{1 k}^{+}+\gamma / 2, H_{1 k}^{+}:=1+\gamma_{0} / 2-k p_{1} / 2 \in(1 / 2,1)$ and $c(\gamma):=\int_{(0,1]^{2} \times \mathbb{R}}\left(\left(a_{\infty} \star a_{\infty}\right)\left(t_{1}-t_{2}, s\right)\right)^{k} \mathrm{~d} t_{1} \mathrm{~d} t_{2} \mathrm{~d} s>0$. Moreover,

$$
\lambda^{-H(\gamma)} S_{\lambda, \gamma}^{X}(x, y) \xrightarrow{\text { fdd }} c(\gamma)^{1 / 2} B_{H_{1 k}^{+}, 1 / 2}(x, y) . \quad[=\text { FBSheet }]
$$

Thm 5 (i) Let RFs Y and $X=A_{k}(Y)$ satisfy Assumptions (A1), (A2) and (A3) k and

$$
1 / p_{2}<k<P .
$$

Then for any $\gamma>\gamma_{0}$

$$
\operatorname{Var}\left(S_{\lambda, \gamma}^{X}\right) \sim c(\gamma) \lambda^{2 H(\gamma)},
$$

where $H(\gamma):=H_{1 k}^{+}+\gamma / 2, H_{1 k}^{+}:=1+\gamma_{0} / 2-k p_{1} / 2 \in(1 / 2,1)$ and $c(\gamma):=\int_{(0,1]^{2} \times \mathbb{R}}\left(\left(a_{\infty} * a_{\infty}\right)\left(t_{1}-t_{2}, s\right)\right)^{k} \mathrm{~d} t_{1} \mathrm{~d} t_{2} \mathrm{~d} s>0$. Moreover,

$$
\lambda^{-H(\gamma)} S_{\lambda, \gamma}^{X}(x, y) \xrightarrow{\mathrm{fdd}} c(\gamma)^{1 / 2} B_{H_{1 k}^{+}, 1 / 2}(x, y) . \quad[=\text { FBSheet }]
$$

(ii) Let RFs Y and $X=A_{k}(Y)$ satisfy Assumptions (A1), (A2) and (A3) ${ }_{k}$ and

$$
1 / p_{1}<k<P .
$$

Thm 5 (i) Let RFs Y and $X=A_{k}(Y)$ satisfy Assumptions (A1), (A2) and (A3) k and

$$
1 / p_{2}<k<P
$$

Then for any $\gamma>\gamma_{0}$

$$
\operatorname{Var}\left(S_{\lambda, \gamma}^{X}\right) \sim c(\gamma) \lambda^{2 H(\gamma)}
$$

where $H(\gamma):=H_{1 k}^{+}+\gamma / 2, H_{1 k}^{+}:=1+\gamma_{0} / 2-k p_{1} / 2 \in(1 / 2,1)$ and $c(\gamma):=\int_{(0,1]^{2} \times \mathbb{R}}\left(\left(a_{\infty} \star a_{\infty}\right)\left(t_{1}-t_{2}, s\right)\right)^{k} \mathrm{~d} t_{1} \mathrm{~d} t_{2} \mathrm{~d} s>0$. Moreover,

$$
\lambda^{-H(\gamma)} S_{\lambda, \gamma}^{X}(x, y) \quad \xrightarrow{\mathrm{fdd}} c(\gamma)^{1 / 2} B_{H_{1 k}^{+}, 1 / 2}(x, y) . \quad[=\text { FBSheet }]
$$

(ii) Let RFs Y and $X=A_{k}(Y)$ satisfy Assumptions (A1), (A2) and (A3) ${ }_{k}$ and

$$
1 / p_{1}<k<P
$$

Then for any $\gamma<\gamma_{0}$

$$
\operatorname{Var}\left(S_{\lambda, \gamma}^{X}\right) \sim c(\gamma) \lambda^{2 H(\gamma)}
$$

where $H(\gamma):=\gamma H_{2 k}^{-}+1 / 2, H_{2 k}^{-}:=1+1 /\left(2 \gamma_{0}\right)-k p_{2} / 2 \in(1 / 2,1)$ and $c(\gamma):=\int_{\mathbb{R} \times(0,1]^{2}}\left(\left(a_{\infty} \star a_{\infty}\right)\left(t, s_{1}-s_{2}\right)\right)^{k} \mathrm{~d} t \mathrm{~d} s_{1} \mathrm{~d} s_{2}>0$.

Thm 5 (i) Let RFs Y and $X=A_{k}(Y)$ satisfy Assumptions (A1), (A2) and (A3) k and

$$
1 / p_{2}<k<P
$$

Then for any $\gamma>\gamma_{0}$

$$
\operatorname{Var}\left(S_{\lambda, \gamma}^{X}\right) \sim c(\gamma) \lambda^{2 H(\gamma)}
$$

where $H(\gamma):=H_{1 k}^{+}+\gamma / 2, H_{1 k}^{+}:=1+\gamma_{0} / 2-k p_{1} / 2 \in(1 / 2,1)$ and $c(\gamma):=\int_{(0,1]^{2} \times \mathbb{R}}\left(\left(a_{\infty} \star a_{\infty}\right)\left(t_{1}-t_{2}, s\right)\right)^{k} \mathrm{~d} t_{1} \mathrm{~d} t_{2} \mathrm{~d} s>0$. Moreover,

$$
\lambda^{-H(\gamma)} S_{\lambda, \gamma}^{X}(x, y) \xrightarrow{\text { fdd }} c(\gamma)^{1 / 2} B_{H_{1 k}^{+}, 1 / 2}(x, y) . \quad[=\text { FBSheet }]
$$

(ii) Let RFs Y and $X=A_{k}(Y)$ satisfy Assumptions (A1), (A2) and (A3) ${ }_{k}$ and

$$
1 / p_{1}<k<P
$$

Then for any $\gamma<\gamma_{0}$

$$
\operatorname{Var}\left(S_{\lambda, \gamma}^{X}\right) \sim c(\gamma) \lambda^{2 H(\gamma)}
$$

where $H(\gamma):=\gamma H_{2 k}^{-}+1 / 2, H_{2 k}^{-}:=1+1 /\left(2 \gamma_{0}\right)-k p_{2} / 2 \in(1 / 2,1)$ and $c(\gamma):=\int_{\mathbb{R} \times(0,1]^{2}}\left(\left(a_{\infty} \star a_{\infty}\right)\left(t, s_{1}-s_{2}\right)\right)^{k} \mathrm{~d} t \mathrm{~d} s_{1} \mathrm{~d} s_{2}>0$. Moreover,

$$
\lambda^{-H(\gamma)} S_{\lambda, \gamma}^{X}(x, y) \quad \xrightarrow{\text { fdd }} \quad c(\gamma)^{1 / 2} B_{1 / 2, H_{2 k}^{-}}(x, y) . \quad[=\text { FBSheet }]
$$

- Similarly as in linear case $k=1\left(X=A_{1}(Y)=Y\right)$ unbalanced scaling limits of $X=A_{k}(Y)$ for $1 \leq k<P$ have special dependence structure: either independent, or completely dependent increments along one of the coordinate axes
- Similarly as in linear case $k=1\left(X=A_{1}(Y)=Y\right)$ unbalanced scaling limits of $X=A_{k}(Y)$ for $1 \leq k<P$ have special dependence structure: either independent, or completely dependent increments along one of the coordinate axes
- The point $k p_{2}=1$ at which scaling limit of $X=A_{k}(Y)$ for $\gamma>\gamma_{0}$ changes from 'Hermite slide' $x Z_{k}^{+}(y)$ to FBSheet $B_{H_{1 k}^{+}, 1 / 2}(x, y)$ coincides with the point where the covariance function of $X=A_{k}(Y)$ changes from vertical LRD to vertical SRD:

$$
\sum_{s \in \mathbb{Z}}\left|r_{X}(0, s)\right| \begin{cases}=\infty, & k p_{2} \leq 1 \\ <\infty, & k p_{2}>1\end{cases}
$$

- Similarly as in linear case $k=1\left(X=A_{1}(Y)=Y\right)$ unbalanced scaling limits of $X=A_{k}(Y)$ for $1 \leq k<P$ have special dependence structure: either independent, or completely dependent increments along one of the coordinate axes
- The point $k p_{2}=1$ at which scaling limit of $X=A_{k}(Y)$ for $\gamma>\gamma_{0}$ changes from 'Hermite slide' $x Z_{k}^{+}(y)$ to FBSheet $B_{H_{1 k}^{+}, 1 / 2}(x, y)$ coincides with the point where the covariance function of $X=A_{k}(Y)$ changes from vertical LRD to vertical SRD:

$$
\sum_{s \in \mathbb{Z}}\left|r_{X}(0, s)\right| \begin{cases}=\infty, & k p_{2} \leq 1 \\ <\infty, & k p_{2}>1\end{cases}
$$

- The point $k p_{1}=1$ at which scaling limit of $X=A_{k}(Y)$ for $\gamma<\gamma_{0}$ changes from 'Hermite slide' $y Z_{k}^{-}(x)$ to FBSheet $B_{1 / 2, H_{2 k}^{-}}(x, y)$ coincides with the point where the covariance function of $X=A_{k}(Y)$ changes from horizontal LRD to horizontal SRD:

$$
\sum_{t \in \mathbb{Z}}\left|r_{X}(t, 0)\right| \begin{cases}=\infty, & k p_{1} \leq 1 \\ <\infty, & k p_{1}>1\end{cases}
$$

Thm 6 Let RFs Y and $X=A_{k}(Y)$ satisfy Assumptions (A1), (A2) and (A3) ${ }_{k}$ and

$$
k>P
$$

Thm 6 Let RFs Y and $X=A_{k}(Y)$ satisfy Assumptions (A1), (A2) and (A3) ${ }_{k}$ and

$$
k>P
$$

Then for any $\gamma>0$

$$
\operatorname{Var}\left(S_{\lambda, \gamma}^{X}\right) \sim \sigma_{X}^{2} \lambda^{1+\gamma}
$$

where $\sigma_{X}^{2}:=\sum_{(t, s) \in \mathbb{Z}^{2}} \operatorname{Cov}(X(0,0), X(t, s)) \in(0, \infty)$.

Thm 6 Let RFs Y and $X=A_{k}(Y)$ satisfy Assumptions (A1), (A2) and (A3) ${ }_{k}$ and

$$
k>P
$$

Then for any $\gamma>0$

$$
\operatorname{Var}\left(S_{\lambda, \gamma}^{X}\right) \sim \sigma_{X}^{2} \lambda^{1+\gamma}
$$

where $\sigma_{X}^{2}:=\sum_{(t, s) \in \mathbb{Z}^{2}} \operatorname{Cov}(X(0,0), X(t, s)) \in(0, \infty)$. Moreover,

$$
\lambda^{-(1+\gamma) / 2} S_{\lambda, \gamma}^{X}(x, y) \quad \xrightarrow{\text { fdd }} \quad \sigma_{X} B_{1 / 2,1 / 2}(x, y) . \quad[=\text { Brownian sheet }]
$$

Thm 6 Let RFs Y and $X=A_{k}(Y)$ satisfy Assumptions (A1), (A2) and (A3) ${ }_{k}$ and

$$
k>P
$$

Then for any $\gamma>0$

$$
\operatorname{Var}\left(S_{\lambda, \gamma}^{X}\right) \sim \sigma_{X}^{2} \lambda^{1+\gamma}
$$

where $\sigma_{X}^{2}:=\sum_{(t, s) \in \mathbb{Z}^{2}} \operatorname{Cov}(X(0,0), X(t, s)) \in(0, \infty)$. Moreover,

$$
\lambda^{-(1+\gamma) / 2} S_{\lambda, \gamma}^{X}(x, y) \quad \xrightarrow{\text { fdd }} \quad \sigma_{X} B_{1 / 2,1 / 2}(x, y) . \quad[=\text { Brownian sheet }]
$$

Thm 7 Let $X=G(Y)$ satisfy Assumption (A4) ${ }_{k}$.

Thm 6 Let RFs Y and $X=A_{k}(Y)$ satisfy Assumptions (A1), (A2) and (A3) ${ }_{k}$ and

$$
k>P
$$

Then for any $\gamma>0$

$$
\operatorname{Var}\left(S_{\lambda, \gamma}^{X}\right) \sim \sigma_{X}^{2} \lambda^{1+\gamma}
$$

where $\sigma_{X}^{2}:=\sum_{(t, s) \in \mathbb{Z}^{2}} \operatorname{Cov}(X(0,0), X(t, s)) \in(0, \infty)$. Moreover,

$$
\lambda^{-(1+\gamma) / 2} S_{\lambda, \gamma}^{X}(x, y) \quad \xrightarrow{\text { fdd }} \quad \sigma_{X} B_{1 / 2,1 / 2}(x, y) . \quad[=\text { Brownian sheet }]
$$

Thm 7 Let $X=G(Y)$ satisfy Assumption (A4) ${ }_{k}$. Assume w.l.g. that G has Hermite expansion $G(x)=H_{k}(x)+\sum_{j=k+1}^{\infty} c_{j} H_{j}(x) / j$!.

Thm 6 Let RFs Y and $X=A_{k}(Y)$ satisfy Assumptions (A1), (A2) and (A3) ${ }_{k}$ and

$$
k>P
$$

Then for any $\gamma>0$

$$
\operatorname{Var}\left(S_{\lambda, \gamma}^{X}\right) \sim \sigma_{X}^{2} \lambda^{1+\gamma}
$$

where $\sigma_{X}^{2}:=\sum_{(t, s) \in \mathbb{Z}^{2}} \operatorname{Cov}(X(0,0), X(t, s)) \in(0, \infty)$. Moreover,

$$
\lambda^{-(1+\gamma) / 2} S_{\lambda, \gamma}^{X}(x, y) \quad \xrightarrow{\text { fdd }} \quad \sigma_{X} B_{1 / 2,1 / 2}(x, y) . \quad[=\text { Brownian sheet }]
$$

Thm 7 Let $X=G(Y)$ satisfy Assumption (A4) ${ }_{k}$. Assume w.l.g. that G has Hermite expansion $G(x)=H_{k}(x)+\sum_{j=k+1}^{\infty} c_{j} H_{j}(x) / j$!.
(i) Let $1 \leq k<P$. Then RF X satisfies all statements of Thms 3-5.

Thm 6 Let RFs Y and $X=A_{k}(Y)$ satisfy Assumptions (A1), (A2) and (A3) ${ }_{k}$ and

$$
k>P .
$$

Then for any $\gamma>0$

$$
\operatorname{Var}\left(S_{\lambda, \gamma}^{X}\right) \sim \sigma_{X}^{2} \lambda^{1+\gamma}
$$

where $\sigma_{X}^{2}:=\sum_{(t, s) \in \mathbb{Z}^{2}} \operatorname{Cov}(X(0,0), X(t, s)) \in(0, \infty)$. Moreover,

$$
\lambda^{-(1+\gamma) / 2} S_{\lambda, \gamma}^{X}(x, y) \quad \xrightarrow{\text { fdd }} \quad \sigma_{X} B_{1 / 2,1 / 2}(x, y) . \quad[=\text { Brownian sheet }]
$$

Thm 7 Let $X=G(Y)$ satisfy Assumption (A4) ${ }_{k}$. Assume w.l.g. that G has Hermite expansion $G(x)=H_{k}(x)+\sum_{j=k+1}^{\infty} c_{j} H_{j}(x) / j$!.
(i) Let $1 \leq k<P$. Then RF X satisfies all statements of Thms 3-5.
(ii) Let $k>P$. Then RF X satisfies the statements of Thm 6 .

References

\rightarrow Anh, V.V., Angulo, J.M. and Ruiz-Medina, M.D. (1999) Possible long-range dependence in fractional random fields. J. Statist. Plan. Infer. 80, 95-110.

- Anh, V.V., Leonenko, N.N. and Ruiz-Medina, M.D. (2013) Macroscaling limit theorems for filtered spatiotemporal random fields. Stochastic Anal. Appl. 31, 460-508.
- Avram, F. and Taqqu, M.S. (1987) Noncentral limit theorems and Appell polynomials. Ann. Probab. 15, 767-775.
- Bai, S. and Taqqu, M.S. (2014) Generalized Hermite processes, discrete chaos and limit theorems. Stochastic Process. Appl. 124, 1710-1739.
- Beran, J., Feng, Y., Gosh, S. and Kulik, R. (2013) Long-memory processes: Probabilistic properties and statistical methods. Springer, New York.
\rightarrow Biermé, H., Meerschaert, M.M. and Scheffler, H.P. (2007) Operator scaling stable random fields. Stoch. Process. Appl. 117, 312-332.
- Biermé, H., Estrade, A. and Kaj, I. (2010) Self-similar random fields and rescaled random balls models. J. Theoret. Probab. 23, 1110-1141.
- Celov, D., Leipus, R. and Philippe, A. (2007) Time series aggregation, disaggregation and long memory. Lithuanian Math. J. 47, 379-393.
- Cox, D.R. (1984) Long-range dependence: A review. In: H.A. David and H.T. David (Eds.), Statistics: An Appraisal, pp. 55-74. Iowa State Univ. Press, lowa.
\checkmark Dehling, H. and Philipp, W. (2002) Empirical process techniques for dependent data. In: H. Dehling, T. Mikosch and M. Sørensen (Eds.), Empirical Process Techniques for Dependent Data, pp. 1-113. Birkhäuser, Boston.

Dobrushin, R.L. (1979) Gaussian and their subordinated self-similar random generalized fields. Ann. Probab. 7, 1-28.
D Dobrushin, R.L. and Major, P. (1979) Non-central limit theorems for non-linear functionals of Gaussian fields. Probab. Th. Rel. Fields 50, 27-52.
\rightarrow Dombry, C. and Kaj, I. (2011) The on-off network traffic under intermediate scaling. Queueing Sys. 69, 29-44.
\rightarrow Doukhan, P., Lang, G. and Surgailis, D. (2002) Asymptotics of weighted empirical processes of linear random fields with long range dependence. Annales d'Institute de H. Poincaré 38, 879-896.

- Doukhan, P., Oppenheim, G. and Taqqu, M.S. (Eds.) (2003) Theory and Applications of Long-Range Dependence. Birkhäuser, Boston.
- Gaigalas, R. (2006) A Poisson bridge between fractional Brownian motion and stable Lévy motion. Stochastic Process. Appl. 116, 447-462.
\rightarrow Gaigalas, R. and Kaj, I. (2003) Convergence of scaled renewal processes and a packet arrival model. Bernoulli 9, 671-703.
- Gonçalves, E. and Gouriéroux, C. (1988) Aggrégation de processus autoregressifs d'ordre 1. Annales d'Economie et de Statistique 12, 127-149.
\rightarrow Granger, C.W.J. (1980) Long memory relationship and the aggregation of dynamic models. J. Econometrics 14, 227-238.
\rightarrow Kaj, I. (2005) Limiting fractal random processes in heavy-tailed systems. In: Levy-Vehel, J., Lutton, E. (eds.) Fractals in Engineering, New Trends in Theory and Applications, pp. 199-218. Springer, London.
- Kaj, I., Leskelä, L., Norros, I. and Schmidt, V. (2007) Scaling limits for random fields with long-range dependence. Ann. Probab. 35, 528-550.
- Kaj, I. and Taqqu, M.S. (2008) Convergence to fractional Brownian motion and to the Telecom process: the integral representation approach. In: Vares, M.E. and Sidoravicius, V. (eds.) An Out of Equilibrium 2. Progress in Probability, vol. 60, pp. 383-427. Birkhäuser, Basel.
- Koul, H.L., Mimoto, N. and Surgailis, D. (2016) Goodness-of-fit tests for marginal distribution of linear random fields with long memory. Metrika 79, 165-193.
- Lavancier, F. (2007) Invariance principles for non-isotropic long memory random fields. Statist. Inference Stoch. Process. 10, 255-282.
- Lavancier, F. (2011) Aggregation of isotropic random fields. J. Statist. Plan. Infer. 141, 3862-3866.
- Leipus, R., Philippe, A., Pilipauskaite, V. and Surgailis, D. (2016) Nonparametric estimation of the autoregressive coefficient from panel random-coefficient $\operatorname{AR}(1)$ data. Preprint. http://arxiv.org/abs/1509.07747
- Mikosch, T., Resnick, S., Rootzén, H. and Stegeman, A. (2002) Is network traffic approximated by stable Lévy motion or fractional Brownian motion? Ann. Appl. Probab. 12, 23-68.
- Nualart, D. and Peccati, G. (2005) Central limit theorems for sequences of multiple stochastic integrals. Ann. Probab. 33, 177-193.
- Oppenheim, G. and Viano, M.-C. (2004) Aggregation of random parameters Ornstein-Uhlenbeck or AR processes: some convergence results. J. Time Ser. Anal. 25, 335-350.
- Philippe, A., Puplinskaite, D. and Surgailis, D. (2014) Contemporaneous aggregation of triangular of random coefficient $\mathrm{AR}(1)$ processes. J. Time Series Anal. 35, 16-39.
- Pilipauskaitè, V. and Surgailis, D. (2014) Joint temporal and contemporaneous aggregation of random-coefficient $\operatorname{AR}(1)$ processes. Stochastic Process. Appl. 124, 1011-1035.
- Pilipauskaitè, V. and Surgailis, D. (2015) Joint aggregation of random-coefficient $\operatorname{AR}(1)$ processes with common innovations. Stat. Probab. Letters 101 (2015), 73-82.
- Pilipauskaite, V. and Surgailis, D. (2016) Anisotropic scaling of random grain model with application to network traffic. J. Appl. Probab. (in press). Available at http://arxiv.org/abs/1510.07423.
- Pipiras, V., Taqqu, M.S. and Lévy, L.B. (2004) Slow, fast, and arbitrary growth conditions for renewal reward processes when the renewals and the rewards are heavy-tailed. Bernoulli 10, 121-163.
- Puplinskaité, D. and Surgailis, D. (2009) Aggregation of random coefficient $A R(1)$ process with infinite variance and common innovations. Lithuanian Math. J. 49, 446-463.
- Puplinskaité, D. and Surgailis, D. (2010) Aggregation of random coefficient AR(1) process with infinite variance and idiosyncratic innovations. Adv. Appl. Probab. 42, 509-527.
\rightarrow Puplinskaite, D. and Surgailis, D. (2016) Aggregation of autoregressive random fields and anisotropic long-range dependence. Bernoulli (in press). http://arxiv.org/abs/1303.2209v3.
- Puplinskaitè, D. and Surgailis, D. (2015) Scaling transition for long-range dependent Gaussian random fields. Stochastic Process. Appl. 125 (2015), 2256-2271.
- Taqqu, M.S., Willinger, W. and Sherman, R. (1997) Proof of a fundamental result in self-similar traffic modeling. Comput. Commun. Rev. 27(2), 5-23.
- Willinger, W., Taqqu, M.S., Leland, M. and Wilson, D. (1997) Self-similarity through high-variability: statistical analysis of Ethernet LAN traffic at the source level. IEEE/ACM Trans. Networking 5, 71-86.
- Zaffaroni, P. (2004) Contemporaneous aggregation of linear dynamic models in large economies. J. Econometrics 120, 75-102.
- Zaffaroni, P. (2007) Aggregation and memory of models of changing volatility. J. Econometrics 136, 237-249.

