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Overview:

1. Goal: To perform inference in such a way that we do not need to
estimate unknown parameters in a time series.

2. Features of the method: Combines the advantages of
self-normalization so as to avoid having to know or to estimate the
scale parameters, with block sampling so that one can use the
sampling distribution instead of the asymptotic one.

3. Advantage: To derive a unified approach for short and long-range
dependence, and heavy tailed distributions.

4. Application: Apply the method to inference about the mean.

5. Scope: We consider two basic cases:

(a) the data is subordinated to the Gaussian;
(b) the data is strong mixing.
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Outline of the talk

1. Introduction

2. The suggested procedure

3. The asymptotic theory in the Gaussian subordinated case

4. Examples

5. The asymptotic theory in the strong mixing case

6. Examples
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Confidence interval for the mean: review of the i.i.d. case

Samples {Xi , i = 1, . . . , n}, i.i.d. with finite variance σ2.
Sample size n reasonably large.

Confidence interval for the mean µ = EXi involves:

I Sample mean: X̄n;

I Sample variance: σ̂2
n = 1

n

∑n
i=1(Xi − X̄n)2;

I Normal (1− α/2)-quantile: q1−α/2;

Two-sided (1− α)-level confidence interval:

In = [X̄n − n−1/2σ̂nq1−α/2 , X̄n + n−1/2σ̂nq1−α/2].

Then P (Random interval In covers µ) ≈ 1− α.

Theoretical basis for the confidence interval In involves:

Central Limit Theorem:n−1/2∑n
i=1(Xi − µ)

d−→ N(0, σ2).

Law of Large Numbers: σ̂2
n

a.s.−→ σ2.

If {Xi} is short-range dependent, then σ2 is replaced by∑∞
k=−∞ Cov[Xk ,X0] =:

∑
k γ(k). How to deal with this first challenge?
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Challenge 1: Short-range dependence

{Xi} stationary weakly dependent (short-range dependent) with covariance

γ(k) = Cov[X (k),X (0)], k ∈ Z, satisfying
∑
k

|γ(k)| <∞.

Central Limit Theorem:

n−1/2
n∑

i=1

(Xi − µ)
d−→ N(0, σ2),

where now σ2 is the so-called long-run variance

σ2 =
∞∑

k=−∞

γ(k).

To construct a confidence interval, we need a consistent estimator for σ2.

We have the sample covariance: γ̂(k) = 1
n

∑n−k
i=1 (Xi − X̄n)(Xi+k − X̄n). But σ2 cannot be

estimated simply by
∑

k γ̂(k) (too few summands for large k).
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Challenge 2: Heavy tails

{Xi} i.i.d. heavy-tailed

P(X1 > x) ∼ A
1 + β

2
x−α, P(X1 < −x) ∼ A

1− β
2

x−α x → +∞, (1)

where constant A > 0, parameters β ∈ [−1, 1], α ∈ (1, 2).

E|X1| <∞ but E|X1|2 =∞.

Heavy tail Central Limit Theorem:

n−1/α
n∑

i=1

(Xi − µ)→ Sα(σ, β, 0)

where Sα(σ, β, 0) is the α-stable random variable with location parameter 0, scale
parameter σ (depending on A and α) and skewness parameter β.

How about the unknown α, β, A?

Even more complicated situation: a slowly varying function replaces the constant A in (3).

Even more complicated: {Xi} are weakly dependent (σ then depends on dependence
structure).
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Challenge 3: Long-range dependence

{Xi} is strongly dependent (long-range dependent), with covariance function

γ(k) ∼ cγk
2H−2, H ∈ (1/2, 1). (2)

Some models of {Xi}, e.g., nonlinear transform of a long-range dependent Gaussian
process, give rise to limit theorem (Dobrushin Major (1979), Taqqu 1979):

1

nH

n∑
i=1

(Xi − µ)
d−→ cZm,H ,

where c depends on cγ and H, and m is a positive integer (the so-called Hermite rank),
and

Zm,H = vm,H

∫ ′
Rm

∫ 1

0

m∏
j=1

(s − xj)
(H−1)/m−1/2
+ ds B(dx1) . . .B(dxm), B(·): Brownian motion

is a standardized random variable expressed by a multiple Wiener-Itô integral which is
non-Gaussian if m ≥ 2.

Need to estimate cγ , H, m (no available method for m).
More complicated if cγ in (4) is replaced by a slowly varying function.
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Self-normalization under short-range dependence
Goal: design a way to avoid estimation of the nuisance parameter σ2 =

∑
k γ(k).

An idea which works for short-range dependence: self-normalization
(Lobato (2001) and Shao (2010)). Consider:

Dn =

√√√√1

n

n∑
k=1

[
k∑

i=1

Xi −
k

n

n∑
i=1

Xi

]2

=

√√√√√∫ 1

0

 [ns]∑
i=1

Xi −
[ns]

n

n∑
i=1

Xi

2

ds

Note: Dn involves
∑

i Xi and not
∑

i X
2
i .

Functional Central Limit Theorem (weak convergence in D[0, 1]):

1

n1/2

[nt]∑
i=1

(Xi − µ)⇒ σB(t), B(t) : Brownian motion.

By the continuous mapping theorem:

n−1/2∑n
i=1(Xi − µ)

n−1/2Dn

d−→ σB(1)

σ
√∫ 1

0
[B(s)− sB(1)]2 ds

=: T .

No nuisance parameter! Use the distribution of T to construct confidence interval.

However, there are additional nuisance parameters in the heavy tail and long-range
dependence case.
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Self-normalization under heavy tail or long-range dependence

In general, suppose we have the Functional Central Limit Theorem

1

nH`(n)

[nt]∑
i=1

(Xi − µ)⇒ cY (t),

where H ∈ (0, 1), `(n) slowly varying.
One gets the self-normalized statistic∑n

i=1(Xi − µ)

Dn
=

n−H`(n)−1∑n
i=1(Xi − µ)

n−H`(n)−1Dn

d−→ T =
Y (1)√∫ 1

0
[Y (s)− sY (1)]2ds

.

Heavy tail: Y (t) is the α-stable Lévy process Lα,β(t).

Long-range dependence: Y (t) is the Hermite process Zm,H(t).

Caveat: self-normalization only frees one from the normalization (including the scale
parameter), but not from other parameters (e.g. α, m, H). How to deal with that?
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Our goal:

To get a confidence interval for µ using

Tn(Xn
1;µ) =

∑n
i=1 Xi − nµ

Dn(Xn
1)

, Dn(Xn
1) =

√√√√1

n

n∑
k=1

[
k∑

i=1

Xi −
k

n

n∑
i=1

Xi

]2

.

where Xn
1 = (X1, . . . ,Xn).

Outline:

I Brief description of the procedure

I Conditions under which it is justified

I Applications
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Brief description of the procedure

Recall Xn
1 = (X1, . . . ,Xn) and

Tn(Xn
1;µ) =

∑n
i=1 Xi − nµ

Dn(Xn
1)

, Dn(Xn
1) =

√√√√1

n

n∑
k=1

[
k∑

i=1

Xi −
k

n

n∑
i=1

Xi

]2

.

We want to get a confidence interval for µ using Tn(Xn
1;µ).

But we don’t know the distribution of Tn(Xn
1;µ).

We shall approximate it by the empirical distribution

F̂n,b(x) =
1

n − b + 1

n−b+1∑
i=1

1{Tb(Xi+b−1
i ; X̄n) ≤ x},

of Tb(Xb+i−1
i ; X̄n), i = 1, . . . , n − b + 1.

Note: Using (a) successive i; (b) overall sample mean

How to justify the use of F̂n,b(x)?
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The idea is to combine self-normalization with block sampling

We assume:

Tn(Xn
1;µ) =

∑n
i=1 Xi − nµ

Dn(X)
d−→ T .

When the block size b is large, we expect (setting µ = EXi ):

Tn(Xn
1;µ)

d
≈

self-normalization
Tb(Xb

1 ;µ)
d
≈ Tb(Xb

1 ; X̄n)
d
≈

block sampling
F̂n,bn (x).

1st
d
≈: because self-normalization equalizes the scales of Tn(Xn

1;µ) and Tb(Xb
1 ;µ), and

does not require knowing them;

2nd
d
≈: because X̄n is close to unknown µ when n� b;

3rd
d
≈: because F̂n,b(x) = 1

n−b+1

∑n−b+1
i=1 1{Tb(Xi+b−1

i ; X̄n) ≤ x} is the empirical

distribution of Tb(Xb
1 ; X̄n).
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Assumptions under which this procedure is shown to work:

1. The Gaussian subordination framework

2. The strong mixing framework
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The Gaussian subordination case: theoretical assumptions
{Xi}: the stationary process we observe.
{Zi}: hidden Gaussian stationary process with covariance γ(k) = Cov[Zk ,Z0].

Assumptions (one-dimensional simplified version):
A1. Subordination: Xi = G(Zi , . . . ,Zi−l) with mean µ = EXi , where l is a fixed

non-negative integer;
A2. Weak convergence in D[0, 1]: with a suitable Skorohod topology:{

1

nH`(n)
(Sbntc − nµ), 0 ≤ t ≤ 1

}
⇒ {Y (t), 0 ≤ t ≤ 1} ,

for some process Y (t), where 0 < H < 1 and `(·): slowly varying;
A3. Weak canonical correlation: As n→∞, the block size bn →∞, bn = o(n), and

satisfies
n∑

k=0

ρk,l+bn = o(n),

where ρk,m is the between-block canonical correlation:

ρk,m = sup
x,y∈Rm

Corr
[
〈x,Zm

1 〉〈y,Zk+m
k+1 〉

]
.

where Zm
1 = (Z1, · · · ,Zm), Zk+m

k+1 = (Zk+1, · · · ,Zk+m)

Note: ρk,m involves the underlying Gaussian Zi and not the nonlinear Xi .
Remark: The assumptions can be extended to vector valued Zi , which allows the
inclusion of some nonlinear time series models.
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Why did the nonlinearity disappear?

The block canonical correlation

ρk,m = sup
x,y∈Rm

Corr
[
〈x,Zm

1 〉〈y,Zk+m
k+1 〉

]
.

involves the underlying Gaussian Zi and not the nonlinear Xi . This because in the proof
we use a key result due to Kolmogorov and Rozanov (1960):

sup
F ,G∈L2(Zm

1 )

∣∣∣Corr(F (Zm
1 ),G(Zk+m

k+1 )
)∣∣∣ = sup

x,y∈Rm

∣∣∣Corr(〈x,Zm
1 〉, 〈y,Zk+m

k+1 〉
)∣∣∣ = ρk,m
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Main result: consistency of the self-normalized block sampling

Theorem
Under Assumptions A1–A3, as n→∞,

sup
x∈R

∣∣∣F̂n,bn (x)− P(Tn(Xn
1;µ) ≤ x)

∣∣∣→ 0 in probability,

if T has a continuous distribution (otherwise the convergence holds without ”sup”, for x
at continuity points).

So, we can use the empirical distribution

F̂n,bn (x) =
1

n − bn + 1

n−bn+1∑
i=1

1{Tbn (Xi+bn−1
i ; X̄n) ≤ x},

which is obtained from the block sampling, to approximate the unknown distribution of

Tn(Xn
1;µ) =

∑n
i=1 Xi − nµ

Dn(Xn
1)

, where Dn(Xn
1) =

√√√√1

n

n∑
k=1

[
k∑

i=1

Xi −
k

n

n∑
i=1

Xi

]2

.
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Basic steps in the proof

I Assumption (A2) implies that Tn(Xn
1;µ)

d−→ T (continuous mapping);

I Bias-variance decomposition (F̂ ∗ is F̂ with X̄n replaced by µ):

E
[
F̂ ∗n,bn (x)− P(T ≤ x)

]2

=
[
P
(
Tbn (Xbn

1 ;µ) ≤ x
)
− P(T ≤ x)

]2

+ Var[Tbn (X bn
1 ;µ)]

I The first bias term goes to zero at continuity points of P(T ≤ x) by A2.

I Var[Tbn (X bn
1 ;µ)]→ 0 (follows from A1 and A3).

I F̂ ∗n,bn (x)→ P(T ≤ x) at continuity points (the centering is by µ).

I F̂n,bn (x)→ P(T ≤ x) at continuity points (the centering is by X̄n).

I supx |F̂n,bn (x)− P(T ≤ x)| → 0 if P(T ≤ x) is continuous.
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When does Assumption A3 hold?

• Long memory case: Suppose that the spectral density of the underlying Gaussian {Zi}
is given by

f (λ) = fH(λ)f0(λ),

where fH(λ) = |1− e iλ|−2H+1, 1/2 < H < 1, and f0(λ) is a short-range dependent
spectral density bounded away from zero. Then bn = o(n) implies Assumption A3.

Examples:
• FARIMA(p, d , q)
• fractional Gaussian noise with H > 1/2.

• Short memory case Suppose that infλf (λ) > 0, and |Cov[Z0,Zn]| ≤ dn, where dn is
non-increasing and summable (typically, dn = cn−β for some constant c > 0 and β > 1).
If bn = o(n), then Assumption A3 holds.

• Strong mixing case: bn = o(n) always implies Assumption A3.

18 / 41



Practical choice of the block size b

Method 1: Rule of thumb: b = cn1/2, with typically 1/2 ≤ c ≤ 2 (Hall et al. (1998)).

Method 2: Data-dependent choice (Jach et al (2012)): choose the b which minimizes
the changes in the Kolmogorov distance of the empirical distribution F̂n,b(x) with respect
to b (optimum is the most stable point).

1. Choose an evenly-spaced block size sequence b1, . . . , bp+1 (e.g.
b1 = 5, b2 = 5 + δ, . . . , bp+1 = 5 + pδ).

2. Compute the empirical distributions F̂n,bi , i = 1, . . . , p + 1.

3. Choose bopt = bi which minimizes dkol
(
F̂n,bi , F̂n,bi+1

)
in i = 1, . . . , p.

We use the rule of thumb b = n1/2 in the examples below.
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Chi-squared: SRD and LRD

Xi = G(Zi ) = Z2
i ,

where {Zi} is fractional Gaussian noise with Hurst index H0 (H0 = 0.5: white noise; H0 > 0.5:
long-range dependent; H0 < 0.5: anti-persistent). The mean is µ = EXi = 1. Assumption A2
holds with the following dichotomy:{

H = 1/2, `(n) = 1, Y (t) = σB(t) if H0 < 3/4;

H = 2H0 − 1, `(n) = 1, Y (t) = cHZ2,H(t) if H0 > 3/4,

where σ2 =
∑

n Cov[X (n),X (0)], cH > 0, B(t) is the standard Brownian motion and Z2,H(t) is
the standard Rosenblatt process (second-order Hermite process).
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Data X
i

Upper 90% Cutoff
Lower 90% Cutoff
Mean=1

Figure: The running confidence cutoff for a sample path.

H0 = 0.9. The Std(X̄n) ∼ nH−1 = n2H0−2 = n−0.2.

H0 0.5 0.7 0.9
(86,95) (88,94) (92,83)

Table: Monte Carlo evaluation of coverage percentage
(lower 90%, upper 90%). Sample size=500.
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Example: t-transform
Data:

Xi = G(Zi ) = F−1
α (Φ(Zi )) Φ: standard normal CDF, Fα: tα-distribution CDF , α > 1,

where {Zi} is fractional Gaussian noise with Hurst index H0. Xi mean 0 and has marginal t distribution with α

degrees of freedom which is heavy-tailed: P(|Xi | > x) behaves like x−α. Var[Xi ] =∞ when 1 < α < 2 but
E|Xi | <∞. G(·) has (generalized) Hermite rank 1. By Sly and Heyde (2008), Assumption A2 holds with the
following dichotomy (for 0 < H0 < 1, 1 < α < 2):{

H = 1/α, `(n) = 1, Y (t) = cαLα(t) if H0 < 1/α;

H = H0, `(n) = 1, Y (t) = cHBH (t) if H0 > 1/α,

where BH (t) is the fractional Brownian motion and Lα(t) is the standard (scale parameter σ = 1) symmetric
α-stable Lévy process. Since {Zi} is fractional Gaussian noise, Assumption A3 holds.
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Data X
i

Upper 90% cutoff
Lower 90% cutoff
Mean=0

Figure: The running confidence cutoff for a sample
path. α = 1.5, H0 = 0.75 > 1/α = 2/3.

α
H0 0.25 0.5 0.75

1.5 (76,74) (81,81) (79,78)
2 (78,78) (85,86) (82,82)
5 (90,89) (89,89) (88,86)

10 (90,89) (89,89) (87,87)

Table: Monte Carlo evaluation of coverage
percentage (lower 90%, upper 90%). Sample
size=500.
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Example: stochastic duration
{Zi}: fractional Gaussian noise with Hurst index H0. Data:

Xi = exp(Zi )ξi , ξi
i.i.d.∼ F (1, 2α), α > 1,

F (1, 2α): F-distribution with parameters 1 and 2α. Xi is positively skewed, dependent when H0 ∈ (1/2, 1),

and heavy tailed: P(Xi > x) behaves like x−α. E|Xi | <∞ but Var[Xi ] =∞ when 1 < α < 2.
ξi can be rewritten as G(Z ′i ) for suitable function G(·) and i.i.d. Gaussian {Z ′i } which is independent of {Zi}.
So Xi is subordinated to (Zi , Z

′
i ). The mean is µ = EXi = E exp(Zi )Eξi = exp(1/2)α/(α− 1).

By Beran et al. (2013), Assumption A2 holds with the following dichotomy:{
H = 1/α, `(n) = 1, Y (t) = cαLα,1,1(t) if H0 < 1/α;

H = H0, `(n) = 1, Y (t) = cHBH (t) if H0 > 1/α,

where BH (t) is the fractional Brownian motion and Lα,1,1(t) is standard (σ = 1) α-stable Lévy process totally
skewed to the right (β = 1).
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Data X
i

Upper 90% cutoff
Lower 90% cutoff
Mean=4.94

Figure: The running confidence cutoff for a sample
path. α = 1.5,H0 = 0.75 > 1/α.

α
H0 0.25 0.5 0.75

1.5 (86,91) (86,92) (84,93)
2 (85,94) (84,95) (82,94)
5 (84,95) (84,96) (80,93)

10 (83,95) (83,96) (80,93)

Table: Monte Carlo evaluation of coverage
percentage (lower 90%, upper 90%). Sample
size=500. Extended to H0 ≤ 1/2.
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Weak dependence

Two types of weak dependence:

(1) Xi = G(Zi , . . . ,Zi−l) with Zi LRD Gaussian but γ(k) = Cov[X (k),X (0)] is
summable.

(2) Xi is strong mixing.

(1) ; (2) and (2) ; (1).

What happens if (2) replaces (1) in the assumptions?
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The strong mixing case: theoretical assumptions

Gaussian subordination case:

A1. Xi = G(Zi , . . . ,Zi−l) with mean µ = EXi , where l is a fixed non-negative integer;

A2. We have weak convergence in D[0, 1] with a suitable Skorohod topology:{
1

nH`(n)
(Sbntc − nµ), 0 ≤ t ≤ 1

}
⇒ {Y (t), 0 ≤ t ≤ 1} ,

for some process Y (t), where 0 < H < 1 and `(·): slowly varying;

A3. As n→∞, the block size bn →∞, bn = o(n), and satisfies
∑n

k=0 ρk,l+bn = o(n).

Strong mixing: α(k) = sup
{
|P(A)P(B)− P(A ∩ B)|, A ∈ F0

−∞,B ∈ F∞k
}
→ 0 as

k →∞.

B1. {Xi} is a strong mixing stationary process with mean µ = EXi .

B2. Same as A2.

B3. The block size bn →∞ and bn = o(n) as n→∞.
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Example: moving average

Xi = εi + aεi−1, εi
i.i.d.∼ tα,

where a > 0, tα is the t-distribution with degrees of freedom α.
{Xi} is 2-dependent and thus strong mixing.
By Avram and Taqqu (1992), Assumption B2 holds with (in the Skorohod M2 topology) the
following dichotomy:{

H = 1/2, `(n) = 1, Y (t) = σB(t) if α > 2;

H = 1/α, `(n) = 1, Y (t) = cαLα(t) if 1 < α < 2,

where σ2 =
∑

n Cov[X (n),X (0)], cα > 0, B(t) is the standard Brownian motion, Lα(t) is the
symmetric α-stable Lévy motion.
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Data X

i

Upper 90% Cutoff
Lower 90% Cutoff
Mean =0

Figure: The running confidence cutoff for a sample
path. a = 5, α = 5.

α
a

1 2 5

1.5 (82,82) (82,82) (81,81)
2 (88,86) (86,88) (86,86)
5 (90,91) (91,90) (90,90)

10 (90,91) (90,90) (90,90)

Table: Monte Carlo evaluation of coverage
percentage (lower 90%, upper 90%). Sample
size=500.
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Example: GARCH(1,1)
εi i.i.d. standard Gaussian
Data:

Xi = σiεi

σ2
i = c + aXi−1 + bσ2

i−1, a, b, c > 0, a + b < 1.

It is strong mixing with a geometric decay mixing coefficient and E|Xi |2+δ <∞ for δ > 0
small enough (Lindner (2009)). Hence by Herrndorf (1984), Assumption B2 holds with

H = 1/2, `(n) = 1, Y (t) = σ2B(t),

where σ2 =
∑

n Cov[X (n),X (0)] and B(t) is the standard Brownian motion.
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Data X
i

Upper 90% Cutoff
Lower 90% Cutoff
Mean=0

Figure: The running confidence cutoff for a sample
path. (a, b, c) = (0.2, 0.6, 0.1).

(a, b): (0.7, 0.1) (0.5, 0.3) (0.2, 0.6)
(89,89) (88,88) (87,86)

Table: Monte Carlo evaluation of coverage
percentage (lower 90%, upper 90%). Sample
size=500. c = 0.1
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S. Bai, M.S. Taqqu, and T. Zhang. A unified approach to self-normalized block
sampling. arXiv Preprint arXiv:1512.00820, to appear in Stochastic Processes and Their
Applications, 2016.

Bai, S. and Taqqu, M. S. On the validity of resampling methods under long memory.
arXiv Preprint arXiv:1512.00819, 2015.

Thank you!
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Additional slides
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Challenge 1: Short-range dependence
{Xi} stationary weakly dependent (short-range dependent) with covariance

γ(k) = Cov[X (k),X (0)], k ∈ Z, satisfying
∑
k

|γ(k)| <∞.

Central Limit Theorem:

n−1/2
n∑

i=1

(Xi − µ)
d−→ N(0, σ2),

where now σ2 is the so-called long-run variance

σ2 =
∞∑

k=−∞

γ(k).

To construct a confidence interval, we need a consistent estimator for σ2.

We have the sample covariance: γ̂(k) = 1
n

∑n−k
i=1 (Xi − X̄n)(Xi+k − X̄n). But σ2 cannot be

estimated simply by
∑

k γ̂(k) (too few summands for large k).

Typical estimator is the lag window which regularizes an infinite-dimensional problem by
exploiting the “sparsity” γ(k) ≈ 0 for large k:

σ̂ =
∑
|k|≤h

γ̂(k)W (k/h),

where W (k) is the lag-window function, h ∈ Z+ is the bandwidth.
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Challenge 2: Heavy tails

{Xi} i.i.d. heavy-tailed

P(X1 > x) ∼ A
1 + β

2
x−α, P(X1 < −x) ∼ A

1− β
2

x−α x → +∞, (3)

where constant A > 0, parameters β ∈ [−1, 1], α ∈ (1, 2).

E|X1| <∞ but E|X1|2 =∞.

Heavy tail Central Limit Theorem:

n−1/α
n∑

i=1

(Xi − µ)→ Sα(σ, β, 0)

where Sα(σ, β, 0) is the α-stable random variable with location parameter 0, scale
parameter σ (depending on A and α) and skewness parameter β.

How about the unknown α, β, A?

Even more complicated situation: a slowly varying function replaces the constant A in (3).

Even more complicated: {Xi} are weakly dependent (σ then depends on dependence
structure).
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Challenge 3: Long-range dependence

{Xi} is strongly dependent (long-range dependent), with covariance function

γ(k) ∼ cγk
2H−2, H ∈ (1/2, 1). (4)

Some models of {Xi}, e.g., nonlinear transform of a long-range dependent Gaussian
process, give rise to limit theorem (Dobrushin Major (1979), Taqqu 1979):

1

nH

n∑
i=1

(Xi − µ)
d−→ cZm,H ,

where c depends on cγ and H, and m is a positive integer (the so-called Hermite rank),
and

Zm,H = vm,H

∫ ′
Rm

∫ 1

0

m∏
j=1

(s − xj)
(H−1)/m−1/2
+ ds B(dx1) . . .B(dxm), B(·): Brownian motion

is a standardized random variable expressed by a multiple Wiener-Itô integral which is
non-Gaussian if m ≥ 2.

Need to estimate cγ , H, m (no available method for m).
More complicated if cγ in (4) is replaced by a slowly varying function.

31 / 41



How about bootstrap?

If {Xi} is short-range dependent, one can do the following block bootstrap. Let

Xq
p = (Xp, . . . ,Xq).

1. Choose a block size b. Form n − b + 1 successive blocks (with overlap)
Xb

1 ,X
b+1
2 , . . . ,Xn

n−b+1.

2. Sample randomly with replacement [n/b] blocks. Paste them into a new time series
X∗ of length b × [n/b]. Obtain the sample mean X̄ ∗.

3. Repeat this N times, getting N bootstrapped sample mean X̄ ∗1 , . . . , X̄
∗
N .

4. Use the empirical distribution of {X̄ ∗i } to construct confidence interval.

But this does NOT work for long-range dependent case. The strong dependence is
destroyed by randomly sampling and pasting the blocks in Step 2.

Idea for remedy: replace pasting by re-scaling.
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Block sampling (sampling window bootstrap)

Idea: No resampling. Include all blocks.
Form n − b + 1 successive blocks (overlapping) Xb

1 ,X
b+1
2 , . . . ,Xn

n−b+1, b � n.

For each block Xb+i−1
i , obtain the block mean X̄ ∗i = b−1∑i+b−1

j=i Xj .
Renormalize it (deterministicly) to get convergence to some limit T .

We cannot directly use the empirical distribution of {X̄ ∗i }, because the block means X̄ ∗i
fluctuate more than the overall sample mean X̄n since b � n. To get the same level of
fluctuation, rescale X̄ ∗i by

rb,n =

√
Var[X̄n]√
Var[X̄ ∗i ]

,

and use the empirical distribution of {rb,nX̄ ∗i } as a surrogate to that of T .

Hall et al. (1998) and Zhang et al. (2013) estimate rb,n under long-range dependence.
They use further block sampling and thus involve some tuning parameters in addition to
b.

Caveat: block sampling frees one from knowing the asymptotic distribution, but one
needs to estimate the normalization.
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Proof of Var[F̂ ∗n,bn(x)] → 0

Var[F̂ ∗n,bn (x)] = Var

[
1

n − bn + 1

n−bn+1∑
i=1

I{T ∗i,bn ≤ x}

]

≤ 2

n − bn + 1

n∑
k=0

∣∣Cov [I{T ∗1,bn ≤ x}, I{T ∗k+1,bn ≤ x}
]∣∣ .

Gaussian maximal correlation equality (Kolmogorov and Rozanov (1960)):

sup
F ,G∈L2(Zm

1 )

∣∣∣Corr(F (Zm
1 ),G(Zk+m

k+1 )
)∣∣∣ = sup

x,y∈Rm

∣∣∣Corr(〈x,Zm
1 〉, 〈y,Zk+m

k+1 〉
)∣∣∣ =: ρk,m

One has∣∣Cov[I{T ∗1,bn ≤ x}, I{T ∗k+1,bn ≤ x}]
∣∣ ≤ 1

4

∣∣Corr[I{T ∗1,bn ≤ x}, I{T ∗k+1,bn ≤ x}]
∣∣

≤ 1

4
ρk,bn+l .

Bounding the correlation by 1 for k < l + bn, we have

Var[F̂ ∗n,bn (x)] ≤ 1

2(n − bn + 1)

n∑
k=0

ρk,bn+l ,

which converges to zero by Assumption A3.
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Alternative sufficient condition for Assumption A3

Recall that γ(k) = Cov[Z0,Zk ], {Zi} Gaussian, Xi = G(Zi , . . . ,Zi−l ).

Mγ(n) = max
k>n
|γ(k)|, λm = minimum eigenvalue of (γ(i − j))i,j=1,...,m

Then
n∑

k=0

min

{
bn

λbn+l
Mγ(k), 1

}
= o(n) =⇒ A3. (5)

If the spectral density has zeros, the minimum eigenvalue λm converges to zero with a rate which
depends on the order of the zeros.

In the case of long memory, γ(n) ∼ cn2H−2, H ∈ (1/2, 1) and the spectral density of {Zi} is
bounded below away from zero. Then we have Mγ(k) ∼ ck2H−2 and so

bn = o(n2−2H), 0 < 2− 2H < 1. =⇒ (5)

The proof thus avoids dealing with the complicated specific forms of F (·) and G(·).
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Lemma

ρk,m := sup
x,y∈Rm

∣∣∣Corr
(
〈x,Zm

1 〉, 〈y,Zk+m
k+1 〉

)∣∣∣ ≤ m
Mγ(k −m)

λm
.

Proof.

2nd term = sup
x,y∈Rm

xT Σk,my√
xT Σmx

√
yT Σmy

≤ sup
x,y∈Rm

∣∣xT Σk,my
∣∣

λm‖x‖‖y‖
≤
|σk,m|
λm

≤ m
Mγ(k −m)

λm
.

Σm = covariance matrix
(
EZi1Zi2

)
1≤i1,i2≤m

,

Σk,m = covariance matrix
(
EZi1Zi2+k

)
1≤i1,i2≤m

.

λm = smallest eigenvalue of Σm,

σk,m = largest singular value of Σk,m.

σk,m ≤ linear size × largest entry ≤ m max
n>k−m

|EZ0Zn| = mMγ(k −m).

Note: Σk,m is not a symmetric matrix. The square of its singular values are the eigenvalues of

ΣT
k,mΣk,m, which is symmetric and non-negative definite.
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Weak dependence

Two types of weak dependence:

(1) Xi = G(Zi , . . . ,Zi−l) with Zi LRD Gaussian but γ(k) = Cov[X (k),X (0)] is
summable.

(2) Xi is strong mixing.

Proof (1) ; (2): If Zi is LRD and P(Zi ) is SRD, then P(Zi ) may not be strong mixing.
If it were, then there are cases where we may be able to find a polynomial Q such that
Q(P(Zi )) is strong mixing, obeying the CLT, but the at the same time Q(P(Zi )) is LRD.

Proof (2) ; (1): Consider for example the trivial case {Xi} i.i.d. Gaussian. There is no

{X ′i }
f .d.d.

= {Xi} so that X ′i = G(Z ′i ), where {Z ′i } is LRD Gaussian, because the
covariance Cov[X ′i ,X

′
0] 6= 0 for large i .
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Self-normalization:

Ignacio N. Lobato (2001)
Testing that a dependent process is uncorrelated.
Journal of the American Statistical Association, 96(455):1066–1076.
*** Uses Dn.

X. Shao (2010)
A self-normalized approach to confidence interval construction in time series.
Journal of the Royal Statistical Society: Series B, 72:343–366.
*** Extended the use of Dn.
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Block sampling:

P. Hall, B.-Y. Jing, and S. N. Lahiri (1998)
On the sampling window method for long-range dependent data.
Statistica Sinica, 8:1189–1204.
*** Block sampling under “LRD” with deterministic normalization.

A. Jach, T. McElroy, and D. N. Politis (2012).
Subsampling inference for the mean of heavy-tailed long-memory time series.
Journal of Time Series Analysis, 33(1):96–111.
*** Specific random normalization. Selection of the block size.

T. Zhang, H-C Ho, M. Wendler, and W.B. Wu (2013)
Block sampling under strong dependence.
Stochastic Processes and their Applications, 123:2323–2339.
*** Same as Hall et al. for finite variance transformation of LRD linear processes
with deterministic normalization.

Bai, S. and Taqqu, M. S. (2015).
On the validity of resampling methods under long memory.
arXiv Preprint arXiv:1512.00819.

Betken, A. and Wendler, M. (2015).
Subsampling for general statistics under long range dependence.
arXiv preprint arXiv:1509.05720.
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Functional limit theorems under strong mixing:

N. Herrndorf (1984)
A functional central limit theorem for weakly dependent sequences of random
variables.
The Annals of Probability, pages 141–153.

Limit theorems under long-range dependence:

R. L. Dobrushin and P. Major (1979)
Non-central limit theorems for non-linear functional of gaussian fields.
Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete, 50:27–52.

M.S. Taqqu (1979)
Convergence of integrated processes of arbitrary Hermite rank.
Probability Theory and Related Fields, 50(1):53–83.

A. Sly and C. Heyde (2008)
Nonstandard limit theorem for infinite variance functionals.
The Annals of Probability, 36(2):796–805.

J. Beran, Y. Feng, S. Ghosh, and R. Kulik (2013).
Long-Memory Processes.
Springer.
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Gaussian maximal correlation inequality:

A.N. Kolmogorov and Y.A. Rozanov (1960)
On strong mixing conditions for stationary Gaussian processes.
Theory of Probability & Its Applications, 5(2):204–208.

GARCH

[Lindner(2009)] Alexander M Lindner. Stationarity, mixing, distributional properties
and moments of garch (p, q)–processes. In Handbook of financial time series, pages
43–69. Springer, 2009.
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