A unified approach to self-normalized block sampling

Murad S. Taqqu

joint work with Shuyang Bai and Ting Zhang

Boston University

August 14, 2016

1/41

Overview:

- 1. **Goal:** To perform inference in such a way that we do not need to estimate unknown parameters in a time series.
- 2. Features of the method: Combines the advantages of self-normalization so as to avoid having to know or to estimate the scale parameters, with block sampling so that one can use the sampling distribution instead of the asymptotic one.
- 3. **Advantage:** To derive a unified approach for short and long-range dependence, and heavy tailed distributions.
- 4. **Application:** Apply the method to inference about the mean.
- 5. **Scope:** We consider two basic cases:
 - (a) the data is subordinated to the Gaussian;
 - (b) the data is strong mixing.

Outline of the talk

- 1. Introduction
- 2. The suggested procedure
- 3. The asymptotic theory in the Gaussian subordinated case
- 4. Examples
- 5. The asymptotic theory in the strong mixing case
- 6. Examples

Confidence interval for the mean: review of the i.i.d. case

Samples $\{X_i, i = 1, ..., n\}$, i.i.d. with finite variance σ^2 . Sample size *n* reasonably large.

Confidence interval for the mean $\mu = \mathbb{E}X_i$ involves:

- Sample mean: X
 _n;
- Sample variance: $\hat{\sigma}_n^2 = \frac{1}{n} \sum_{i=1}^n (X_i \bar{X}_n)^2$;
- Normal $(1 \alpha/2)$ -quantile: $q_{1-\alpha/2}$;

Two-sided $(1 - \alpha)$ -level confidence interval:

$$I_n = [\bar{X}_n - n^{-1/2} \hat{\sigma}_n q_{1-\alpha/2} , \quad \bar{X}_n + n^{-1/2} \hat{\sigma}_n q_{1-\alpha/2}].$$

Then P (Random interval I_n covers μ) $\approx 1 - \alpha$.

Theoretical basis for the confidence interval *l_n* involves:

Central Limit Theorem: $n^{-1/2} \sum_{i=1}^{n} (X_i - \mu) \xrightarrow{d} N(0, \sigma^2)$. Law of Large Numbers: $\hat{\sigma}_n^2 \xrightarrow{a.s.} \sigma^2$.

If $\{X_i\}$ is short-range dependent, then σ^2 is replaced by $\sum_{k=-\infty}^{\infty} \operatorname{Cov}[X_k, X_0] =: \sum_k \gamma(k).$ How to deal with this first challenge?

4/41

Challenge 1: Short-range dependence

 $\{X_i\}$ stationary weakly dependent (short-range dependent) with covariance

$$\gamma(k) = \operatorname{Cov}[X(k), X(0)], \quad k \in \mathbb{Z}, \quad \text{ satisfying } \sum_k |\gamma(k)| < \infty.$$

Central Limit Theorem:

$$n^{-1/2}\sum_{i=1}^{n}(X_i-\mu)\stackrel{d}{\longrightarrow} N(0,\sigma^2),$$

where now σ^2 is the so-called $\mathit{long-run}\ \mathit{variance}$

$$\sigma^2 = \sum_{k=-\infty}^{\infty} \gamma(k).$$

To construct a confidence interval, we need a consistent estimator for σ^2 .

We have the sample covariance: $\hat{\gamma}(k) = \frac{1}{n} \sum_{i=1}^{n-k} (X_i - \bar{X}_n) (X_{i+k} - \bar{X}_n)$. But σ^2 cannot be estimated simply by $\sum_k \hat{\gamma}(k)$ (too few summands for large k).

Challenge 2: Heavy tails

 $\{X_i\}$ i.i.d. heavy-tailed

$$P(X_1 > x) \sim A \frac{1+\beta}{2} x^{-\alpha}, \quad P(X_1 < -x) \sim A \frac{1-\beta}{2} x^{-\alpha} \quad x \to +\infty,$$
 (1)

where constant A > 0, parameters $\beta \in [-1, 1]$, $\alpha \in (1, 2)$.

 $\mathbb{E}|X_1| < \infty$ but $\mathbb{E}|X_1|^2 = \infty$.

Heavy tail Central Limit Theorem:

$$n^{-1/\alpha}\sum_{i=1}^{n}(X_i-\mu)
ightarrow S_{lpha}(\sigma,eta,0)$$

where $S_{\alpha}(\sigma, \beta, 0)$ is the α -stable random variable with location parameter 0, scale parameter σ (depending on A and α) and skewness parameter β .

How about the unknown α , β , A?

Even more complicated situation: a slowly varying function replaces the constant A in (3).

Even more complicated: $\{X_i\}$ are weakly dependent (σ then depends on dependence structure).

Challenge 3: Long-range dependence

 $\{X_i\}$ is strongly dependent (long-range dependent), with covariance function

$$\gamma(k) \sim c_{\gamma} k^{2H-2}, \quad H \in (1/2, 1).$$
 (2)

Some models of $\{X_i\}$, e.g., nonlinear transform of a long-range dependent Gaussian process, give rise to limit theorem (Dobrushin Major (1979), Taqqu 1979):

$$\frac{1}{n^H}\sum_{i=1}^n (X_i - \mu) \stackrel{d}{\longrightarrow} cZ_{m,H},$$

where c depends on c_{γ} and H, and m is a positive integer (the so-called Hermite rank), and

$$Z_{m,H} = v_{m,H} \int_{\mathbb{R}^m}' \int_0^1 \prod_{j=1}^m (s - x_j)_+^{(H-1)/m - 1/2} ds \ B(dx_1) \dots B(dx_m), \quad B(\cdot): \text{ Brownian motion}$$

is a standardized random variable expressed by a multiple Wiener-Itô integral which is non-Gaussian if $m \ge 2$.

Need to estimate c_{γ} , H, m (no available method for m). More complicated if c_{γ} in (4) is replaced by a slowly varying function.

Self-normalization under short-range dependence

Goal: design a way to avoid estimation of the nuisance parameter $\sigma^2 = \sum_k \gamma(k)$.

An idea which works for short-range dependence: self-normalization (Lobato (2001) and Shao (2010)). Consider:

$$D_n = \sqrt{\frac{1}{n} \sum_{k=1}^{n} \left[\sum_{i=1}^{k} X_i - \frac{k}{n} \sum_{i=1}^{n} X_i\right]^2} = \sqrt{\int_0^1 \left[\sum_{i=1}^{[ns]} X_i - \frac{[ns]}{n} \sum_{i=1}^{n} X_i\right]^2} \, ds$$

Note: D_n involves $\sum_i X_i$ and not $\sum_i X_i^2$. Functional Central Limit Theorem (weak convergence in D[0, 1]):

$$rac{1}{n^{1/2}}\sum_{i=1}^{[nt]}(X_i-\mu)\Rightarrow\sigma B(t),\;B(t):\;$$
 Brownian motion.

By the continuous mapping theorem:

$$\frac{n^{-1/2}\sum_{i=1}^{n}(X_i-\mu)}{n^{-1/2}D_n} \xrightarrow{d} \frac{\sigma B(1)}{\sigma \sqrt{\int_0^1 \left[B(s)-sB(1)\right]^2 ds}} =: T.$$

No nuisance parameter! Use the distribution of T to construct confidence interval.

However, there are additional nuisance parameters in the heavy tail and long-range dependence case.

Self-normalization under heavy tail or long-range dependence

In general, suppose we have the Functional Central Limit Theorem

$$\frac{1}{n^{H}\ell(n)}\sum_{i=1}^{[nt]}(X_{i}-\mu)\Rightarrow cY(t),$$

where $H \in (0, 1)$, $\ell(n)$ slowly varying. One gets the self-normalized statistic

$$\frac{\sum_{i=1}^{n}(X_{i}-\mu)}{D_{n}} = \frac{n^{-H}\ell(n)^{-1}\sum_{i=1}^{n}(X_{i}-\mu)}{n^{-H}\ell(n)^{-1}D_{n}} \xrightarrow{d} T = \frac{Y(1)}{\sqrt{\int_{0}^{1}[Y(s)-sY(1)]^{2}ds}}$$

Heavy tail: Y(t) is the α -stable Lévy process $L_{\alpha,\beta}(t)$.

Long-range dependence: Y(t) is the Hermite process $Z_{m,H}(t)$.

Caveat: self-normalization only frees one from the normalization (including the scale parameter), but not from other parameters (e.g. α , m, H). How to deal with that?

Our goal:

To get a confidence interval for $\boldsymbol{\mu}$ using

$$T_n(\mathbf{X}_1^n; \mu) = \frac{\sum_{i=1}^n X_i - n\mu}{D_n(\mathbf{X}_1^n)}, \quad D_n(\mathbf{X}_1^n) = \sqrt{\frac{1}{n} \sum_{k=1}^n \left[\sum_{i=1}^k X_i - \frac{k}{n} \sum_{i=1}^n X_i\right]^2}.$$

where $\mathbf{X}_1^n = (X_1, \dots, X_n).$

10/41

Outline:

- Brief description of the procedure
- Conditions under which it is justified
- Applications

Brief description of the procedure

Recall $\mathbf{X}_1^n = (X_1, \dots, X_n)$ and

$$T_n(\mathbf{X}_1^n; \mu) = \frac{\sum_{i=1}^n X_i - n\mu}{D_n(\mathbf{X}_1^n)}, \quad D_n(\mathbf{X}_1^n) = \sqrt{\frac{1}{n} \sum_{k=1}^n \left[\sum_{i=1}^k X_i - \frac{k}{n} \sum_{i=1}^n X_i\right]^2}.$$

We want to get a confidence interval for μ using $T_n(\mathbf{X}_1^n; \mu)$. But we don't know the distribution of $T_n(\mathbf{X}_1^n; \mu)$. We shall approximate it by the empirical distribution

$$\widehat{F}_{n,b}(x) = rac{1}{n-b+1} \sum_{i=1}^{n-b+1} \mathbb{1}\{T_b(\mathbf{X}_i^{i+b-1}; \bar{X}_n) \leq x\},$$

of $T_b(\mathbf{X}_i^{b+i-1}; \bar{X}_n)$, i = 1, ..., n - b + 1. Note: Using (a) successive i; (b) overall sample mean

How to justify the use of $\widehat{F}_{n,b}(x)$?

The idea is to combine self-normalization with block sampling

We assume:

$$T_n(\mathbf{X}_1^n;\mu) = \frac{\sum_{i=1}^n X_i - n\mu}{D_n(\mathbf{X})} \stackrel{d}{\longrightarrow} T.$$

When the block size *b* is large, we expect (setting $\mu = \mathbb{E}X_i$):

$$T_n(\mathbf{X}_1^n;\mu) \stackrel{d}{\approx}_{ \text{self-normalization}} T_b(\mathbf{X}_1^b;\mu) \stackrel{d}{\approx} T_b(\mathbf{X}_1^b;\bar{X}_n) \stackrel{d}{\approx}_{ \text{block sampling}} \hat{F}_{n,b_n}(x).$$

1st $\stackrel{a}{\approx}$: because self-normalization equalizes the scales of $T_n(\mathbf{X}_1^n; \mu)$ and $T_b(\mathbf{X}_1^b; \mu)$, and does not require knowing them;

2nd $\stackrel{d}{\approx}$: because \bar{X}_n is close to unknown μ when $n \gg b$;

3rd $\stackrel{d}{\approx}$: because $\widehat{F}_{n,b}(x) = \frac{1}{n-b+1} \sum_{i=1}^{n-b+1} 1\{T_b(\mathbf{X}_i^{i+b-1}; \bar{X}_n) \leq x\}$ is the empirical distribution of $T_b(\mathbf{X}_1^b; \bar{X}_n)$.

Assumptions under which this procedure is shown to work:

1. The Gaussian subordination framework

2. The strong mixing framework

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

13/41

The Gaussian subordination case: theoretical assumptions

- $\{X_i\}$: the stationary process we observe.
- $\{Z_i\}$: hidden Gaussian stationary process with covariance $\gamma(k) = \text{Cov}[Z_k, Z_0]$. Assumptions (one-dimensional simplified version):
- A1. Subordination: $X_i = G(Z_i, ..., Z_{i-l})$ with mean $\mu = \mathbb{E}X_i$, where *l* is a fixed non-negative integer;
- A2. Weak convergence in D[0,1]: with a suitable Skorohod topology:

$$\left\{\frac{1}{n^{\mathcal{H}}\ell(n)}(S_{\lfloor nt\rfloor}-n\mu), \ 0\leq t\leq 1\right\} \Rightarrow \left\{Y(t), \ 0\leq t\leq 1\right\},$$

for some process Y(t), where 0 < H < 1 and $\ell(\cdot)$: slowly varying;

A3. Weak canonical correlation: As $n \to \infty$, the block size $b_n \to \infty$, $b_n = o(n)$, and satisfies

$$\sum_{k=0}^n \rho_{k,l+b_n} = o(n),$$

where $\rho_{k,m}$ is the between-block canonical correlation:

$$\rho_{k,m} = \sup_{\mathbf{x},\mathbf{y}\in\mathbb{R}^m} \operatorname{Corr}\left[\langle \mathbf{x},\mathbf{Z}_1^m \rangle \langle \mathbf{y},\mathbf{Z}_{k+1}^{k+m} \rangle\right].$$

14/41

where
$$\mathbf{Z}_{1}^{m} = (Z_{1}, \cdots, Z_{m}), \ \mathbf{Z}_{k+1}^{k+m} = (Z_{k+1}, \cdots, Z_{k+m})$$

Note: $\rho_{k,m}$ involves the underlying Gaussian Z_i and not the nonlinear X_i . **Remark**: The assumptions can be extended to vector valued Z_i , which allows the inclusion of some nonlinear time series models.

Why did the nonlinearity disappear?

The block canonical correlation

$$\rho_{k,m} = \sup_{\mathbf{x}, \mathbf{y} \in \mathbb{R}^m} \operatorname{Corr} \left[\langle \mathbf{x}, \mathbf{Z}_1^m \rangle \langle \mathbf{y}, \mathbf{Z}_{k+1}^{k+m} \rangle \right].$$

involves the underlying Gaussian Z_i and not the nonlinear X_i . This because in the proof we use a key result due to Kolmogorov and Rozanov (1960):

$$\sup_{F,G \in L^2(\mathbf{Z}_1^m)} \left| \operatorname{Corr} \left(F(\mathbf{Z}_1^m), G(\mathbf{Z}_{k+1}^{k+m}) \right) \right| = \sup_{\mathbf{x}, \mathbf{y} \in \mathbb{R}^m} \left| \operatorname{Corr} \left(\langle \mathbf{x}, \mathbf{Z}_1^m \rangle, \langle \mathbf{y}, \mathbf{Z}_{k+1}^{k+m} \rangle \right) \right| = \rho_{k,m}$$

15/41

Main result: consistency of the self-normalized block sampling

Theorem Under Assumptions A1–A3, as $n \to \infty$,

$$\sup_{x\in\mathbb{R}}\left|\widehat{F}_{n,b_n}(x)-P(T_n(\textbf{X}_1^n;\mu)\leq x)\right|\to 0 \quad \text{ in probability},$$

if T has a continuous distribution (otherwise the convergence holds without "sup", for x at continuity points).

So, we can use the empirical distribution

$$\widehat{F}_{n,b_n}(x) = \frac{1}{n-b_n+1} \sum_{i=1}^{n-b_n+1} \mathbb{1}\{T_{b_n}(\mathbf{X}_i^{i+b_n-1}; \bar{X}_n) \leq x\},\$$

which is obtained from the block sampling, to approximate the unknown distribution of

$$T_n(\mathbf{X}_1^n;\mu) = \frac{\sum_{i=1}^n X_i - n\mu}{D_n(\mathbf{X}_1^n)}, \text{ where } D_n(\mathbf{X}_1^n) = \sqrt{\frac{1}{n}\sum_{k=1}^n \left[\sum_{i=1}^k X_i - \frac{k}{n}\sum_{i=1}^n X_i\right]^2}$$

Basic steps in the proof

- Assumption (A2) implies that $T_n(\mathbf{X}_1^n; \mu) \xrightarrow{d} T$ (continuous mapping);
- Bias-variance decomposition (\hat{F}^* is \hat{F} with \bar{X}_n replaced by μ):

$$\mathbb{E}\left[\hat{F}_{n,b_n}^*(x) - P(T \le x)\right]^2 = \left[P\left(T_{b_n}(\mathbf{X}_1^{b_n};\mu) \le x\right) - P(T \le x)\right]^2 + \operatorname{Var}[T_{b_n}(X_1^{b_n};\mu)]$$

- The first bias term goes to zero at continuity points of $P(T \le x)$ by A2.
- ► $\operatorname{Var}[T_{b_n}(X_1^{b_n};\mu)] \to 0$ (follows from A1 and A3).
- ▶ $\hat{F}^*_{n,b_n}(x) \to P(T \le x)$ at continuity points (the centering is by μ).
- $\hat{F}_{n,b_n}(x) \to P(T \le x)$ at continuity points (the centering is by \bar{X}_n).
- ▶ $\sup_x |\hat{F}_{n,b_n}(x) P(T \le x)| \rightarrow 0$ if $P(T \le x)$ is continuous.

When does Assumption A3 hold?

• Long memory case: Suppose that the spectral density of the underlying Gaussian $\{Z_i\}$ is given by

 $f(\lambda) = f_H(\lambda)f_0(\lambda),$

where $f_H(\lambda) = |1 - e^{i\lambda}|^{-2H+1}$, 1/2 < H < 1, and $f_0(\lambda)$ is a short-range dependent spectral density bounded away from zero. Then $b_n = o(n)$ implies Assumption A3.

Examples:

- FARIMA(p, d, q)
- fractional Gaussian noise with H > 1/2.

• Short memory case Suppose that $\inf_{\lambda} f(\lambda) > 0$, and $|\operatorname{Cov}[Z_0, Z_n]| \le d_n$, where d_n is non-increasing and summable (typically, $d_n = cn^{-\beta}$ for some constant c > 0 and $\beta > 1$). If $b_n = o(n)$, then Assumption A3 holds.

• Strong mixing case: $b_n = o(n)$ always implies Assumption A3.

Practical choice of the block size b

Method 1: Rule of thumb: $b = cn^{1/2}$, with typically $1/2 \le c \le 2$ (Hall et al. (1998)).

Method 2: Data-dependent choice (Jach et al (2012)): choose the *b* which minimizes the changes in the Kolmogorov distance of the empirical distribution $\hat{F}_{n,b}(x)$ with respect to *b* (optimum is the most stable point).

- 1. Choose an evenly-spaced block size sequence b_1, \ldots, b_{p+1} (e.g. $b_1 = 5, b_2 = 5 + \delta, \ldots, b_{p+1} = 5 + p\delta$).
- 2. Compute the empirical distributions \hat{F}_{n,b_i} , $i = 1, \ldots, p + 1$.
- 3. Choose $b_{opt} = b_i$ which minimizes $d_{kol}\left(\hat{F}_{n,b_i}, \hat{F}_{n,b_{i+1}}\right)$ in $i = 1, \dots, p$.

We use the rule of thumb $b = n^{1/2}$ in the examples below.

Chi-squared: SRD and LRD

$$X_i = G(Z_i) = Z_i^2,$$

where $\{Z_i\}$ is fractional Gaussian noise with Hurst index H_0 ($H_0 = 0.5$: white noise; $H_0 > 0.5$: long-range dependent; $H_0 < 0.5$: anti-persistent). The mean is $\mu = \mathbb{E}X_i = 1$. Assumption A2 holds with the following dichotomy:

$$\begin{cases} H = 1/2, \ \ell(n) = 1, \ Y(t) = \sigma B(t) & \text{if } H_0 < 3/4; \\ H = 2H_0 - 1, \ \ell(n) = 1, \ Y(t) = c_H Z_{2,H}(t) & \text{if } H_0 > 3/4; \end{cases}$$

where $\sigma^2 = \sum_n \text{Cov}[X(n), X(0)]$, $c_H > 0$, B(t) is the standard Brownian motion and $Z_{2,H}(t)$ is the standard Rosenblatt process (second-order Hermite process).

H_0	0.5	0.7	0.9
	(86,95)	(88,94)	(92,83)

Table: Monte Carlo evaluation of coverage percentage (lower 90%, upper 90%). Sample size=500.

Figure: The running confidence cutoff for a sample path. $H_0 = 0.9$. The $\operatorname{Std}(\bar{X}_n) \sim n^{H-1} = n^{2H_0-2} = n^{-0.2}$.

<ロ > < 部 > < 書 > < 書 > 差 の Q (~ 20 / 41)

Example: t-transform

Data:

 $X_i = G(Z_i) = F_{\alpha}^{-1}(\Phi(Z_i)) \quad \Phi: \text{ standard normal CDF, } F_{\alpha}: t_{\alpha}\text{-distribution CDF }, \alpha > 1,$

where $\{Z_i\}$ is fractional Gaussian noise with Hurst index H_0 . X_i mean 0 and has marginal t distribution with α degrees of freedom which is heavy-tailed: $P(|X_i| > x)$ behaves like $x^{-\alpha}$. $Var[X_i] = \infty$ when $1 < \alpha < 2$ but $\mathbb{E}|X_i| < \infty$. $G(\cdot)$ has (generalized) Hermite rank 1. By Sly and Heyde (2008), Assumption A2 holds with the following dichotomy (for $0 < H_0 < 1$, $1 < \alpha < 2$):

$$\begin{cases} H = 1/\alpha, \ \ell(n) = 1, \ Y(t) = c_{\alpha}L_{\alpha}(t) & \text{if } H_0 < 1/\alpha; \\ H = H_0, \ \ell(n) = 1, \ Y(t) = c_H B_H(t) & \text{if } H_0 > 1/\alpha, \end{cases}$$

where $B_H(t)$ is the fractional Brownian motion and $L_{\alpha}(t)$ is the standard (scale parameter $\sigma = 1$) symmetric α -stable Lévy process. Since $\{Z_i\}$ is fractional Gaussian noise, Assumption A3 holds.

H_0	0.25	0.5	0.75
1.5	(76,74)	(81,81)	(79,78)
2	(78,78)	(85,86)	(82,82)
5	(90,89)	(89,89)	(88,86)
10	(90,89)	(89,89)	(87,87)

Table: Monte Carlo evaluation of coverage percentage (lower 90%, upper 90%). Sample size=500.

Figure: The running confidence cutoff for a sample path. $\alpha = 1.5$, $H_0 = 0.75 > 1/\alpha = 2/3$.

Example: stochastic duration

 $\{Z_i\}$: fractional Gaussian noise with Hurst index H_0 . Data:

$$X_i = \exp(Z_i)\xi_i, \quad \xi_i \stackrel{i.i.d.}{\sim} F(1, 2\alpha), \quad \alpha > 1,$$

 $F(1, 2\alpha)$: F-distribution with parameters 1 and 2α . X_i is positively skewed, dependent when $H_0 \in (1/2, 1)$, and heavy tailed: $P(X_i > x)$ behaves like $x^{-\alpha}$. $\mathbb{E}[X_i] < \infty$ but $\operatorname{Var}[X_i] = \infty$ when $1 < \alpha < 2$. ξ_i can be rewritten as $G(Z'_i)$ for suitable function $G(\cdot)$ and i.i.d. Gaussian $\{Z'_i\}$ which is independent of $\{Z_i\}$. So X_i is subordinated to (Z_i, Z'_i) . The mean is $\mu = \mathbb{E}X_i = \mathbb{E}\exp(Z_i)\mathbb{E}\xi_i = \exp(1/2)\alpha/(\alpha - 1)$. By Beran et al. (2013), Assumption A2 holds with the following dichotomy:

$$\begin{cases} H = 1/\alpha, \ \ell(n) = 1, \ Y(t) = c_{\alpha}L_{\alpha,1,1}(t) & \text{if } H_0 < 1/\alpha; \\ H = H_0, \ \ell(n) = 1, \ Y(t) = c_{H}B_{H}(t) & \text{if } H_0 > 1/\alpha, \end{cases}$$

where $B_H(t)$ is the fractional Brownian motion and $L_{\alpha,1,1}(t)$ is standard ($\sigma = 1$) α -stable Lévy process totally skewed to the right ($\beta = 1$).

Figure: The running confidence cutoff for a sample path. $\alpha = 1.5$, $H_0 = 0.75 > 1/\alpha$.

H_0	0.25	0.5	0.75
1.5	(86,91)	(86,92)	(84,93)
2	(85,94)	(84,95)	(82,94)
5	(84,95)	(84,96)	(80,93)
10	(83,95)	(83,96)	(80,93)

Table: Monte Carlo evaluation of coverage percentage (lower 90%, upper 90%). Sample size=500. Extended to $H_0 \leq 1/2$.

Weak dependence

Two types of weak dependence:

- (1) $X_i = G(Z_i, ..., Z_{i-1})$ with Z_i LRD Gaussian but $\gamma(k) = Cov[X(k), X(0)]$ is summable.
- (2) X_i is strong mixing.

(1) \Rightarrow (2) and (2) \Rightarrow (1).

23/41

What happens if (2) replaces (1) in the assumptions?

The strong mixing case: theoretical assumptions

Gaussian subordination case:

A1. $X_i = G(Z_i, ..., Z_{i-1})$ with mean $\mu = \mathbb{E}X_i$, where *I* is a fixed non-negative integer; A2. We have weak convergence in D[0, 1] with a suitable Skorohod topology:

$$\left\{\frac{1}{n^{H}\ell(n)}(S_{\lfloor nt\rfloor}-n\mu), \ 0\leq t\leq 1\right\}\Rightarrow\left\{Y(t), \ 0\leq t\leq 1\right\},$$

for some process Y(t), where 0 < H < 1 and $\ell(\cdot)$: slowly varying; A3. As $n \to \infty$, the block size $b_n \to \infty$, $b_n = o(n)$, and satisfies $\sum_{k=0}^{n} \rho_{k,l+b_n} = o(n)$.

Strong mixing: $\alpha(k) = \sup \{ |P(A)P(B) - P(A \cap B)|, A \in \mathcal{F}_{-\infty}^0, B \in \mathcal{F}_k^\infty \} \to 0 \text{ as } k \to \infty.$

- **B1**. $\{X_i\}$ is a strong mixing stationary process with mean $\mu = \mathbb{E}X_i$.
- B2. Same as A2.
- **B3**. The block size $b_n \to \infty$ and $b_n = o(n)$ as $n \to \infty$.

Example: moving average

$$X_i = \epsilon_i + a\epsilon_{i-1}, \quad \epsilon_i \stackrel{i.i.d.}{\sim} t_{\alpha},$$

where a > 0, t_{α} is the t-distribution with degrees of freedom α .

 $\{X_i\}$ is 2-dependent and thus strong mixing.

By Avram and Taqqu (1992), Assumption B2 holds with (in the Skorohod M_2 topology) the following dichotomy:

$$\begin{cases} H = 1/2, \ \ell(n) = 1, \ Y(t) = \sigma B(t) & \text{if } \alpha > 2; \\ H = 1/\alpha, \ \ell(n) = 1, \ Y(t) = c_{\alpha} L_{\alpha}(t) & \text{if } 1 < \alpha < 2, \end{cases}$$

where $\sigma^2 = \sum_n \operatorname{Cov}[X(n), X(0)]$, $c_{\alpha} > 0$, B(t) is the standard Brownian motion, $L_{\alpha}(t)$ is the symmetric α -stable Lévy motion.

Figure: The running confidence cutoff for a sample path. $a = 5, \alpha = 5$.

a a	1	2	5
1.5	(82,82)	(82,82)	(81,81)
2	(88,86)	(86,88)	(86,86)
5	(90,91)	(91,90)	(90,90)
10	(90,91)	(90,90)	(90,90)

Table: Monte Carlo evaluation of coverage percentage (lower 90%, upper 90%). Sample size=500.

Example: GARCH(1,1)

 ϵ_i i.i.d. standard Gaussian Data:

$$egin{aligned} X_i &= \sigma_i \epsilon_i \ \sigma_i^2 &= c + a X_{i-1} + b \sigma_{i-1}^2, \quad a,b,c > 0, \ a+b < 1 \end{aligned}$$

It is strong mixing with a geometric decay mixing coefficient and $\mathbb{E}|X_i|^{2+\delta} < \infty$ for $\delta > 0$ small enough (Lindner (2009)). Hence by Herrndorf (1984), Assumption B2 holds with

$$H = 1/2, \ \ell(n) = 1, \ Y(t) = \sigma^2 B(t),$$

where $\sigma^2 = \sum_n \text{Cov}[X(n), X(0)]$ and B(t) is the standard Brownian motion.

Figure: The running confidence cutoff for a sample path. (a, b, c) = (0.2, 0.6, 0.1).

(a, b):	(0.7, 0.1)	(0.5, 0.3)	(0.2, 0.6)
	(89,89)	(88,88)	(87,86)

Table: Monte Carlo evaluation of coverage percentage (lower 90%, upper 90%). Sample size=500. c = 0.1

S. Bai, M.S. Taqqu, and T. Zhang. A unified approach to self-normalized block sampling. *arXiv Preprint arXiv:1512.00820*, to appear in *Stochastic Processes and Their Applications*, 2016.

Bai, S. and Taqqu, M. S. On the validity of resampling methods under long memory. *arXiv Preprint arXiv:1512.00819*, 2015.

Thank you!

(ロ) (部) (E) (E) (E) (000)

Additional slides

Challenge 1: Short-range dependence

 $\{X_i\}$ stationary weakly dependent (short-range dependent) with covariance

$$\gamma(k) = \operatorname{Cov}[X(k), X(0)], \quad k \in \mathbb{Z}, \quad \text{satisfying } \sum_{k} |\gamma(k)| < \infty.$$

Central Limit Theorem:

$$n^{-1/2}\sum_{i=1}^{n}(X_i-\mu)\stackrel{d}{\longrightarrow} N(0,\sigma^2),$$

where now σ^2 is the so-called *long-run variance*

$$\sigma^2 = \sum_{k=-\infty}^{\infty} \gamma(k).$$

To construct a confidence interval, we need a consistent estimator for σ^2 .

We have the sample covariance: $\hat{\gamma}(k) = \frac{1}{n} \sum_{i=1}^{n-k} (X_i - \bar{X}_n) (X_{i+k} - \bar{X}_n)$. But σ^2 cannot be estimated simply by $\sum_k \hat{\gamma}(k)$ (too few summands for large k).

Typical estimator is the lag window which regularizes an infinite-dimensional problem by exploiting the "sparsity" $\gamma(k) \approx 0$ for large k:

$$\hat{\sigma} = \sum_{|k| \leq h} \hat{\gamma}(k) W(k/h),$$

where W(k) is the lag-window function, $h \in \mathbb{Z}_+$ is the bandwidth \mathbb{R} , where \mathbb{Z}_+ is the bandwidth \mathbb{R}_+ i

29/41

Challenge 2: Heavy tails

 $\{X_i\}$ i.i.d. heavy-tailed

$$P(X_1 > x) \sim A \frac{1+\beta}{2} x^{-\alpha}, \quad P(X_1 < -x) \sim A \frac{1-\beta}{2} x^{-\alpha} \quad x \to +\infty,$$
(3)

where constant A > 0, parameters $\beta \in [-1, 1]$, $\alpha \in (1, 2)$.

 $\mathbb{E}|X_1| < \infty$ but $\mathbb{E}|X_1|^2 = \infty$.

Heavy tail Central Limit Theorem:

$$n^{-1/\alpha}\sum_{i=1}^{n}(X_i-\mu)
ightarrow S_{lpha}(\sigma,eta,0)$$

where $S_{\alpha}(\sigma, \beta, 0)$ is the α -stable random variable with location parameter 0, scale parameter σ (depending on A and α) and skewness parameter β .

How about the unknown α , β , A?

Even more complicated situation: a slowly varying function replaces the constant A in (3).

Even more complicated: $\{X_i\}$ are weakly dependent (σ then depends on dependence structure).

Challenge 3: Long-range dependence

 $\{X_i\}$ is strongly dependent (long-range dependent), with covariance function

$$\gamma(k) \sim c_{\gamma} k^{2H-2}, \quad H \in (1/2, 1).$$
 (4)

Some models of $\{X_i\}$, e.g., nonlinear transform of a long-range dependent Gaussian process, give rise to limit theorem (Dobrushin Major (1979), Taqqu 1979):

$$\frac{1}{n^{H}}\sum_{i=1}^{n}(X_{i}-\mu)\overset{d}{\longrightarrow}cZ_{m,H},$$

where c depends on c_{γ} and H, and m is a positive integer (the so-called Hermite rank), and

$$Z_{m,H} = v_{m,H} \int_{\mathbb{R}^m}' \int_0^1 \prod_{j=1}^m (s - x_j)_+^{(H-1)/m - 1/2} ds \ B(dx_1) \dots B(dx_m), \quad B(\cdot): \text{ Brownian motion}$$

is a standardized random variable expressed by a multiple Wiener-Itô integral which is non-Gaussian if $m \ge 2$.

Need to estimate c_{γ} , H, m (no available method for m). More complicated if c_{γ} in (4) is replaced by a slowly varying function.

How about bootstrap?

If $\{X_i\}$ is short-range dependent, one can do the following block bootstrap. Let

$$\mathbf{X}_p^q = (X_p, \ldots, X_q).$$

- 1. Choose a block size *b*. Form n b + 1 successive blocks (with overlap) $X_1^b, X_2^{b+1}, \ldots, X_{n-b+1}^n$.
- 2. Sample randomly with replacement [n/b] blocks. Paste them into a new time series \mathbf{X}^* of length $b \times [n/b]$. Obtain the sample mean \bar{X}^* .
- 3. Repeat this N times, getting N bootstrapped sample mean $\bar{X}_1^*, \ldots, \bar{X}_N^*$.
- 4. Use the empirical distribution of $\{\bar{X}_i^*\}$ to construct confidence interval.

But this does NOT work for long-range dependent case. The strong dependence is destroyed by randomly sampling and pasting the blocks in Step 2.

Idea for remedy: replace pasting by re-scaling.

Block sampling (sampling window bootstrap)

Idea: No resampling. Include all blocks. Form n - b + 1 successive blocks (overlapping) $\mathbf{X}_{1}^{b}, \mathbf{X}_{2}^{b+1}, \dots, \mathbf{X}_{n-b+1}^{n}, b \ll n$.

For each block \mathbf{X}_{i}^{b+i-1} , obtain the block mean $\bar{X}_{i}^{*} = b^{-1} \sum_{j=i}^{i+b-1} X_{j}$. Renormalize it (deterministicly) to get convergence to some limit T.

We cannot directly use the empirical distribution of $\{\bar{X}_i^*\}$, because the block means \bar{X}_i^* fluctuate more than the overall sample mean \bar{X}_n since $b \ll n$. To get the same level of fluctuation, rescale \bar{X}_i^* by

$$r_{b,n} = rac{\sqrt{\mathrm{Var}[\bar{X}_n]}}{\sqrt{\mathrm{Var}[\bar{X}_i^*]}},$$

and use the empirical distribution of $\{r_{b,n}\bar{X}_i^*\}$ as a surrogate to that of T.

Hall et al. (1998) and Zhang et al. (2013) estimate $r_{b,n}$ under long-range dependence. They use further block sampling and thus involve some tuning parameters in addition to *b*.

Caveat: block sampling frees one from knowing the asymptotic distribution, but one needs to estimate the normalization.

Proof of $\operatorname{Var}[\widehat{F}^*_{n,b_n}(x)] \to 0$

$$\begin{aligned} \operatorname{Var}[\widehat{F}_{n,b_n}^*(x)] &= \operatorname{Var}\left[\frac{1}{n-b_n+1}\sum_{i=1}^{n-b_n+1}\operatorname{I}\{T_{i,b_n}^* \leq x\}\right] \\ &\leq \frac{2}{n-b_n+1}\sum_{k=0}^{n}\left|\operatorname{Cov}\left[\operatorname{I}\{T_{1,b_n}^* \leq x\},\operatorname{I}\{T_{k+1,b_n}^* \leq x\}\right]\right|.\end{aligned}$$

Gaussian maximal correlation equality (Kolmogorov and Rozanov (1960)):

$$\sup_{\mathsf{F},\mathsf{G}\in L^2(\mathbf{Z}_1^m)} \left| \operatorname{Corr}(\mathsf{F}(\mathbf{Z}_1^m),\mathsf{G}(\mathbf{Z}_{k+1}^{k+m})) \right| = \sup_{\mathbf{x},\mathbf{y}\in\mathbb{R}^m} \left| \operatorname{Corr}(\langle \mathbf{x},\mathbf{Z}_1^m\rangle,\langle \mathbf{y},\mathbf{Z}_{k+1}^{k+m}\rangle) \right| =:\rho_{k,m}$$

One has

$$\begin{aligned} \left| \operatorname{Cov}[\mathrm{I}\{T_{1,b_n}^* \le x\}, \mathrm{I}\{T_{k+1,b_n}^* \le x\}] \right| &\leq \frac{1}{4} \left| \operatorname{Corr}[\mathrm{I}\{T_{1,b_n}^* \le x\}, \mathrm{I}\{T_{k+1,b_n}^* \le x\}] \right| \\ &\leq \frac{1}{4} \rho_{k,b_n+l}. \end{aligned}$$

Bounding the correlation by 1 for $k < l + b_n$, we have

$$\operatorname{Var}[\widehat{F}_{n,b_n}^*(x)] \leq \frac{1}{2(n-b_n+1)} \sum_{k=0}^n \rho_{k,b_n+l},$$

which converges to zero by Assumption A3.

・ロ ・ ・ 日 ・ ・ 目 ・ ・ 目 ・ う へ (~ 34 / 41

Alternative sufficient condition for Assumption A3

Recall that
$$\gamma(k) = \operatorname{Cov}[Z_0, Z_k], \{Z_i\}$$
 Gaussian, $X_i = G(Z_i, \dots, Z_{i-1})$.
 $M_{\gamma}(n) = \max_{k>n} |\gamma(k)|, \quad \lambda_m =$ minimum eigenvalue of $(\gamma(i-j))_{i,j=1,\dots,m}$

Then

$$\sum_{k=0}^{n} \min\left\{\frac{b_n}{\lambda_{b_n+l}} M_{\gamma}(k), 1\right\} = o(n) \implies A3.$$
(5)

If the spectral density has zeros, the minimum eigenvalue λ_m converges to zero with a rate which depends on the order of the zeros.

In the case of long memory, $\gamma(n) \sim cn^{2H-2}$, $H \in (1/2, 1)$ and the spectral density of $\{Z_i\}$ is bounded below away from zero. Then we have $M_{\gamma}(k) \sim ck^{2H-2}$ and so

$$b_n = o(n^{2-2H}), \quad 0 < 2 - 2H < 1. \implies (5)$$

The proof thus avoids dealing with the complicated specific forms of $F(\cdot)$ and $G(\cdot)$.

Lemma

$$\rho_{k,m} := \sup_{\mathbf{x}, \mathbf{y} \in \mathbb{R}^m} \left| \operatorname{Corr} \left(\langle \mathbf{x}, \mathbf{Z}_1^m \rangle, \langle \mathbf{y}, \mathbf{Z}_{k+1}^{k+m} \rangle \right) \right| \le m \frac{M_{\gamma}(k-m)}{\lambda_m}.$$

Proof.

2nd term =
$$\sup_{\mathbf{x}, \mathbf{y} \in \mathbb{R}^m} \frac{\mathbf{x}^T \Sigma_{k, m} \mathbf{y}}{\sqrt{\mathbf{x}^T \Sigma_m \mathbf{x}} \sqrt{\mathbf{y}^T \Sigma_m \mathbf{y}}} \leq \sup_{\mathbf{x}, \mathbf{y} \in \mathbb{R}^m} \frac{|\mathbf{x}^T \Sigma_{k, m} \mathbf{y}|}{\lambda_m ||\mathbf{x}|| ||\mathbf{y}||} \leq \frac{|\sigma_{k, m}|}{\lambda_m} \leq m \frac{M_{\gamma}(k-m)}{\lambda_m}.$$
$$\Sigma_m = \text{covariance matrix } (\mathbb{E}Z_{i_1} Z_{i_2})_{1 \leq i_1, i_2 \leq m},$$
$$\Sigma_{k, m} = \text{covariance matrix } (\mathbb{E}Z_{i_1} Z_{i_2+k})_{1 \leq i_1, i_2 \leq m}.$$
$$\lambda_m = \text{smallest eigenvalue of } \Sigma_m,$$
$$\sigma_{k, m} = \text{largest singular value of } \Sigma_{k, m}.$$

$$\sigma_{k,m} \leq \text{linear size } \times \text{ largest entry } \leq m \max_{n > k-m} |\mathbb{E}Z_0 Z_n| = m M_{\gamma}(k-m).$$

Note: $\Sigma_{k,m}$ is not a symmetric matrix. The square of its singular values are the eigenvalues of $\Sigma_{k,m}^T \Sigma_{k,m}$, which is symmetric and non-negative definite.

・ロト ・ ア・ ・ ア・ ・ ア・ ア

36/41

Weak dependence

Two types of weak dependence:

(1) $X_i = G(Z_i, ..., Z_{i-1})$ with Z_i LRD Gaussian but $\gamma(k) = Cov[X(k), X(0)]$ is summable.

(2) X_i is strong mixing.

Proof (1) \Rightarrow (2): If Z_i is LRD and $P(Z_i)$ is SRD, then $P(Z_i)$ may not be strong mixing. If it were, then there are cases where we may be able to find a polynomial Q such that $Q(P(Z_i))$ is strong mixing, obeying the CLT, but the at the same time $Q(P(Z_i))$ is LRD.

Proof (2) \Rightarrow (1): Consider for example the trivial case $\{X_i\}$ i.i.d. Gaussian. There is no $\{X'_i\} \stackrel{f.d.d.}{=} \{X_i\}$ so that $X'_i = G(Z'_i)$, where $\{Z'_i\}$ is LRD Gaussian, because the covariance $\operatorname{Cov}[X'_i, X'_0] \neq 0$ for large *i*.

Self-normalization:

Ignacio N. Lobato (2001)

Testing that a dependent process is uncorrelated.

Journal of the American Statistical Association, 96(455):1066–1076. *** Uses D_n.

X. Shao (2010)

A self-normalized approach to confidence interval construction in time series. *Journal of the Royal Statistical Society: Series B*, 72:343–366.

*** Extended the use of D_n .

Block sampling:

Betken, A. and Wendler, M. (2015).

Subsampling for general statistics under long range dependence. arXiv preprint arXiv:1509.05720.

・ロン ・四 と ・ ヨ と ・ ヨ ・

Functional limit theorems under strong mixing:

N. Herrndorf (1984)

A functional central limit theorem for weakly dependent sequences of random variables.

The Annals of Probability, pages 141–153.

Limit theorems under long-range dependence:

R. L. Dobrushin and P. Major (1979)

Non-central limit theorems for non-linear functional of gaussian fields. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete, 50:27-52.

M.S. Taggu (1979)

Convergence of integrated processes of arbitrary Hermite rank. Probability Theory and Related Fields, 50(1):53-83.

A. Sly and C. Heyde (2008) Nonstandard limit theorem for infinite variance functionals. The Annals of Probability, 36(2):796–805.

J. Beran, Y. Feng, S. Ghosh, and R. Kulik (2013). Long-Memory Processes. Springer.

Gaussian maximal correlation inequality:

A.N. Kolmogorov and Y.A. Rozanov (1960)

On strong mixing conditions for stationary Gaussian processes.

Theory of Probability & Its Applications, 5(2):204–208.

GARCH

[Lindner(2009)] Alexander M Lindner. Stationarity, mixing, distributional properties and moments of garch (p, q)-processes. In *Handbook of financial time series*, pages 43–69. Springer, 2009.