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Free independence

Recall that two random variables X and Y are independent, if

E
{(

f (X )− E{f (X )}
)(

g(Y )− E{f (Y )}
)}

= 0,

for any bounded Borel functions f , g : R→ R.

Two random variables a and b are called freely independent, if they
satisfy the condition:

E
{[

f1(a)−E{f1(a)}
][

f2(b)−E{f2(b)}
]
· · ·
[
fk(a)−E{fk(a)}

]}
= 0,

for any bounded Borel-functions f1, f2, . . . , fk .

Except for trivial cases, free independence entails that

ab 6= ba.
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Non-commutative random variables

Think of a and b as Hermitian operators on an infinite dimensional
Hilbert space H,

and
E{a} = 〈aξ, ξ〉

for some unit vector ξ from H.

Then f (a) is defined in terms of spectral theory (for any bounded
Borel-function f ).

Moreover, there exists a unique probability measure µa on R, such
that ∫

R
f (t)µa(dt) = 〈f (a)ξ, ξ〉

for any bounded Borel-function f .

The measure µa is called the (spectral) distribution of a.
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Free convolution

Let µ and ν be probability measures on R, and consider freely
independent Hermitian operators a and b, such that a ∼ µ and
b ∼ ν.

Then the free convolution µ� ν is defined by:

a + b ∼ µ� ν.
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Free infinite divisibility

By ID(�) we denote the class of �-infinitely divisible probability
measures on R, i.e.

µ ∈ ID(�) ⇐⇒ ∀n ∈ N ∃µn ∈ P(R) : µ = µn � µn � · · ·� µn︸ ︷︷ ︸
n terms

.
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The free cumulant transform

Let µ be a probability measure on R, and consider its Cauchy (or
Stieltjes) transform:

Gµ(z) =

∫
R

1
z − t

µ(dt), (z ∈ C+).

The free analog of log µ̂ is the free cumulant transform:

Cµ(z) = zG 〈−1〉
µ (z)− 1, (z ∈ D ⊆ C−).

Theorem [Voiculescu, Maasen, Bercovici-Voiculescu]. For any
probability measures µ1, µ2 on R we have that

Cµ1�µ2(z) = Cµ1(z) + Cµ2(z).
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The Free Lévy-Khintchine-representation

Theorem [Bercovici & Voiculescu]. Let µ be a probability
measure on R with free cumulant transform Cµ.

Then µ is �-infinitely divisible, if and only if Cµ has a
representation in the form:

Cµ(z) = ηz+az2+

∫
R

( 1
1− tz

−1−tz1[−1,1](t)
)
ρ(dt), (z ∈ C−),

where η ∈ R, a ≥ 0 and ρ is a Lévy measure on R.

In that case, the free characteristic triplet (a, ρ, η) is uniquely
determined.
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The Bercovici-Pata bijection

Definition. The Bercovici-Pata bijection Λ: ID(∗)→ ID(�) is
defined as follows:

ID(∗) 3 µ

←→ log µ̂(u) = iηu − au2
2 +

∫
R

(
eiut − 1− iut1[−1,1](t)

)
ρ(dt)

←→ (a, ρ, η)

←→

Cν(z) =

ηz + az2 +

∫
R

( 1
1− tz

− 1− tz1[−1,1](t)
)
ρ(dt)

←→ Λ(µ) := ν ∈ ID(�).

Key Properties:

Λ(µ1 ∗ µ2) = Λ(µ1) � Λ(µ2) for any µ1, µ2 in ID(∗).

Λ(Dcµ) = DcΛ(µ) for any µ in ID(∗) and c in R.
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Free Selfdecomposability

A measure µ on R is �-selfdecomposable, if

∀c ∈ (0, 1) ∃µc ∈ P(R) : µ = Dcµ� µc .

In this case µ and µc are necessarily �-infinitely divisible.
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Λ preserves selfdecomposability

Theorem [Barndorff-Nielsen+T]. For a ∗-infinitely divisible
probability measure µ, we have that

µ is ∗-sd ⇐⇒ Λ(µ) is �-sd.

Corollary. A probability measure ν on R is �-s.d., if and only if
ν ∈ ID(�) and has free characteristic triplet in the form:

(a, k(t)
|t| dt, η),

where k : R \ {0} → [0,∞) is increasing on (−∞, 0) and
decreasing on (0,∞).
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Unimodality

A finite measure µ on R is called unimodal, if, for some a in R, it
has the form

µ(dx) = µ({a})δa(dx) + f (x) dx ,

where f is increasing on (−∞, a) and decreasing on (a,∞).
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Unimodality vs. selfdecomposability – overview

Theorem [Yamasato ’78]. All ∗-selfdecomposable probability
measures are unimodal.

Theorem [Biane ’98]. All �-stable probability measures are
unimodal.

Theorem [Haagerup+T ’11]. The free gamma distributions are
unimodal.

Theorem [Hasebe+T ’13]. All freely selfdecomposable
distributions are unimodal.
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Sketch of proof of unimodality

Assume ν ∈ L(�), and ν ∼ (0, k(t)
|t| dt,

∫ 1
−1 sign(t)k(t) dt).

Then for w in C−, we have that

Cν(w) = w
∫
R

sign(t)k(t)

1− wt
dt.

Setting w = 1
z leads to

1
z
G 〈−1〉
ν (1

z )− 1 =

Cν
(1

z

)
=

∫
R

sign(t)k(t)

z − t
dt,

and hence

G 〈−1〉
ν (1

z ) = z + z
∫
R

sign(t)k(t)

z − t
dt := Hk(z).

We conclude that
1
z = Gν(Hk(z)) for alle z in C+ such that Hk(z) ∈ C+.
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Sketch of proof of unimodality (continued)

By Stieltjes Inversion the density fν is given by

fν(Hk(z)) = − 1
π Im

(1
z

)
, whenever Hk(z) ∈ R.

Here
{z ∈ C+ | Hk(z) ∈ R} = {x + ivk(x) | x ∈ R}.

for a continuous function vk : R→ [0,∞).

It follows that that ν is absolutely continuous with density given by

fν(Hk(x+ivk(x))) = − 1
π
Im
[ 1
x + ivk(x)

]
=

1
π

vk(x)

x2 + vk(x)2 , (x ∈ R).

From this expression one may argue that the equation:

γ = fν(ξ)

has at most 2 solutions in ξ for any γ > 0.
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The classical Gaussian distribution in free
probability

Question [V. Perez-Abreu]: Is N(0, 1) infinitely divisible with
respect to �?

Theorem [Belinschi, Bozejko, Lehner & Speicher, 2011]: Yes!

Question [M. Bozejko]: Is N(0, 1) selfdecomposable with respect
to �?

Theorem [Hasebe, Sakuma, T, 2016]: Yes!
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Characterization of ID(�)

Theorem [Bercovici-Voiculescu, 1993]: For a probability
measure µ on R, the following are equivalent:

(i) µ ∈ ID(�).

(ii) Cµ may be extended to an analytic function Cµ : C− → C.

(iii) There exist a in [0,∞), η in R and a Lévy measure ρ on R,
such that

Cµ(z) = ηz+az2+

∫
R

( 1
1− tz

−1−tz1[−1,1](t)
)
ρ(dt), (z ∈ C−).



Free probability – background �-infinite divisibility �-selfdecomposability Unimodality N(0, 1) is �-sd

Characterization of ID(�)

Theorem [Bercovici-Voiculescu, 1993]: For a probability
measure µ on R, the following are equivalent:

(i) µ ∈ ID(�).

(ii) Cµ may be extended to an analytic function Cµ : C− → C.

(iii) There exist a in [0,∞), η in R and a Lévy measure ρ on R,
such that

Cµ(z) = ηz+az2+

∫
R

( 1
1− tz

−1−tz1[−1,1](t)
)
ρ(dt), (z ∈ C−).



Free probability – background �-infinite divisibility �-selfdecomposability Unimodality N(0, 1) is �-sd

Characterization of ID(�)

Theorem [Bercovici-Voiculescu, 1993]: For a probability
measure µ on R, the following are equivalent:

(i) µ ∈ ID(�).

(ii) Cµ may be extended to an analytic function Cµ : C− → C.

(iii) There exist a in [0,∞), η in R and a Lévy measure ρ on R,
such that

Cµ(z) = ηz+az2+

∫
R

( 1
1− tz

−1−tz1[−1,1](t)
)
ρ(dt), (z ∈ C−).



Free probability – background �-infinite divisibility �-selfdecomposability Unimodality N(0, 1) is �-sd

Characterization of ID(�)

Theorem [Bercovici-Voiculescu, 1993]: For a probability
measure µ on R, the following are equivalent:

(i) µ ∈ ID(�).

(ii) Cµ may be extended to an analytic function Cµ : C− → C.

(iii) There exist a in [0,∞), η in R and a Lévy measure ρ on R,
such that

Cµ(z) = ηz+az2+

∫
R

( 1
1− tz

−1−tz1[−1,1](t)
)
ρ(dt), (z ∈ C−).



Free probability – background �-infinite divisibility �-selfdecomposability Unimodality N(0, 1) is �-sd

An analogous characterization of L(�)

Theorem [Hasebe, Sakuma, T, 2016]: For a probability measure
µ on R, the following are equivalent:

(i) µ ∈ L(�).

(ii) Cµ may be extended to an analytic function Cµ : C− → C,
such that Im(C′µ(z)) ≤ 0 for all z in C−.

(iii) There exist ξ in R and a measure ρ on R, such that∫
R ln(2 + |x |) ρ(dx) <∞, and

C′µ(z) = ξ +

∫
R

x + z
1− xz

ρ(dx), (z ∈ C−).
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Sketch of proof of (ii) ⇒ (iii)

Assume that Cµ : C− → C is analytic such that Im(C′µ(z)) ≤ 0 for
all z in C−.

Consider the analytic function w 7→ −C′µ( 1
w ) : C+ → C+.

By Nevanlinna-Pick representation, there exist a in [0,∞), ξ in R
and a measure ρ on R, such that

−C′µ( 1
w ) = az − ξ +

∫
R

1 + xw
x − w

ρ(dx), (w ∈ C+),

i.e.
C′µ(z) = −a

z
+ ξ +

∫
R

z + x
1− zx

ρ(dx), (z ∈ C−).

Since

lim
y↓0
Cµ(iy) = 0, and Cµ(iy) = Cµ(−i)− i

∫ y

0
C′µ(−it) dt,

one may argue that a = 0, and
∫
R ln(2 + |x |) ρ(dx) <∞.
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Sketch of proof of (iii) ⇒ (i)

Assume that there exist ξ in R and a measure ρ on R, such that

C′µ(z) = ξ +

∫
R

z + x
1− zx

ρ(dx), (z ∈ C−).

Then for any z in C− we find that

Cµ(z) = Cµ(−i) +

∫ z

−i
C′µ(ω) dω

= Cµ(−i) + ξ(z + i) + cz2 +

∫
R\{0}

(∫ z

−i

x + ω

1− xω
dω
)
ρ(dx)

= A + ξz + cz2 +

∫
R\{0}

(
− log(1− xz)− xz

1 + x2

)1 + x2

x2 ρ(dx),

where c = 1
2ρ({0}).
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∫
R

z + x
1− zx

ρ(dx), (z ∈ C−).

Then for any z in C− we find that

Cµ(z) = Cµ(−i) +

∫ z

−i
C′µ(ω) dω

= Cµ(−i) + ξ(z + i) + cz2 +

∫
R\{0}

(∫ z

−i

x + ω

1− xω
dω
)
ρ(dx)

= A + ξz + cz2 +

∫
R\{0}

(
− log(1− xz)− xz

1 + x2

)1 + x2

x2 ρ(dx),

where c = 1
2ρ({0}).
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Sketch of proof of (iii) ⇒ (i) (continued)

Now put

k(x) =

{∫∞
x

1+t2
t2 ρ(dt), if x > 0,∫ x

−∞
1+t2
t2 ρ(dt), if x < 0.

The assumptions on ρ ensure that k(x)
|x | dx is a Lévy measure.

Using integration by parts, we further obtain that

Cµ(z) = A + ξz + cz2 +

∫
R\{0}

(
− log(1− xz)− xz

1 + x2

)1 + x2

x2 ρ(dx)

= A + ξ̃z + cz2 +

∫
R

( 1
1− xz

− 1− xz1[−1,1](x)
)k(x)

|x |
dx .

Since Cµ(−iy)→ 0, as y ↓ 0, we must have that A = 0.
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Sketch of proof of: µ := N(0, 1) ∈ L(�)

From the work of Belinschi, Bozejko, Lehner and Speicher we have
(a) Fµ = 1

Gµ : C+ → C+, may be extended to an analytic bijection
Fµ : Ω→ C+, where Ω is an open connected set, and C+ $ Ω.

(b)
F ′µ(ω)

Fµ(ω)
= ω − Fµ(ω), (ω ∈ Ω).

Now for any z in C−, we put ω = F−1
µ (1

z ) ∈ Ω.

Then since Cµ(z) = zF−1
µ (1

z )− 1, we find that

C′µ(z) = F−1
µ (1

z )− 1
z

1
F ′µ(F−1

µ (1
z ))

= ω − Fµ(ω)

F ′µ(ω)
= ω − 1

ω − Fµ(ω)
.

So it remains to argue that

Im
(
ω − 1

ω − Fµ(ω)

)
≤ 0, (ω ∈ Ω).



Free probability – background �-infinite divisibility �-selfdecomposability Unimodality N(0, 1) is �-sd

Sketch of proof of: µ := N(0, 1) ∈ L(�)

From the work of Belinschi, Bozejko, Lehner and Speicher we have
(a) Fµ = 1

Gµ : C+ → C+, may be extended to an analytic bijection
Fµ : Ω→ C+, where Ω is an open connected set, and C+ $ Ω.

(b)
F ′µ(ω)

Fµ(ω)
= ω − Fµ(ω), (ω ∈ Ω).

Now for any z in C−, we put ω = F−1
µ (1

z ) ∈ Ω.

Then since Cµ(z) = zF−1
µ (1

z )− 1, we find that

C′µ(z) = F−1
µ (1

z )− 1
z

1
F ′µ(F−1

µ (1
z ))

= ω − Fµ(ω)

F ′µ(ω)
= ω − 1

ω − Fµ(ω)
.

So it remains to argue that

Im
(
ω − 1

ω − Fµ(ω)

)
≤ 0, (ω ∈ Ω).



Free probability – background �-infinite divisibility �-selfdecomposability Unimodality N(0, 1) is �-sd

Sketch of proof of: µ := N(0, 1) ∈ L(�)

From the work of Belinschi, Bozejko, Lehner and Speicher we have
(a) Fµ = 1

Gµ : C+ → C+, may be extended to an analytic bijection
Fµ : Ω→ C+, where Ω is an open connected set, and C+ $ Ω.

(b)
F ′µ(ω)

Fµ(ω)
= ω − Fµ(ω), (ω ∈ Ω).

Now for any z in C−, we put ω = F−1
µ (1

z ) ∈ Ω.

Then since Cµ(z) = zF−1
µ (1

z )− 1, we find that

C′µ(z) = F−1
µ (1

z )− 1
z

1
F ′µ(F−1

µ (1
z ))

= ω − Fµ(ω)

F ′µ(ω)
= ω − 1

ω − Fµ(ω)
.

So it remains to argue that

Im
(
ω − 1

ω − Fµ(ω)

)
≤ 0, (ω ∈ Ω).



Free probability – background �-infinite divisibility �-selfdecomposability Unimodality N(0, 1) is �-sd

Sketch of proof of: µ := N(0, 1) ∈ L(�)

From the work of Belinschi, Bozejko, Lehner and Speicher we have
(a) Fµ = 1

Gµ : C+ → C+, may be extended to an analytic bijection
Fµ : Ω→ C+, where Ω is an open connected set, and C+ $ Ω.

(b)
F ′µ(ω)

Fµ(ω)
= ω − Fµ(ω), (ω ∈ Ω).

Now for any z in C−, we put ω = F−1
µ (1

z ) ∈ Ω.

Then since Cµ(z) = zF−1
µ (1

z )− 1, we find that

C′µ(z) = F−1
µ (1

z )− 1
z

1
F ′µ(F−1

µ (1
z ))

= ω − Fµ(ω)

F ′µ(ω)
= ω − 1

ω − Fµ(ω)
.

So it remains to argue that

Im
(
ω − 1

ω − Fµ(ω)

)
≤ 0, (ω ∈ Ω).



Free probability – background �-infinite divisibility �-selfdecomposability Unimodality N(0, 1) is �-sd

Sketch of proof of: µ := N(0, 1) ∈ L(�)

From the work of Belinschi, Bozejko, Lehner and Speicher we have
(a) Fµ = 1

Gµ : C+ → C+, may be extended to an analytic bijection
Fµ : Ω→ C+, where Ω is an open connected set, and C+ $ Ω.

(b)
F ′µ(ω)

Fµ(ω)
= ω − Fµ(ω), (ω ∈ Ω).

Now for any z in C−, we put ω = F−1
µ (1

z ) ∈ Ω.

Then since Cµ(z) = zF−1
µ (1

z )− 1, we find that

C′µ(z) = F−1
µ (1

z )− 1
z

1
F ′µ(F−1

µ (1
z ))

= ω − Fµ(ω)

F ′µ(ω)

= ω − 1
ω − Fµ(ω)

.

So it remains to argue that

Im
(
ω − 1

ω − Fµ(ω)

)
≤ 0, (ω ∈ Ω).



Free probability – background �-infinite divisibility �-selfdecomposability Unimodality N(0, 1) is �-sd

Sketch of proof of: µ := N(0, 1) ∈ L(�)

From the work of Belinschi, Bozejko, Lehner and Speicher we have
(a) Fµ = 1

Gµ : C+ → C+, may be extended to an analytic bijection
Fµ : Ω→ C+, where Ω is an open connected set, and C+ $ Ω.

(b)
F ′µ(ω)

Fµ(ω)
= ω − Fµ(ω), (ω ∈ Ω).

Now for any z in C−, we put ω = F−1
µ (1

z ) ∈ Ω.

Then since Cµ(z) = zF−1
µ (1

z )− 1, we find that

C′µ(z) = F−1
µ (1

z )− 1
z

1
F ′µ(F−1

µ (1
z ))

= ω − Fµ(ω)

F ′µ(ω)
= ω − 1

ω − Fµ(ω)
.

So it remains to argue that

Im
(
ω − 1

ω − Fµ(ω)

)
≤ 0, (ω ∈ Ω).



Free probability – background �-infinite divisibility �-selfdecomposability Unimodality N(0, 1) is �-sd

Sketch of proof of: µ := N(0, 1) ∈ L(�)

From the work of Belinschi, Bozejko, Lehner and Speicher we have
(a) Fµ = 1

Gµ : C+ → C+, may be extended to an analytic bijection
Fµ : Ω→ C+, where Ω is an open connected set, and C+ $ Ω.

(b)
F ′µ(ω)

Fµ(ω)
= ω − Fµ(ω), (ω ∈ Ω).

Now for any z in C−, we put ω = F−1
µ (1

z ) ∈ Ω.

Then since Cµ(z) = zF−1
µ (1

z )− 1, we find that

C′µ(z) = F−1
µ (1

z )− 1
z

1
F ′µ(F−1

µ (1
z ))

= ω − Fµ(ω)

F ′µ(ω)
= ω − 1

ω − Fµ(ω)
.

So it remains to argue that

Im
(
ω − 1

ω − Fµ(ω)

)
≤ 0, (ω ∈ Ω).


	-infinite divisibility

