Selfdecomposable distributions in free probability

15. august 2016

Steen Thorbjørnsen, Dept. of Mathematics, Univ. of Aarhus

Selfdecomposable distributions in free probability

15. august 2016

Steen Thorbjørnsen, Dept. of Mathematics, Univ. of Aarhus

Takahiro Hasebe, Dept. of Mathematics, Hokkaido University, Japan.

Noriyoshi Sakuma, Dept. of Mathematics, Aichi Univ. of Educ., Japan.

Free independence

Recall that two random variables X and Y are independent, if

$$\mathbb{E}\left\{\left(f(X) - \mathbb{E}\left\{f(X)\right\}\right)\left(g(Y) - \mathbb{E}\left\{f(Y)\right\}\right)\right\} = 0,$$

for any bounded Borel functions $f, g \colon \mathbb{R} \to \mathbb{R}$.

Free independence

Recall that two random variables X and Y are independent, if

$$\mathbb{E}\left\{\left(f(X) - \mathbb{E}\left\{f(X)\right\}\right)\left(g(Y) - \mathbb{E}\left\{f(Y)\right\}\right)\right\} = 0,$$

for any bounded Borel functions $f, g \colon \mathbb{R} \to \mathbb{R}$.

Two random variables a and b are called freely independent, if they satisfy the condition:

$$\mathbb{E}\left\{\left[f_1(a) - \mathbb{E}\left\{f_1(a)\right\}\right]\left[f_2(b) - \mathbb{E}\left\{f_2(b)\right\}\right] \cdots \left[f_k(a) - \mathbb{E}\left\{f_k(a)\right\}\right]\right\} = 0,$$

for any bounded Borel-functions f_1, f_2, \ldots, f_k .

Free independence

Recall that two random variables X and Y are independent, if

$$\mathbb{E}\left\{\left(f(X) - \mathbb{E}\left\{f(X)\right\}\right)\left(g(Y) - \mathbb{E}\left\{f(Y)\right\}\right)\right\} = 0,$$

for any bounded Borel functions $f, g \colon \mathbb{R} \to \mathbb{R}$.

Two random variables a and b are called freely independent, if they satisfy the condition:

$$\mathbb{E}\left\{\left[f_1(a) - \mathbb{E}\left\{f_1(a)\right\}\right]\left[f_2(b) - \mathbb{E}\left\{f_2(b)\right\}\right] \cdots \left[f_k(a) - \mathbb{E}\left\{f_k(a)\right\}\right]\right\} = 0,$$

for any bounded Borel-functions f_1, f_2, \ldots, f_k .

Except for trivial cases, free independence entails that

$$ab \neq ba$$
.

Non-commutative random variables

Think of *a* and *b* as Hermitian operators on an infinite dimensional Hilbert space \mathcal{H} ,

Non-commutative random variables

Think of a and b as Hermitian operators on an infinite dimensional Hilbert space \mathcal{H} , and

$$\mathbb{E}\{a\} = \langle a\xi, \xi
angle$$

for some unit vector ξ from \mathcal{H} .

Free probability – background

⊞-infinite divisibili

 \blacksquare -selfdecomposability

omposability Unimodality

N(0, 1) is ⊞-sd

Non-commutative random variables

Think of *a* and *b* as Hermitian operators on an infinite dimensional Hilbert space \mathcal{H} , and

$$\mathbb{E}\{a\} = \langle a\xi, \xi
angle$$

for some unit vector ξ from \mathcal{H} .

Then f(a) is defined in terms of spectral theory (for any bounded Borel-function f).

Non-commutative random variables

Think of a and b as Hermitian operators on an infinite dimensional Hilbert space \mathcal{H} , and

$$\mathbb{E}\{a\} = \langle a\xi, \xi \rangle$$

for some unit vector ξ from \mathcal{H} .

Then f(a) is defined in terms of spectral theory (for any bounded Borel-function f).

Moreover, there exists a unique probability measure μ_a on \mathbb{R} , such that

$$\int_{\mathbb{R}} f(t) \, \mu_{\mathbf{a}}(\mathrm{d}t) = \langle f(\mathbf{a})\xi, \xi \rangle$$

for any bounded Borel-function f.

Non-commutative random variables

Think of a and b as Hermitian operators on an infinite dimensional Hilbert space \mathcal{H} , and

$$\mathbb{E}\{a\} = \langle a\xi, \xi
angle$$

for some unit vector ξ from \mathcal{H} .

Then f(a) is defined in terms of spectral theory (for any bounded Borel-function f).

Moreover, there exists a unique probability measure μ_a on \mathbb{R} , such that

$$\int_{\mathbb{R}} f(t) \, \mu_{\mathbf{a}}(\mathrm{d}t) = \langle f(\mathbf{a})\xi, \xi \rangle$$

for any bounded Borel-function f.

The measure μ_a is called the (spectral) distribution of a.

Free convolution

Let μ and ν be probability measures on \mathbb{R} , and consider *freely independent* Hermitian operators *a* and *b*, such that $a \sim \mu$ and $b \sim \nu$.

Free convolution

Let μ and ν be probability measures on \mathbb{R} , and consider *freely independent* Hermitian operators *a* and *b*, such that $a \sim \mu$ and $b \sim \nu$.

Then the free convolution $\mu \boxplus \nu$ is defined by:

 $a + b \sim \mu \boxplus \nu$.

Free infinite divisibility

By $\mathcal{ID}(\boxplus)$ we denote the class of \boxplus -infinitely divisible probability measures on \mathbb{R} , i.e.

$$\mu \in \mathcal{ID}(\boxplus) \iff \forall n \in \mathbb{N} \; \exists \mu_n \in \mathcal{P}(\mathbb{R}) \colon \mu = \underbrace{\mu_n \boxplus \mu_n \boxplus \cdots \boxplus \mu_n}_{n \text{ terms}}.$$

Free probability – background ⊞-infinite divisibility ⊞-selfdecomposability Unimodality

N(0, 1) is ⊞-sd

The free cumulant transform

Let μ be a probability measure on \mathbb{R} , and consider its Cauchy (or Stieltjes) transform:

$$\mathcal{G}_{\mu}(z) = \int_{\mathbb{R}} rac{1}{z-t}\,\mu(\mathrm{d} t), \qquad (z\in\mathbb{C}^+).$$

Free probability – background —infinite divisibility —selfdecomposability Unimodality

N(0, 1) is ⊞-sd

The free cumulant transform

Let μ be a probability measure on \mathbb{R} , and consider its Cauchy (or Stieltjes) transform:

$$\mathcal{G}_{\mu}(z) = \int_{\mathbb{R}} rac{1}{z-t}\,\mu(\mathrm{d} t), \qquad (z\in\mathbb{C}^+).$$

The free analog of log $\hat{\mu}$ is the free cumulant transform:

$$\mathcal{C}_{\mu}(z)=z\mathcal{G}_{\mu}^{\langle-1
angle}(z)-1, \qquad (z\in\mathcal{D}\subseteq\mathbb{C}^{-}).$$

Free probability – background

⊞-infinite divisibility

 \blacksquare -selfdecomposability

Unimodality

N(0, 1) is ⊞-sd

The free cumulant transform

Let μ be a probability measure on \mathbb{R} , and consider its Cauchy (or Stieltjes) transform:

$$\mathcal{G}_{\mu}(z) = \int_{\mathbb{R}} rac{1}{z-t}\,\mu(\mathrm{d}\,t), \qquad (z\in\mathbb{C}^+).$$

The free analog of log $\hat{\mu}$ is the free cumulant transform:

$$\mathcal{C}_{\mu}(z)=z \mathcal{G}_{\mu}^{\langle -1
angle}(z)-1, \qquad (z\in\mathcal{D}\subseteq\mathbb{C}^{-}).$$

Theorem [Voiculescu, Maasen, Bercovici-Voiculescu]. For any probability measures μ_1, μ_2 on \mathbb{R} we have that

$$\mathcal{C}_{\mu_1\boxplus\mu_2}(z)=\mathcal{C}_{\mu_1}(z)+\mathcal{C}_{\mu_2}(z).$$

Theorem [Bercovici & Voiculescu]. Let μ be a probability measure on \mathbb{R} with free cumulant transform \mathcal{C}_{μ} .

Theorem [Bercovici & Voiculescu]. Let μ be a probability measure on \mathbb{R} with free cumulant transform \mathcal{C}_{μ} .

Then μ is $\boxplus\text{-infinitely}$ divisible, if and only if \mathcal{C}_{μ} has a representation in the form:

$$\mathcal{C}_{\mu}(z) = \eta z + \mathsf{a} z^2 + \int_{\mathbb{R}} \left(\frac{1}{1 - tz} - 1 - tz \mathbf{1}_{[-1,1]}(t) \right) \rho(\mathrm{d} t), \quad (z \in \mathbb{C}^-),$$

Theorem [Bercovici & Voiculescu]. Let μ be a probability measure on \mathbb{R} with free cumulant transform \mathcal{C}_{μ} .

Then μ is \boxplus -infinitely divisible, if and only if \mathcal{C}_{μ} has a representation in the form:

$$\mathcal{C}_{\mu}(z) = \eta z + a z^2 + \int_{\mathbb{R}} \left(\frac{1}{1-tz} - 1 - tz \mathbb{1}_{[-1,1]}(t) \right) \rho(\mathrm{d}t), \quad (z \in \mathbb{C}^-),$$

where $\eta \in \mathbb{R}$, $a \ge 0$ and ρ is a Lévy measure on \mathbb{R} .

Theorem [Bercovici & Voiculescu]. Let μ be a probability measure on \mathbb{R} with free cumulant transform \mathcal{C}_{μ} .

Then μ is \boxplus -infinitely divisible, if and only if \mathcal{C}_{μ} has a representation in the form:

$$\mathcal{C}_{\mu}(z) = \eta z + a z^2 + \int_{\mathbb{R}} \left(\frac{1}{1-tz} - 1 - tz \mathbb{1}_{[-1,1]}(t) \right)
ho(\mathrm{d}t), \quad (z \in \mathbb{C}^-),$$

where $\eta \in \mathbb{R}$, $a \ge 0$ and ρ is a Lévy measure on \mathbb{R} .

In that case, the *free characteristic triplet* (a, ρ, η) is uniquely determined.

The Bercovici-Pata bijection

Definition. The Bercovici-Pata bijection $\Lambda: \mathcal{ID}(*) \to \mathcal{ID}(\boxplus)$ is defined as follows:

 $\mathcal{ID}(*) \ni \mu$

The Bercovici-Pata bijection

$$\mathcal{ID}(*) \ni \mu \longleftrightarrow \log \hat{\mu}(u) = i\eta u - \frac{au^2}{2} + \int_{\mathbb{R}} \left(e^{iut} - 1 - iut\mathbf{1}_{[-1,1]}(t) \right) \rho(\mathrm{d}t)$$

Free probability – background —infinite divisibility —selfdecomposability Unimodality

N(0, 1) is ⊞-sd

The Bercovici-Pata bijection

$$\begin{split} \mathcal{ID}(*) \ni \mu &\longleftrightarrow \log \hat{\mu}(u) = \mathrm{i}\eta u - rac{au^2}{2} + \int_{\mathbb{R}} \left(\mathrm{e}^{\mathrm{i}ut} - 1 - \mathrm{i}ut \mathbb{1}_{[-1,1]}(t) \right)
ho(\mathrm{d}t) \ &\longleftrightarrow (a,
ho,\eta) \end{split}$$

 \blacksquare -selfdecomposability Unimodality

The Bercovici-Pata bijection

$$\begin{split} \mathcal{ID}(*) \ni \mu &\longleftrightarrow \log \hat{\mu}(u) = \mathrm{i}\eta u - \frac{au^2}{2} + \int_{\mathbb{R}} \left(\mathrm{e}^{\mathrm{i}ut} - 1 - \mathrm{i}ut\mathbf{1}_{[-1,1]}(t) \right) \rho(\mathrm{d}t) \\ &\longleftrightarrow \quad (a, \rho, \eta) \\ &\longleftrightarrow \quad \eta z + az^2 + \int_{\mathbb{R}} \left(\frac{1}{1 - tz} - 1 - tz\mathbf{1}_{[-1,1]}(t) \right) \rho(\mathrm{d}t) \end{split}$$

 \blacksquare -selfdecomposability Unimodality

N(0, 1) is ⊞-sd

The Bercovici-Pata bijection

$$\begin{split} \mathcal{ID}(*) \ni \mu &\longleftrightarrow \log \hat{\mu}(u) = \mathrm{i}\eta u - \frac{au^2}{2} + \int_{\mathbb{R}} \left(\mathrm{e}^{\mathrm{i}ut} - 1 - \mathrm{i}ut\mathbf{1}_{[-1,1]}(t) \right) \rho(\mathrm{d}t) \\ &\longleftrightarrow (a,\rho,\eta) \\ &\longleftrightarrow \mathcal{C}_{\nu}(z) = \eta z + az^2 + \int_{\mathbb{R}} \left(\frac{1}{1-tz} - 1 - tz\mathbf{1}_{[-1,1]}(t) \right) \rho(\mathrm{d}t) \end{split}$$

 \blacksquare -selfdecomposability Unimodality

N(0, 1) is ⊞-sd

The Bercovici-Pata bijection

$$\begin{split} \mathcal{ID}(*) \ni \mu &\longleftrightarrow \log \hat{\mu}(u) = \mathrm{i}\eta u - \frac{au^2}{2} + \int_{\mathbb{R}} \left(\mathrm{e}^{\mathrm{i}ut} - 1 - \mathrm{i}ut\mathbf{1}_{[-1,1]}(t) \right) \rho(\mathrm{d}t) \\ &\longleftrightarrow (a, \rho, \eta) \\ &\longleftrightarrow \mathcal{C}_{\nu}(z) = \eta z + az^2 + \int_{\mathbb{R}} \left(\frac{1}{1 - tz} - 1 - tz\mathbf{1}_{[-1,1]}(t) \right) \rho(\mathrm{d}t) \\ &\longleftrightarrow \Lambda(\mu) := \nu \in \mathcal{ID}(\boxplus). \end{split}$$

⊞-selfdecomposability Unimodality

The Bercovici-Pata bijection

Definition. The Bercovici-Pata bijection $\Lambda: \mathcal{ID}(*) \to \mathcal{ID}(\boxplus)$ is defined as follows:

$$\begin{split} \mathcal{ID}(*) \ni \mu &\longleftrightarrow \log \hat{\mu}(u) = \mathrm{i}\eta u - \frac{au^2}{2} + \int_{\mathbb{R}} \left(\mathrm{e}^{\mathrm{i}ut} - 1 - \mathrm{i}ut\mathbf{1}_{[-1,1]}(t) \right) \rho(\mathrm{d}t) \\ &\longleftrightarrow (a, \rho, \eta) \\ &\longleftrightarrow \mathcal{C}_{\nu}(z) = \eta z + az^2 + \int_{\mathbb{R}} \left(\frac{1}{1 - tz} - 1 - tz\mathbf{1}_{[-1,1]}(t) \right) \rho(\mathrm{d}t) \\ &\longleftrightarrow \Lambda(\mu) := \nu \in \mathcal{ID}(\boxplus). \end{split}$$

Key Properties:

• $\Lambda(\mu_1 * \mu_2) = \Lambda(\mu_1) \boxplus \Lambda(\mu_2)$ for any μ_1, μ_2 in $\mathcal{ID}(*)$.

r

The Bercovici-Pata bijection

Definition. The Bercovici-Pata bijection $\Lambda: \mathcal{ID}(*) \to \mathcal{ID}(\boxplus)$ is defined as follows:

$$\begin{split} \mathcal{ID}(*) \ni \mu &\longleftrightarrow \log \hat{\mu}(u) = \mathrm{i}\eta u - \frac{au^2}{2} + \int_{\mathbb{R}} \left(\mathrm{e}^{\mathrm{i}ut} - 1 - \mathrm{i}ut\mathbf{1}_{[-1,1]}(t) \right) \rho(\mathrm{d}t) \\ &\longleftrightarrow (a, \rho, \eta) \\ &\longleftrightarrow \mathcal{C}_{\nu}(z) = \eta z + az^2 + \int_{\mathbb{R}} \left(\frac{1}{1 - tz} - 1 - tz\mathbf{1}_{[-1,1]}(t) \right) \rho(\mathrm{d}t) \\ &\longleftrightarrow \Lambda(\mu) := \nu \in \mathcal{ID}(\boxplus). \end{split}$$

Key Properties:

• $\Lambda(\mu_1 * \mu_2) = \Lambda(\mu_1) \boxplus \Lambda(\mu_2)$ for any μ_1, μ_2 in $\mathcal{ID}(*)$.

•
$$\Lambda(D_c\mu) = D_c\Lambda(\mu)$$
 for any μ in $\mathcal{ID}(*)$ and c in \mathbb{R} .

 $\label{eq:Free probability} Free probability = background \qquad \boxplus \mbox{-infinite divisibility} \qquad \blacksquare \mbox{-selfdecomposability} \qquad Unimodality \qquad N(0,1) \mbox{ is }\boxplus \mbox{-selfdecomposability} \qquad \blacksquare \mbox{-selfdecomposability}$

Free Selfdecomposability

A measure μ on $\mathbb R$ is \boxplus -selfdecomposable, if

$$\forall c \in (0,1) \ \exists \mu_c \in \mathcal{P}(\mathbb{R}) \colon \mu = D_c \mu \boxplus \mu_c.$$

 $\label{eq:Free probability} Free probability = background = infinite divisibility = background = background$

Free Selfdecomposability

A measure μ on $\mathbb R$ is $\boxplus\mbox{-selfdecomposable, if}$

$$\forall c \in (0,1) \ \exists \mu_c \in \mathcal{P}(\mathbb{R}) \colon \mu = D_c \mu \boxplus \mu_c.$$

In this case μ and μ_c are necessarily \boxplus -infinitely divisible.

∧ preserves selfdecomposability

Theorem [Barndorff-Nielsen+T]. For a *-infinitely divisible probability measure μ , we have that

$$\mu$$
 is *-sd $\iff \Lambda(\mu)$ is \boxplus -sd

Λ preserves selfdecomposability

Theorem [Barndorff-Nielsen+T]. For a *-infinitely divisible probability measure μ , we have that

$$\mu$$
 is *-sd $\iff \Lambda(\mu)$ is \boxplus -sd.

Corollary. A probability measure ν on \mathbb{R} is \boxplus -s.d., if and only if $\nu \in \mathcal{ID}(\boxplus)$ and has free characteristic triplet in the form:

$$(a, \frac{k(t)}{|t|} \mathrm{d}t, \eta),$$

Λ preserves selfdecomposability

Theorem [Barndorff-Nielsen+T]. For a *-infinitely divisible probability measure μ , we have that

$$\mu$$
 is *-sd $\iff \Lambda(\mu)$ is \boxplus -sd.

Corollary. A probability measure ν on \mathbb{R} is \boxplus -s.d., if and only if $\nu \in \mathcal{ID}(\boxplus)$ and has free characteristic triplet in the form:

$$(a, \frac{k(t)}{|t|} \mathrm{d}t, \eta),$$

where $k \colon \mathbb{R} \setminus \{0\} \to [0,\infty)$ is increasing on $(-\infty,0)$ and decreasing on $(0,\infty)$.

Unimodality

A finite measure μ on $\mathbb R$ is called unimodal, if, for some a in $\mathbb R,$ it has the form

$$\mu(\mathrm{d} x) = \mu(\{a\})\delta_a(\mathrm{d} x) + f(x)\,\mathrm{d} x,$$

where f is increasing on $(-\infty, a)$ and decreasing on (a, ∞) .

Unimodality vs. selfdecomposability - overview

Theorem [Yamasato '78]. All *-selfdecomposable probability measures are unimodal.

Unimodality vs. selfdecomposability – overview

Theorem [Yamasato '78]. All *-selfdecomposable probability measures are unimodal.

Theorem [Biane '98]. All \boxplus -stable probability measures are unimodal.
Unimodality vs. selfdecomposability – overview

Theorem [Yamasato '78]. All *-selfdecomposable probability measures are unimodal.

Theorem [Biane '98]. All \boxplus -stable probability measures are unimodal.

Theorem [Haagerup+T '11]. The free gamma distributions are unimodal.

Unimodality vs. selfdecomposability – overview

Theorem [Yamasato '78]. All *-selfdecomposable probability measures are unimodal.

Theorem [Biane '98]. All \boxplus -stable probability measures are unimodal.

Theorem [Haagerup+T '11]. The free gamma distributions are unimodal.

Theorem [Hasebe+T '13]. All freely selfdecomposable distributions are unimodal.

Assume $\nu \in \mathcal{L}(\boxplus)$, and $\nu \sim (0, \frac{k(t)}{|t|} dt, \int_{-1}^{1} \operatorname{sign}(t)k(t) dt)$.

Assume
$$\nu \in \mathcal{L}(\boxplus)$$
, and $\nu \sim (0, \frac{k(t)}{|t|} dt, \int_{-1}^{1} \operatorname{sign}(t)k(t) dt)$.

Then for w in \mathbb{C}^- , we have that

$$\mathcal{C}_{
u}(w) = w \int_{\mathbb{R}} rac{\operatorname{sign}(t)k(t)}{1 - wt} \,\mathrm{d}t.$$

Free probability – background ⊞-infinite divisibility ⊞-selfdecomposability

Sketch of proof of unimodality

Assume
$$\nu \in \mathcal{L}(\boxplus)$$
, and $\nu \sim (0, \frac{k(t)}{|t|} dt, \int_{-1}^{1} \operatorname{sign}(t)k(t) dt)$.

Then for w in \mathbb{C}^- , we have that

$$\mathcal{C}_{\nu}(w) = w \int_{\mathbb{R}} rac{\operatorname{sign}(t)k(t)}{1 - wt} \,\mathrm{d}t.$$

Setting $w = \frac{1}{7}$ leads to

$$\mathcal{C}_{\nu}(\frac{1}{z}) = \int_{\mathbb{R}} \frac{\operatorname{sign}(t)k(t)}{z-t} \,\mathrm{d}t,$$

Assume
$$\nu \in \mathcal{L}(\boxplus)$$
, and $\nu \sim (0, \frac{k(t)}{|t|} dt, \int_{-1}^{1} \operatorname{sign}(t)k(t) dt)$.

Then for w in \mathbb{C}^- , we have that

$$\mathcal{C}_{\nu}(w) = w \int_{\mathbb{R}} rac{\operatorname{sign}(t)k(t)}{1 - wt} \,\mathrm{d}t.$$

Setting $w = \frac{1}{7}$ leads to

$$\frac{1}{z}G_{\nu}^{\langle -1\rangle}(\frac{1}{z})-1=\mathcal{C}_{\nu}(\frac{1}{z})=\int_{\mathbb{R}}\frac{\operatorname{sign}(t)k(t)}{z-t}\,\mathrm{d}t,$$

Assume
$$\nu \in \mathcal{L}(\boxplus)$$
, and $\nu \sim (0, \frac{k(t)}{|t|} dt, \int_{-1}^{1} \operatorname{sign}(t)k(t) dt)$.

Then for w in \mathbb{C}^- , we have that

$$\mathcal{C}_{\nu}(w) = w \int_{\mathbb{R}} rac{\operatorname{sign}(t)k(t)}{1 - wt} \,\mathrm{d}t.$$

Setting $w = \frac{1}{7}$ leads to

$$\frac{1}{z}G_{\nu}^{\langle -1\rangle}(\frac{1}{z})-1=\mathcal{C}_{\nu}(\frac{1}{z})=\int_{\mathbb{R}}\frac{\operatorname{sign}(t)k(t)}{z-t}\,\mathrm{d}t,$$

and hence

$$\mathcal{G}_{\nu}^{\langle -1 \rangle}(rac{1}{z}) = z + z \int_{\mathbb{R}} rac{\operatorname{sign}(t)k(t)}{z-t} \, \mathrm{d}t := H_k(z).$$

Assume
$$\nu \in \mathcal{L}(\boxplus)$$
, and $\nu \sim (0, \frac{k(t)}{|t|} dt, \int_{-1}^{1} \operatorname{sign}(t)k(t) dt)$.

Then for w in \mathbb{C}^- , we have that

$$\mathcal{C}_{\nu}(w) = w \int_{\mathbb{R}} rac{\operatorname{sign}(t)k(t)}{1 - wt} \,\mathrm{d}t.$$

Setting $w = \frac{1}{z}$ leads to

$$\frac{1}{z}G_{\nu}^{\langle -1\rangle}(\frac{1}{z})-1=\mathcal{C}_{\nu}(\frac{1}{z})=\int_{\mathbb{R}}\frac{\operatorname{sign}(t)k(t)}{z-t}\,\mathrm{d}t,$$

and hence

$$G_{\nu}^{\langle -1 \rangle}(rac{1}{z}) = z + z \int_{\mathbb{R}} rac{\operatorname{sign}(t)k(t)}{z-t} \, \mathrm{d}t := H_k(z).$$

We conclude that

$$rac{1}{z}= {\it G}_{
u}({\it H}_k(z)) \hspace{1em} {
m for alle } z \hspace{1em} {
m in } \mathbb{C}^+ \hspace{1em} {
m such that } H_k(z) \in \mathbb{C}^+.$$

By Stieltjes Inversion the density f_{ν} is given by

$$f_
u(H_k(z)) = -rac{1}{\pi} \operatorname{Im}ig(rac{1}{z}ig), \quad ext{whenever} \; H_k(z) \in \mathbb{R}.$$

Free probability – background

⊞-infinite divisibili

⊞-selfdecomposability

Sketch of proof of unimodality (continued)

By Stieltjes Inversion the density f_{ν} is given by

$$f_
u(H_k(z)) = -rac{1}{\pi} \operatorname{Im}ig(rac{1}{z}ig), \quad ext{whenever} \; H_k(z) \in \mathbb{R}.$$

Here

$$\{z\in\mathbb{C}^+\mid H_k(z)\in\mathbb{R}\}=\{x+\mathrm{i}v_k(x)\mid x\in\mathbb{R}\}.$$

for a continuous function $v_k \colon \mathbb{R} \to [0,\infty)$.

By Stieltjes Inversion the density f_{ν} is given by

⊞-infinite divisibility

$$f_
u(H_k(z)) = -rac{1}{\pi} \operatorname{Im}ig(rac{1}{z}ig), \quad ext{whenever} \; H_k(z) \in \mathbb{R}.$$

⊞-selfdecomposability

Unimodality

N(0, 1) is ⊞-sd

Here

Free probability - background

$$\{z\in\mathbb{C}^+\mid H_k(z)\in\mathbb{R}\}=\{x+\mathrm{i}v_k(x)\mid x\in\mathbb{R}\}.$$

for a continuous function $v_k \colon \mathbb{R} \to [0,\infty)$.

It follows that that $\boldsymbol{\nu}$ is absolutely continuous with density given by

$$f_{
u}(H_k(x+\mathrm{i}v_k(x))) = -rac{1}{\pi} \operatorname{Im}\left[rac{1}{x+\mathrm{i}v_k(x)}
ight]$$

By Stieltjes Inversion the density f_{ν} is given by

⊞-infinite divisibility

$$f_
u(H_k(z)) = -rac{1}{\pi} \operatorname{Im}ig(rac{1}{z}ig), \quad ext{whenever} \; H_k(z) \in \mathbb{R}.$$

⊞-selfdecomposability

Unimodality

N(0, 1) is ⊞-sd

Here

Free probability - background

$$\{z\in\mathbb{C}^+\mid H_k(z)\in\mathbb{R}\}=\{x+\mathrm{i}v_k(x)\mid x\in\mathbb{R}\}.$$

for a continuous function $v_k \colon \mathbb{R} \to [0,\infty)$.

It follows that that $\boldsymbol{\nu}$ is absolutely continuous with density given by

$$f_
u(H_k(x+\mathrm{i} v_k(x)))=-rac{1}{\pi}\, \mathrm{Im}\left[rac{1}{x+\mathrm{i} v_k(x)}
ight]=rac{1}{\pi}rac{v_k(x)}{x^2+v_k(x)^2},\quad (x\in\mathbb{R}).$$

By Stieltjes Inversion the density f_{ν} is given by

⊞-infinite divisibility

$$f_
u(H_k(z)) = -rac{1}{\pi} \, {\sf Im} \, igl(rac{1}{z}igr), \quad {\sf whenever} \, \, H_k(z) \in \mathbb{R}.$$

Here

Free probability - background

$$\{z\in\mathbb{C}^+\mid H_k(z)\in\mathbb{R}\}=\{x+\mathrm{i}v_k(x)\mid x\in\mathbb{R}\}.$$

for a continuous function $v_k \colon \mathbb{R} \to [0,\infty)$.

It follows that that $\boldsymbol{\nu}$ is absolutely continuous with density given by

$$f_
u(H_k(x+\mathrm{i} v_k(x)))=-rac{1}{\pi}\operatorname{Im}\left[rac{1}{x+\mathrm{i} v_k(x)}
ight]=rac{1}{\pi}rac{v_k(x)}{x^2+v_k(x)^2},\quad (x\in\mathbb{R}).$$

From this expression one may argue that the equation:

$$\gamma = f_{\nu}(\xi)$$

Unimodality

By Stieltjes Inversion the density f_{ν} is given by

⊞-infinite divisibility

$$f_
u(H_k(z)) = -rac{1}{\pi} \, {\sf Im} \, igl(rac{1}{z}igr), \quad {\sf whenever} \, \, H_k(z) \in \mathbb{R}.$$

⊞-selfdecomposability

Unimodality

N(0, 1) is ⊞-sd

Here

Free probability - background

$$\{z\in\mathbb{C}^+\mid H_k(z)\in\mathbb{R}\}=\{x+\mathrm{i}v_k(x)\mid x\in\mathbb{R}\}.$$

for a continuous function $v_k \colon \mathbb{R} \to [0,\infty)$.

It follows that that $\boldsymbol{\nu}$ is absolutely continuous with density given by

$$f_
u(H_k(x+\mathrm{i} v_k(x)))=-rac{1}{\pi} \operatorname{Im} \Big[rac{1}{x+\mathrm{i} v_k(x)}\Big]=rac{1}{\pi}rac{v_k(x)}{x^2+v_k(x)^2}, \quad (x\in\mathbb{R}).$$

From this expression one may argue that the equation:

$$\gamma = f_{\nu}(\xi)$$

has at most 2 solutions in ξ for any $\gamma > 0$.

Free probability – background E-infinite divisibility E-selfdecomposability Unimodality The classical Gaussian distribution in free probability

Question [V. Perez-Abreu]: Is N(0, 1) infinitely divisible with respect to \blacksquare ?

N(0, 1) is ⊞-sd

Free probability – background ⊞-infinite divisibility ⊞-selfdecomposability Unimodality The classical Gaussian distribution in free probability

Question [V. Perez-Abreu]: Is N(0, 1) infinitely divisible with respect to \blacksquare ?

N(0, 1) is ⊞-sd

Theorem [Belinschi, Bozejko, Lehner & Speicher, 2011]: Yes!

Free probability – background B-infinite divisibility B-selfdecomposability Unimodality The classical Gaussian distribution in free probability

Question [V. Perez-Abreu]: Is N(0, 1) infinitely divisible with respect to \blacksquare ?

N(0, 1) is ⊞-sd

Theorem [Belinschi, Bozejko, Lehner & Speicher, 2011]: Yes!

Question [M. Bozejko]: Is N(0, 1) selfdecomposable with respect to \boxplus ?

Free probability – background B-infinite divisibility B-selfdecomposability Unimodality The classical Gaussian distribution in free probability

Question [V. Perez-Abreu]: Is N(0, 1) infinitely divisible with respect to \blacksquare ?

N(0, 1) is ⊞-sd

Theorem [Belinschi, Bozejko, Lehner & Speicher, 2011]: Yes!

Question [M. Bozejko]: Is N(0, 1) selfdecomposable with respect to \boxplus ?

Theorem [Hasebe, Sakuma, T, 2016]: Yes!

Characterization of $\mathcal{ID}(\boxplus)$

Theorem [Bercovici-Voiculescu, 1993]: For a probability measure μ on \mathbb{R} , the following are equivalent:

 \blacksquare -selfdecomposability

Characterization of $\mathcal{ID}(\boxplus)$

Theorem [Bercovici-Voiculescu, 1993]: For a probability measure μ on \mathbb{R} , the following are equivalent:

(i) $\mu \in \mathcal{ID}(\boxplus)$.

Characterization of $\mathcal{ID}(\boxplus)$

Theorem [Bercovici-Voiculescu, 1993]: For a probability measure μ on \mathbb{R} , the following are equivalent:

(i) $\mu \in \mathcal{ID}(\boxplus)$.

(ii) \mathcal{C}_{μ} may be extended to an analytic function $\mathcal{C}_{\mu} \colon \mathbb{C}^{-} \to \mathbb{C}$.

 \blacksquare -selfdecomposability

Unimodality N(0,

N(0, 1) is ⊞-sd

Characterization of $\mathcal{ID}(\boxplus)$

Theorem [Bercovici-Voiculescu, 1993]: For a probability measure μ on \mathbb{R} , the following are equivalent:

- (i) $\mu \in \mathcal{ID}(\boxplus)$.
- (ii) \mathcal{C}_{μ} may be extended to an analytic function $\mathcal{C}_{\mu} \colon \mathbb{C}^{-} \to \mathbb{C}$.
- (iii) There exist a in $[0, \infty)$, η in \mathbb{R} and a Lévy measure ρ on \mathbb{R} , such that

$$\mathcal{C}_{\mu}(z) = \eta z + a z^2 + \int_{\mathbb{R}} \left(\frac{1}{1-tz} - 1 - tz \mathbb{1}_{[-1,1]}(t) \right) \rho(\mathrm{d}t), \quad (z \in \mathbb{C}^-).$$

An analogous characterization of $\mathcal{L}(\boxplus)$

Theorem [Hasebe, Sakuma, T, 2016]: For a probability measure μ on \mathbb{R} , the following are equivalent:

(i) $\mu \in \mathcal{L}(\boxplus)$.

An analogous characterization of $\mathcal{L}(\boxplus)$

Theorem [Hasebe, Sakuma, T, 2016]: For a probability measure μ on \mathbb{R} , the following are equivalent:

(i) $\mu \in \mathcal{L}(\boxplus)$.

(ii) C_{μ} may be extended to an analytic function $C_{\mu} \colon \mathbb{C}^{-} \to \mathbb{C}$, such that $\operatorname{Im}(C'_{\mu}(z)) \leq 0$ for all z in \mathbb{C}^{-} .

An analogous characterization of $\mathcal{L}(\boxplus)$

Theorem [Hasebe, Sakuma, T, 2016]: For a probability measure μ on \mathbb{R} , the following are equivalent:

(i) $\mu \in \mathcal{L}(\boxplus)$.

(ii) C_{μ} may be extended to an analytic function $C_{\mu} \colon \mathbb{C}^{-} \to \mathbb{C}$, such that $\operatorname{Im}(C'_{\mu}(z)) \leq 0$ for all z in \mathbb{C}^{-} .

(iii) There exist ξ in \mathbb{R} and a measure ρ on \mathbb{R} , such that $\int_{\mathbb{R}} \ln(2+|x|) \rho(dx) < \infty$, and

$$\mathcal{C}'_\mu(z) = \xi + \int_{\mathbb{R}} rac{x+z}{1-xz}\,
ho(\mathrm{d} x), \qquad (z\in\mathbb{C}^-).$$

Assume that $\mathcal{C}_{\mu} \colon \mathbb{C}^{-} \to \mathbb{C}$ is analytic such that $\operatorname{Im}(\mathcal{C}'_{\mu}(z)) \leq 0$ for all z in \mathbb{C}^- .

N(0, 1) is ⊞-sd

Sketch of proof of (ii) \Rightarrow (iii)

Assume that $\mathcal{C}_{\mu} \colon \mathbb{C}^{-} \to \mathbb{C}$ is analytic such that $\operatorname{Im}(\mathcal{C}'_{\mu}(z)) \leq 0$ for all z in \mathbb{C}^{-} .

Consider the analytic function $w \mapsto -\mathcal{C}'_{\mu}(\frac{1}{w}) \colon \mathbb{C}^+ \to \mathbb{C}^+$.

Assume that $C_{\mu} \colon \mathbb{C}^{-} \to \mathbb{C}$ is analytic such that $\operatorname{Im}(C'_{\mu}(z)) \leq 0$ for all z in \mathbb{C}^{-} .

Consider the analytic function $w \mapsto -\mathcal{C}'_{\mu}(\frac{1}{w}) \colon \mathbb{C}^+ \to \mathbb{C}^+$.

By Nevanlinna-Pick representation, there exist *a* in $[0,\infty)$, ξ in \mathbb{R} and a measure ρ on \mathbb{R} , such that

$$-\mathcal{C}'_{\mu}(\frac{1}{w}) = az - \xi + \int_{\mathbb{R}} \frac{1 + xw}{x - w} \rho(\mathrm{d}x), \qquad (w \in \mathbb{C}^+),$$

Assume that $C_{\mu} \colon \mathbb{C}^{-} \to \mathbb{C}$ is analytic such that $\operatorname{Im}(C'_{\mu}(z)) \leq 0$ for all z in \mathbb{C}^{-} .

Consider the analytic function $w \mapsto -\mathcal{C}'_{\mu}(\frac{1}{w}) \colon \mathbb{C}^+ \to \mathbb{C}^+$.

By Nevanlinna-Pick representation, there exist *a* in $[0,\infty)$, ξ in \mathbb{R} and a measure ρ on \mathbb{R} , such that

$$-\mathcal{C}'_{\mu}(\frac{1}{w}) = az - \xi + \int_{\mathbb{R}} \frac{1 + xw}{x - w} \rho(\mathrm{d}x), \qquad (w \in \mathbb{C}^+),$$

i.e.

$$\mathcal{C}'_{\mu}(z) = -rac{a}{z} + \xi + \int_{\mathbb{R}} rac{z+x}{1-zx} \,
ho(\mathrm{d} x), \qquad (z \in \mathbb{C}^-).$$

Assume that $C_{\mu} \colon \mathbb{C}^{-} \to \mathbb{C}$ is analytic such that $\operatorname{Im}(C'_{\mu}(z)) \leq 0$ for all z in \mathbb{C}^{-} .

Consider the analytic function $w \mapsto -\mathcal{C}'_{\mu}(\frac{1}{w}) \colon \mathbb{C}^+ \to \mathbb{C}^+$.

By Nevanlinna-Pick representation, there exist *a* in $[0,\infty)$, ξ in \mathbb{R} and a measure ρ on \mathbb{R} , such that

$$-\mathcal{C}'_{\mu}(rac{1}{w}) = \mathsf{a} z - \xi + \int_{\mathbb{R}} rac{1+xw}{x-w} \,
ho(\mathrm{d} x), \qquad (w \in \mathbb{C}^+),$$

i.e.

$$\mathcal{C}'_{\mu}(z) = -rac{a}{z} + \xi + \int_{\mathbb{R}} rac{z+x}{1-zx} \,
ho(\mathrm{d} x), \qquad (z\in\mathbb{C}^-).$$

Since

$$\lim_{y\downarrow 0} \mathcal{C}_{\mu}(\mathrm{i} y) = 0,$$

Assume that $C_{\mu} \colon \mathbb{C}^{-} \to \mathbb{C}$ is analytic such that $\operatorname{Im}(C'_{\mu}(z)) \leq 0$ for all z in \mathbb{C}^{-} .

Consider the analytic function $w \mapsto -\mathcal{C}'_{\mu}(\frac{1}{w}) \colon \mathbb{C}^+ \to \mathbb{C}^+$.

By Nevanlinna-Pick representation, there exist *a* in $[0,\infty)$, ξ in \mathbb{R} and a measure ρ on \mathbb{R} , such that

$$-\mathcal{C}'_{\mu}(rac{1}{w}) = \mathsf{a} z - \xi + \int_{\mathbb{R}} rac{1+xw}{x-w} \,
ho(\mathrm{d} x), \qquad (w \in \mathbb{C}^+),$$

i.e.

$$\mathcal{C}'_{\mu}(z) = -rac{a}{z} + \xi + \int_{\mathbb{R}} rac{z+x}{1-zx} \,
ho(\mathrm{d} x), \qquad (z \in \mathbb{C}^-).$$

Since

$$\lim_{y \downarrow 0} \mathcal{C}_{\mu}(\mathrm{i} y) = 0, \quad \text{and} \quad \mathcal{C}_{\mu}(\mathrm{i} y) = \mathcal{C}_{\mu}(-\mathrm{i}) - \mathrm{i} \int_{0}^{y} \mathcal{C}_{\mu}'(-\mathrm{i} t) \, \mathrm{d} t,$$

Assume that $C_{\mu} \colon \mathbb{C}^{-} \to \mathbb{C}$ is analytic such that $\operatorname{Im}(C'_{\mu}(z)) \leq 0$ for all z in \mathbb{C}^{-} .

Consider the analytic function $w \mapsto -\mathcal{C}'_{\mu}(\frac{1}{w}) \colon \mathbb{C}^+ \to \mathbb{C}^+$.

By Nevanlinna-Pick representation, there exist *a* in $[0,\infty)$, ξ in \mathbb{R} and a measure ρ on \mathbb{R} , such that

$$-\mathcal{C}'_{\mu}(rac{1}{w}) = \mathsf{a} z - \xi + \int_{\mathbb{R}} rac{1+xw}{x-w} \,
ho(\mathrm{d} x), \qquad (w \in \mathbb{C}^+),$$

i.e.

$$\mathcal{C}'_{\mu}(z) = -rac{a}{z} + \xi + \int_{\mathbb{R}} rac{z+x}{1-zx} \,
ho(\mathrm{d} x), \qquad (z\in\mathbb{C}^-).$$

Since

$$\begin{split} &\lim_{y\downarrow 0}\mathcal{C}_{\mu}(\mathrm{i}y)=0, \quad \text{and} \quad \mathcal{C}_{\mu}(\mathrm{i}y)=\mathcal{C}_{\mu}(-\mathrm{i})-\mathrm{i}\int_{0}^{y}\mathcal{C}_{\mu}'(-\mathrm{i}t)\,\mathrm{d}t, \\ &\text{one may argue that } a=0, \text{ and } \int_{\mathbb{R}}\ln(2+|x|)\,\rho(\mathrm{d}x)<\infty. \end{split}$$

 \boxplus -selfdecomposability

Sketch of proof of (iii) \Rightarrow (i)

Assume that there exist ξ in $\mathbb R$ and a measure ρ on $\mathbb R,$ such that

$$\mathcal{C}'_\mu(z) = \xi + \int_{\mathbb{R}} rac{z+x}{1-zx}\,
ho(\mathrm{d} x), \qquad (z\in\mathbb{C}^-).$$

Assume that there exist ξ in \mathbb{R} and a measure ρ on \mathbb{R} , such that

$$\mathcal{C}'_\mu(z) = \xi + \int_{\mathbb{R}} rac{z+x}{1-zx}\,
ho(\mathrm{d} x), \qquad (z\in\mathbb{C}^-).$$

Then for any z in \mathbb{C}^- we find that

$$\mathcal{C}_{\mu}(z) = \mathcal{C}_{\mu}(-\mathrm{i}) + \int_{-i}^{z} \mathcal{C}_{\mu}'(\omega) \,\mathrm{d}\omega$$

Assume that there exist ξ in \mathbb{R} and a measure ρ on \mathbb{R} , such that

$$\mathcal{C}'_{\mu}(z)=\xi+\int_{\mathbb{R}}rac{z+x}{1-zx}\,
ho(\mathrm{d} x),\qquad(z\in\mathbb{C}^{-}).$$

Then for any z in \mathbb{C}^- we find that

$$\begin{aligned} \mathcal{C}_{\mu}(z) &= \mathcal{C}_{\mu}(-\mathrm{i}) + \int_{-i}^{z} \mathcal{C}'_{\mu}(\omega) \,\mathrm{d}\omega \\ &= \mathcal{C}_{\mu}(-\mathrm{i}) + \xi(z+\mathrm{i}) + cz^{2} + \int_{\mathbb{R} \setminus \{0\}} \left(\int_{-\mathrm{i}}^{z} \frac{x+\omega}{1-x\omega} \,\mathrm{d}\omega \right) \rho(\mathrm{d}x) \end{aligned}$$

Assume that there exist ξ in \mathbb{R} and a measure ρ on \mathbb{R} , such that

$$\mathcal{C}'_{\mu}(z)=\xi+\int_{\mathbb{R}}rac{z+x}{1-zx}\,
ho(\mathrm{d} x),\qquad(z\in\mathbb{C}^{-}).$$

Then for any z in \mathbb{C}^- we find that

$$\begin{aligned} \mathcal{C}_{\mu}(z) &= \mathcal{C}_{\mu}(-\mathrm{i}) + \int_{-i}^{z} \mathcal{C}'_{\mu}(\omega) \,\mathrm{d}\omega \\ &= \mathcal{C}_{\mu}(-\mathrm{i}) + \xi(z+\mathrm{i}) + cz^{2} + \int_{\mathbb{R} \setminus \{0\}} \left(\int_{-\mathrm{i}}^{z} \frac{x+\omega}{1-x\omega} \,\mathrm{d}\omega \right) \rho(\mathrm{d}x) \end{aligned}$$

where
$$c = \frac{1}{2}\rho(\{0\}).$$
Sketch of proof of (iii) \Rightarrow (i)

Assume that there exist ξ in $\mathbb R$ and a measure ρ on $\mathbb R,$ such that

$$\mathcal{C}'_{\mu}(z)=\xi+\int_{\mathbb{R}}rac{z+x}{1-zx}\,
ho(\mathrm{d} x),\qquad(z\in\mathbb{C}^{-}).$$

Then for any z in \mathbb{C}^- we find that

$$\begin{split} \mathcal{C}_{\mu}(z) &= \mathcal{C}_{\mu}(-\mathrm{i}) + \int_{-i}^{z} \mathcal{C}'_{\mu}(\omega) \,\mathrm{d}\omega \\ &= \mathcal{C}_{\mu}(-\mathrm{i}) + \xi(z+\mathrm{i}) + cz^{2} + \int_{\mathbb{R} \setminus \{0\}} \left(\int_{-\mathrm{i}}^{z} \frac{x+\omega}{1-x\omega} \,\mathrm{d}\omega \right) \rho(\mathrm{d}x) \\ &= A + \xi z + cz^{2} + \int_{\mathbb{R} \setminus \{0\}} \left(-\log(1-xz) - \frac{xz}{1+x^{2}} \right) \frac{1+x^{2}}{x^{2}} \rho(\mathrm{d}x), \end{split}$$

where $c = \frac{1}{2}\rho(\{0\})$.

Free probability – background

⊞-infinite divisibili

-selfdecomposability

Unimodality

N(0, 1) is ⊞-sd

Sketch of proof of (iii) \Rightarrow (i) (continued)

Now put

$$k(x) = \begin{cases} \int_x^\infty \frac{1+t^2}{t^2} \rho(\mathrm{d}t), & \text{if } x > 0, \\ \int_{-\infty}^x \frac{1+t^2}{t^2} \rho(\mathrm{d}t), & \text{if } x < 0. \end{cases}$$

 \boxplus -selfdecomposability

Sketch of proof of (iii) \Rightarrow (i) (continued)

Now put

$$k(x) = \begin{cases} \int_x^\infty \frac{1+t^2}{t^2} \rho(\mathrm{d}t), & \text{if } x > 0, \\ \int_{-\infty}^x \frac{1+t^2}{t^2} \rho(\mathrm{d}t), & \text{if } x < 0. \end{cases}$$

The assumptions on ρ ensure that $\frac{k(x)}{|x|} dx$ is a Lévy measure.

 \boxplus -selfdecomposability

Sketch of proof of (iii) \Rightarrow (i) (continued)

Now put

$$k(x) = \begin{cases} \int_{x}^{\infty} \frac{1+t^{2}}{t^{2}} \rho(\mathrm{d}t), & \text{if } x > 0, \\ \int_{-\infty}^{x} \frac{1+t^{2}}{t^{2}} \rho(\mathrm{d}t), & \text{if } x < 0. \end{cases}$$

The assumptions on ρ ensure that $\frac{k(x)}{|x|} dx$ is a Lévy measure.

Using integration by parts, we further obtain that

$$\mathcal{C}_{\mu}(z) = A + \xi z + cz^2 + \int_{\mathbb{R} \setminus \{0\}} \Big(-\log(1 - xz) - \frac{xz}{1 + x^2} \Big) \frac{1 + x^2}{x^2} \, \rho(\mathrm{d}x)$$

⊞-infinite divisibility ⊞-selfdecomposability

Sketch of proof of (iii) \Rightarrow (i) (continued)

Now put

$$k(x) = \begin{cases} \int_{x}^{\infty} \frac{1+t^{2}}{t^{2}} \rho(\mathrm{d}t), & \text{if } x > 0, \\ \int_{-\infty}^{x} \frac{1+t^{2}}{t^{2}} \rho(\mathrm{d}t), & \text{if } x < 0. \end{cases}$$

The assumptions on ρ ensure that $\frac{k(x)}{|x|} dx$ is a Lévy measure.

Using integration by parts, we further obtain that

$$\begin{aligned} \mathcal{C}_{\mu}(z) &= A + \xi z + cz^2 + \int_{\mathbb{R} \setminus \{0\}} \Big(-\log(1 - xz) - \frac{xz}{1 + x^2} \Big) \frac{1 + x^2}{x^2} \, \rho(\mathrm{d}x) \\ &= A + \tilde{\xi} z + cz^2 + \int_{\mathbb{R}} \Big(\frac{1}{1 - xz} - 1 - xz \mathbf{1}_{[-1,1]}(x) \Big) \frac{k(x)}{|x|} \, \mathrm{d}x. \end{aligned}$$

 \blacksquare -selfdecomposabilit

Sketch of proof of (iii) \Rightarrow (i) (continued)

Now put

$$k(x) = \begin{cases} \int_{x}^{\infty} \frac{1+t^{2}}{t^{2}} \rho(\mathrm{d}t), & \text{if } x > 0, \\ \int_{-\infty}^{x} \frac{1+t^{2}}{t^{2}} \rho(\mathrm{d}t), & \text{if } x < 0. \end{cases}$$

The assumptions on ρ ensure that $\frac{k(x)}{|x|} dx$ is a Lévy measure.

Using integration by parts, we further obtain that

$$\begin{aligned} \mathcal{C}_{\mu}(z) &= A + \xi z + cz^2 + \int_{\mathbb{R} \setminus \{0\}} \Big(-\log(1 - xz) - \frac{xz}{1 + x^2} \Big) \frac{1 + x^2}{x^2} \,\rho(\mathrm{d}x) \\ &= A + \tilde{\xi} z + cz^2 + \int_{\mathbb{R}} \Big(\frac{1}{1 - xz} - 1 - xz \mathbf{1}_{[-1,1]}(x) \Big) \frac{k(x)}{|x|} \,\mathrm{d}x. \end{aligned}$$

Since $\mathcal{C}_{\mu}(-\mathrm{i} y) \to 0$, as $y \downarrow 0$, we must have that A = 0.

Sketch of proof of: $\mu := N(0, 1) \in \mathcal{L}(\boxplus)$

From the work of Belinschi, Bozejko, Lehner and Speicher we have (a) $F_{\mu} = \frac{1}{G_{\mu}} : \mathbb{C}^+ \to \mathbb{C}^+$, may be extended to an analytic bijection $F_{\mu}: \Omega \to \mathbb{C}^+$, where Ω is an open connected set, and $\mathbb{C}^+ \subsetneq \Omega$. Free probability - background

⊞-infinite divisibility

⊞-selfdecomposability

Unimodality

Sketch of proof of: $\mu := N(0, 1) \in \mathcal{L}(\boxplus)$

From the work of Belinschi, Bozejko, Lehner and Speicher we have (a) $F_{\mu} = \frac{1}{G_{\mu}} : \mathbb{C}^+ \to \mathbb{C}^+$, may be extended to an analytic bijection $F_{\mu}: \Omega \to \mathbb{C}^+$, where Ω is an open connected set, and $\mathbb{C}^+ \subsetneq \Omega$.

(b)
$$rac{F_{\mu}'(\omega)}{F_{\mu}(\omega)}=\omega-F_{\mu}(\omega),\qquad (\omega\in\Omega).$$

Free probability - background

⊞-infinite divisibility

 \blacksquare -selfdecomposability

Unimodality

Sketch of proof of: $\mu := N(0, 1) \in \mathcal{L}(\boxplus)$

From the work of Belinschi, Bozejko, Lehner and Speicher we have (a) $F_{\mu} = \frac{1}{G_{\mu}} : \mathbb{C}^+ \to \mathbb{C}^+$, may be extended to an analytic bijection $F_{\mu}: \Omega \to \mathbb{C}^+$, where Ω is an open connected set, and $\mathbb{C}^+ \subsetneq \Omega$.

(b)
$$rac{F_{\mu}'(\omega)}{F_{\mu}(\omega)}=\omega-F_{\mu}(\omega),\qquad (\omega\in\Omega).$$

Now for any z in \mathbb{C}^- , we put $\omega = F_{\mu}^{-1}(\frac{1}{z}) \in \Omega$.

Free probability – background

⊞-infinite divisibility

 \blacksquare -selfdecomposability

posability Unimodality

Sketch of proof of: $\mu := N(0, 1) \in \mathcal{L}(\boxplus)$

From the work of Belinschi, Bozejko, Lehner and Speicher we have (a) $F_{\mu} = \frac{1}{G_{\mu}} : \mathbb{C}^+ \to \mathbb{C}^+$, may be extended to an analytic bijection $F_{\mu} : \Omega \to \mathbb{C}^+$, where Ω is an open connected set, and $\mathbb{C}^+ \subsetneq \Omega$.

(b)
$$\frac{F'_{\mu}(\omega)}{F_{\mu}(\omega)} = \omega - F_{\mu}(\omega), \qquad (\omega \in \Omega).$$

Now for any z in \mathbb{C}^- , we put $\omega = F_{\mu}^{-1}(\frac{1}{z}) \in \Omega$.

Then since $C_{\mu}(z) = zF_{\mu}^{-1}(\frac{1}{z}) - 1$, we find that

$$\mathcal{C}'_{\mu}(z) = F_{\mu}^{-1}(rac{1}{z}) - rac{1}{z} rac{1}{F'_{\mu}(F_{\mu}^{-1}(rac{1}{z}))}$$

Sketch of proof of: $\mu := N(0, 1) \in \mathcal{L}(\boxplus)$

From the work of Belinschi, Bozejko, Lehner and Speicher we have (a) $F_{\mu} = \frac{1}{G_{\mu}} : \mathbb{C}^+ \to \mathbb{C}^+$, may be extended to an analytic bijection $F_{\mu} : \Omega \to \mathbb{C}^+$, where Ω is an open connected set, and $\mathbb{C}^+ \subsetneq \Omega$.

(b)
$$\frac{F'_{\mu}(\omega)}{F_{\mu}(\omega)} = \omega - F_{\mu}(\omega), \qquad (\omega \in \Omega).$$

Now for any z in \mathbb{C}^- , we put $\omega = F_{\mu}^{-1}(\frac{1}{z}) \in \Omega$.

Then since $\mathcal{C}_{\mu}(z)=z\mathcal{F}_{\mu}^{-1}(rac{1}{z})-1$, we find that

$$\mathcal{C}'_{\mu}(z) = F_{\mu}^{-1}(\frac{1}{z}) - \frac{1}{z} \frac{1}{F'_{\mu}(F_{\mu}^{-1}(\frac{1}{z}))} = \omega - \frac{F_{\mu}(\omega)}{F'_{\mu}(\omega)}$$

Sketch of proof of: $\mu := N(0, \underline{1}) \in \mathcal{L}(\boxplus)$

From the work of Belinschi, Bozejko, Lehner and Speicher we have (a) $F_{\mu} = \frac{1}{G_{\mu}} : \mathbb{C}^+ \to \mathbb{C}^+$, may be extended to an analytic bijection $F_{\mu} : \Omega \to \mathbb{C}^+$, where Ω is an open connected set, and $\mathbb{C}^+ \subsetneq \Omega$.

(b)
$$\frac{F'_{\mu}(\omega)}{F_{\mu}(\omega)} = \omega - F_{\mu}(\omega), \qquad (\omega \in \Omega).$$

Now for any z in \mathbb{C}^- , we put $\omega = F_{\mu}^{-1}(\frac{1}{z}) \in \Omega$.

Then since $\mathcal{C}_{\mu}(z) = z \mathcal{F}_{\mu}^{-1}(\frac{1}{z}) - 1$, we find that

$$\mathcal{C}'_{\mu}(z) = F_{\mu}^{-1}(\frac{1}{z}) - \frac{1}{z} \frac{1}{F'_{\mu}(F_{\mu}^{-1}(\frac{1}{z}))} = \omega - \frac{F_{\mu}(\omega)}{F'_{\mu}(\omega)} = \omega - \frac{1}{\omega - F_{\mu}(\omega)}.$$

Sketch of proof of: $\mu := N(0, 1) \in \mathcal{L}(\boxplus)$

From the work of Belinschi, Bozejko, Lehner and Speicher we have (a) $F_{\mu} = \frac{1}{G_{\mu}} : \mathbb{C}^+ \to \mathbb{C}^+$, may be extended to an analytic bijection $F_{\mu} : \Omega \to \mathbb{C}^+$, where Ω is an open connected set, and $\mathbb{C}^+ \subsetneq \Omega$.

(b)
$$\frac{F'_{\mu}(\omega)}{F_{\mu}(\omega)} = \omega - F_{\mu}(\omega), \qquad (\omega \in \Omega).$$

Now for any z in \mathbb{C}^- , we put $\omega = F_{\mu}^{-1}(\frac{1}{z}) \in \Omega$.

Then since $\mathcal{C}_{\mu}(z)=z\mathcal{F}_{\mu}^{-1}(rac{1}{z})-1$, we find that

$$\mathcal{C}'_{\mu}(z) = F_{\mu}^{-1}(\frac{1}{z}) - \frac{1}{z} \frac{1}{F'_{\mu}(F_{\mu}^{-1}(\frac{1}{z}))} = \omega - \frac{F_{\mu}(\omega)}{F'_{\mu}(\omega)} = \omega - \frac{1}{\omega - F_{\mu}(\omega)}.$$

So it remains to argue that

$$\operatorname{Im}\left(\omega-rac{1}{\omega-F_{\mu}(\omega)}
ight)\leq0,\qquad(\omega\in\Omega).$$