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Definitions

[1 I locally compact Hausdorff second countable space (usually
E = R%

[1 F family of closed subsets of [£

0 (92,5, P) probability space

0 X :Q+ Fisarandomclosed setif{w: X(w)NK £0D} €F
for all K € K (compact sets in [E).

[ In other words, X is measurable with respect to the o-algebra on F

generated by families of sets

{FeF: FNK # (0} for K € K.
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Simple examples

(1 X = {£&} random singleton

[ X = B, (&) random ball. Check measurability

{XNK #0} ={p(K,§) <n}

and use the fact that p( K, ) is a random variable
[ X = Ag, ¢,.¢, random triangle
0 X ={zeR?: (x,£) <t} random half-space

[0 X ={t>0: & = 0} for a continuous stochastic process &;
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Random variables associated with random
closed sets

e The norm || X || = sup{||z|| : = € X} is arandom variable (with

possibly infinite values).
e Forevery x € E the indicator 1 x () is a random variable.

e If 11 is a locally finite Borel measure on [E, then 1( X ) is a random

variable. This follows directly from Fubini’s theorem since

u(X) = [Tx(x)p(dr).
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Capacity functional

[] If X is arandom closed set, then
Tx(K)=P{XNK # 0}

is called the capacity functional of X . Also write T'( K') instead of T'x (K).

[1 Usually K belongs to the family /C of compact sets, but I’y can be

extended for more general arguments K.
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Simple examples

[ 1f X = {&} random singleton, then
Tx(K)=P{{c K}

is the probability distribution of £&. This is the only case of an additive 1’x .

[ 1f X = B, (§) (ball of radius r centred at ), then
Tx(K)=P{{ec K"},

where K" is the r-neighbourhood of K. Note that K| and K are not
necessarily disjoint even if K1 and K5 are.

0 1 X = [£,00) onRY, then
Tx(K) = P{{ <sup K}
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Capacity functional (properties)

Monotonic T'(K1) < T'(K») if K1 C Ko,

Subadditive T'(K7 U K3) < T(K7) + T(K>).

Concave T' (K1 N Ky) + T(K1 U Ky) <T(Ky) + T(K>).
Semicontinuous T'(K,,) | T(K) if K,, | K.
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Complete alternation

Succesive differences for I' = I'x are defined as

Ak
Ag. - Ag

T'(K)=T(K)-T(KUK),
T(K) :AKn—l AKlT(K)
—AKn_l-'-AKlT(KUKn), n>2.

1

1

Then A, T(K)=P{XNK =0, XNK; # 0} and

—AKn"'AKlT(K)
—P{XNK=0, XNK;#0,i=1,...,n}>0.

T is said to be completely alternating
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The Choquet theorem

Let £ be a locally compact Hausdorff second countable space.
Theorem: A functional T": JC +— [0, 1] such that T'(()) = O is the capacity
functional of a (necessarily unique) random closed set in [ if and only if T’

IS upper semicontinuous and completely alternating.

[ Reason: xg (F) = T pqg—g satisfies

Xi (F1 UFy) = xx (F1)x K (F2) (compare et (#+Y) = gitzeity)
Then E xx(X) = 1 — Tx (K) is the Laplace transform of the distribution
of X.

Complete alternation corresponds to the positive definiteness property.

Molchanov Random sets - Lecture 1. Winter School Sandbjerg, Jan 2007



Point processes

[0 X in R%is locally finite if X N K is finite for each bounded set K
[ Alocally finite random closed set is a point process

(1 Then N(K) = card(X N K) is a random variable (counting random

measure)

[1  The Choquet theorem implies that the distribution of a simple (no

multiple points) point process is uniquely determined by the avoidance
probabilies P{X N K =0} = P{N(K) = 0}.
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Special capacities
o f T'(K)=sup{f(x): € K}, then
X={z: f(z) > a)

with « uniformly distributed on [0, 1].

o I T(K)=1-— e~ ME) then X is a Poisson point process with
intensity measure A.

o IfT(K) =1— e 9) where C(K) is the Newton capacity. Then
X is related to graphs of Wiener processes.

Molchanov Random sets - Lecture 1. Winter School Sandbjerg, Jan 2007

11



Random sets vs fuzzy sets

A fuzzy set is a function f : E — [0, 1], so that f(x) is the “degree of
membership” for a point .

If f is upper semicontinuous (usually assumed), then it is possible to write

flz) =P{z € X}

X=A{z: f(z) > a}.

However, the distribution of X contains more information than its one-point

covering probabilities.
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Extension problems

(1 T(K) is defined on some family of compact sets K.
Aim: find if it is possible to extend it to a capacity functional on /C and find

(all possible) extensions.

[ Trivial case: T'({x}) = f(z) defined for all singletons K. Then
define X = {x : f(x) > a}, i.e. define the extension by
T(K)=sup{f(z): z€ K}.

(1 Open problem: T'({x,y}) = f(x,y). Characterise all possible
functions f such that I" is extendable to a capacity functional.
If X is stationary, then T'({x, y}) = f(x — y).
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Measurabllity issues

The fundamental measurability theorem implies that the following are

equivalent (in case [E is Polish and the probability space is complete)
e {X N B # (0} is measurable event for all Borel B;

e {X N F # ()} is measurable event for all closed F;

e {X NF # ()} is measurable event for all open G;

e the distance function p(1, X) is a random variable for all ¥;

e there exists a sequence of random singletons {&,, } such that X is the
closure of {&,,, n > 1};

e the graph {(w, z); x € X (w)} is measurable set in the product space
2 x E.
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Notes to measurability issues

L] If K is locally compact, all these statements are equivalent to the fact

that X is a random closed set.
[l Arandom element £ satisfying £ € X a.s. is called a selection of X.

[ X : Q+— Fliscalled a multifunction, and
X (B)={w: X(w)NB #0}

IS its inverse.

Molchanov Random sets - Lecture 1. Winter School Sandbjerg, Jan 2007

15



Capacity functionals and properties of random
sets

[]  T'x determines the distribution of X and so all features of X .

L1 E.g.if uis a o-finite measure, then

E u(X) = / T (o)) u(de) = / P{r € X}u(do)

(Robbins’ theorem).

L1 In general, the situation is more complicated, e.g. if 1t is a Hausdorff

measure.
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Convex random sets

X is said to be convex if its realisations are a.s. convex (check that the

family of convex closed sets is measurable!).

Theorem. X is convex if and only if
Tx<K1 M KQ) + Tx(Kl U KQ) — Tx<K1) -+ Tx(KQ)

for all convex compact sets K, K5 such that K1 U K5 is also convex.

Reason: If X is convex, then

0=P{XNK =0, XNnK; #0, XNKy # 0} = —Ar,Ax, Tx(K).

In the reverse direction take K1 = [z, z] and Ko = [z, 9.
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Weak convergence

0 X, 4 x (weakly converges) iff the corresponding probability

measures weakly converge.

[l This is equivalent to
Tx,(K) — Tx(K)

for all compact sets K such that T'x (K) = T'x (Int K) (continuity sets).

[1 Each sequence of random closed sets in a locally compact space

POSSESSES a weak convergent subsequence.
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Capacities elsewhere

[0 p(A), A C E,is anon-additive measure if () = 0, p(E) =1
and ¢ is monotonic. Such non-additive measures (capacities) build a
topological space, it is is possible to study their random variants, weak

convergence etc.

[1 Game theory: elements of [E are players, subsets of [£ are coalitions,

@ is a game. Dual p(A) = 1 — p(A°).

0 1fe(A) =P{X C A} (containment functional of X), then
P(A) =T(A) =P{X N A # ()} is the capacity functional.
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Core of non-additive measure

[]  The core of ¢ is the family of finite-additive measures y such that
((A) > o(A) forall A.
In terms of random sets P{X C A} < u(A4) < P{X NA#0D}.

L] If pis convey, i.e.
p(ANB)+ p(AUB) > p(A) + p(B),
then the core is non-empty.
L1 If ¢ is the containment functional of a.s. non-empty random set X,

then all o-additive measures from the core correspond to selections of X,
i.e. (4 is the distribution of £ suchthat £ € X a.s.
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Selections and comparison

0 e X, thenP{¢{ € K} <Tx(K)foral K € K. This is also

sufficient condition for £ being a selection of X.
0 1Y C Xas, thenTy (K) <Tx(K) forall K.
[]  However the inequality between the capacity functionals does not

suffice to deduce that Y C X. One needs inequalities between successive

differences A(- - - ) of all orders.
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Choquet integral

Probability measure (

Non-additive measure @

Expectation [ &(w)u(dw)

Choquet integral

Choquet integral is defined for a non-negative function f as

[ rae= | T o({e s f@) > )t

Compare: if 4 = P is a probability measure and £ > 0 a.s., then

E§:/OOOP{§2t}dt.

It is easy to see that

/deX =Esup{f(x): x€ X}.
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Choquet integral and pricing

[] The Lebesgue integral (expectation of a random variable X') <> linear

pricing functional.

[1 Choquet integral < sub-additive and comonotone additive, i.e.

[(f+g)dp = [ fdp+ [ gdpif f and g are comonotonic.

Random variables X and Y are comonotonic if

(X(w)—XW))(Y(w)—Y(w)) >0as. w,w’ €0

Note that f — E sup f(X) is comonotonic with respect to f (but not

necessarily additive)
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Risk measures

& € L represents a financial gain. Functional p : L — R.

Translation invariance. Forall§ € L>® andt € R: p(§+t) = p(§) —t.
).

Subadditivity. Forall £1,&2 € L p(&1 + &2) < p(&1) + p(&2
Positive homogeneity. Forallc > 0and & € L™: p(c€) = cp(€).

Monotonicity. 1f &1 < & a.s., then p(&1) > p(&2).

Then p is called a coherent risk measure.
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Representation of coherent risk measures

If p is coherent and lower semicontinuous in probability, then there exists a

convex set A of probability measures, such that

p(§) =sup{E,{: pe A},

Particularly important families of risk measures are given by Choquet

integrals

pl6) = [ €do.

If © is the capacity functional T'x with X C (2, then

p(&) = Esup{{(w) : we X}.

Although too simple in the univariate case, this representation is useful for

multivariate risk measures.
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Belief and plausibility functions

Containment functional P{X C K} Belief function

Capacity functional 1'x Plausibility functional

Example: Likelihood plausibility X = {x : L(xz) > a}, where L is the
normalised likelihood.

Aim: Update of belief functions.

Open problem. For a given belief function find a probability measure that
dominates it and has the maximal entropy. In other words, find a selection

(of a random set) with the maximal entropy.
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Capacities in robust statistics

“Contaminated” families of probability measures, e.g.
(1—-¢e)P +£eQ

for all probability measures (Q (contaminations).

The corresponding upper probability is a capacity functional
Tx(K)=e+ (1-e)P(K), K#0,

so that X equals the whole space with probability € and otherwise is the

singleton with distribution P.
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Statistical issues for random sets themselves

[] Reference measure (like Lebesgue or Gaussian) is not available.

[] Likelihood-based methods are not available (so far).

[1  Models are scarce.
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Random set models

(] Point-based models X = {&1,...,&,}.

(] Convex hull based models X = co (&1,...,&,).

E.g., random segments or triangles.

[]  More general setting: M : R™ — F is a set-valued measurable
function on an auxiliary space. Then X = M ({) becomes a random

closed set.
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Stationary random sets
(] Similar setting X = M ((), but ¢ now is a point process.

[ W ={x1,x9,...}isapoint process and X1, X5, ...iid. random

compact sets, then

U (@i + X3)

xr; eV

is a germ-grain model. Called Boolean model if the point process is

Poisson.
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Random fractal sets

[1  Example. Cantor set construction.

[] At each step we delete the mid-parts of the remaining intervals

(starting from [0, 1]), so that the left remaining part occupies the C'; -share

and the right remaining part C's-share of the whole length.

(] The usual Cantor set appears if C; = Cy = 1/3.
If C'; and C'5 are random and i.i.d. at every step and every interval, then the

Hausdorff dimension s of the obtained random fractal set satisfies

E(CS+C5)=1.
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Sets related to stochastic processes

(+,t > 0, is a stochastic process.

[] Level set, e.g.

is a random closed set if ( is sample continuous.

[l Epigraph
X={t,x): 2>, t>0, z€ R} =epi(

is a random closed set if ( is a.s. lower semicontinuous.
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