Random sets

Distributions, capacities and their applications

Ilya Molchanov

University of Bern, Switzerland

Definitions

- \square \mathbb{E} locally compact Hausdorff second countable space (usually $\mathbb{E} = \mathbb{R}^d$)
- $lacksymbol{\square}$ $\mathcal F$ family of closed subsets of $\mathbb E$
- $lacksymbol{\square}$ $(\Omega,\mathfrak{F},\mathbf{P})$ probability space

 $\square \quad X: \Omega \mapsto \mathcal{F} \text{ is a random closed set if } \{\omega: X(\omega) \cap K \neq \emptyset\} \in \mathfrak{F}$ for all $K \in \mathcal{K}$ (compact sets in \mathbb{E}).

In other words, X is measurable with respect to the σ -algebra on \mathcal{F} generated by families of sets

 $\{F \in \mathcal{F} : F \cap K \neq \emptyset\}$ for $K \in \mathcal{K}$.

Simple examples

 $\Box \quad X = \{\xi\} \text{ random singleton}$

 \Box $X = B_{\eta}(\xi)$ random ball. Check measurability

 $\{X \cap K \neq \emptyset\} = \{\rho(K,\xi) \le \eta\}$

and use the fact that $ho(K,\xi)$ is a random variable

$$\Box$$
 $X = riangle_{\xi_1, \xi_2, \xi_3}$ random triangle

 $\label{eq:constraint} \square \quad X = \{x \in \mathbb{R}^d: \ \langle x, \xi \rangle \leq t\} \text{ random half-space}$

 \Box $X = \{t \ge 0 : \xi_t = 0\}$ for a continuous stochastic process ξ_t

Random variables associated with random closed sets

- The norm $||X|| = \sup\{||x|| : x \in X\}$ is a random variable (with possibly infinite values).
- For every $x \in \mathbb{E}$ the indicator $1 \mathbb{I}_X(x)$ is a random variable.
- If μ is a locally finite Borel measure on \mathbb{E} , then $\mu(X)$ is a random variable. This follows directly from Fubini's theorem since $\mu(X) = \int 1 \!\!\! 1_X(x) \mu(dx).$

Capacity functional

 \square If X is a random closed set, then

 $T_X(K) = \mathbf{P}\{X \cap K \neq \emptyset\}$

is called the capacity functional of X. Also write T(K) instead of $T_X(K)$.

Usually K belongs to the family \mathcal{K} of compact sets, but T_X can be extended for more general arguments K.

Simple examples

 \Box If $X = \{\xi\}$ random singleton, then

$$T_X(K) = \mathbf{P}\{\xi \in K\}$$

is the probability distribution of ξ . This is the only case of an additive T_X .

If $X = B_r(\xi)$ (ball of radius r centred at ξ), then

 $T_X(K) = \mathbf{P}\{\xi \in K^r\},\$

where K^r is the *r*-neighbourhood of *K*. Note that K_1^r and K_2^r are not necessarily disjoint even if K_1 and K_2 are.

If $X = [\xi, \infty)$ on \mathbb{R}^1 , then

$$T_X(K) = \mathbf{P}\{\xi \le \sup K\}$$

Capacity functional (properties)

- Monotonic $T(K_1) \leq T(K_2)$ if $K_1 \subseteq K_2$.
- Subadditive $T(K_1 \cup K_2) \le T(K_1) + T(K_2)$.
- Concave $T(K_1 \cap K_2) + T(K_1 \cup K_2) \le T(K_1) + T(K_2)$.
- Semicontinuous $T(K_n) \downarrow T(K)$ if $K_n \downarrow K$.

Complete alternation

Succesive differences for $T = T_X$ are defined as

 $\Delta_{K_1} T(K) = T(K) - T(K \cup K_1),$ $\Delta_{K_n} \cdots \Delta_{K_1} T(K) = \Delta_{K_{n-1}} \cdots \Delta_{K_1} T(K)$ $- \Delta_{K_{n-1}} \cdots \Delta_{K_1} T(K \cup K_n), \quad n \ge 2.$

Then $\Delta_{K_1}T(K) = \mathbf{P}\{X \cap K = \emptyset, \ X \cap K_1 \neq \emptyset\}$ and

$$-\Delta_{K_n} \cdots \Delta_{K_1} T(K)$$

= $\mathbf{P} \{ X \cap K = \emptyset, \ X \cap K_i \neq \emptyset, \ i = 1, \dots, n \} \ge 0.$

T is said to be completely alternating

The Choquet theorem

Let \mathbb{E} be a locally compact Hausdorff second countable space.

Theorem: A functional $T: \mathcal{K} \mapsto [0, 1]$ such that $T(\emptyset) = 0$ is the capacity functional of a (necessarily unique) random closed set in \mathbb{E} if and only if T is upper semicontinuous and completely alternating.

 $\label{eq:constraint} \begin{array}{ll} \blacksquare & \mbox{Reason: } \chi_K(F) = 1\!\!\!\mathrm{I}_{F\cap K=\emptyset} \mbox{ satisfies} \\ \chi_K(F_1\cup F_2) = \chi_K(F_1)\chi_K(F_2) \mbox{ (compare } e^{it(x+y)} = e^{itx}e^{ity}). \\ \mbox{Then } \mathbf{E}\,\chi_K(X) = 1 - T_X(K) \mbox{ is the Laplace transform of the distribution} \\ \mbox{ of } X. \end{array}$

Complete alternation corresponds to the positive definiteness property.

Point processes

 \Box X in \mathbb{R}^d is locally finite if $X \cap K$ is finite for each bounded set K

A locally finite random closed set is a point process

Then $N(K) = card(X \cap K)$ is a random variable (counting random measure)

The Choquet theorem implies that the distribution of a simple (no multiple points) point process is uniquely determined by the avoidance probabilities $\mathbf{P}\{X \cap K = \emptyset\} = \mathbf{P}\{N(K) = 0\}.$

Special capacities

• If
$$T(K) = \sup\{f(x): x \in K\}$$
, then

$$X = \{x: f(x) \ge \alpha\}$$

with α uniformly distributed on [0, 1].

- If $T(K) = 1 e^{-\Lambda(K)}$, then X is a Poisson point process with intensity measure Λ .
- If $T(K) = 1 e^{-C(K)}$, where C(K) is the Newton capacity. Then X is related to graphs of Wiener processes.

Random sets vs fuzzy sets

A fuzzy set is a function $f : \mathbb{E} \mapsto [0, 1]$, so that f(x) is the "degree of membership" for a point x.

If f is upper semicontinuous (usually assumed), then it is possible to write

$$f(x) = \mathbf{P}\{x \in X\}$$

for

$$X = \{x : f(x) \ge \alpha\}.$$

However, the distribution of X contains more information than its one-point covering probabilities.

Extension problems

 \Box T(K) is defined on some family of compact sets K. Aim: find if it is possible to extend it to a capacity functional on \mathcal{K} and find (all possible) extensions.

Trivial case: $T(\{x\}) = f(x)$ defined for all singletons K. Then define $X = \{x : f(x) \ge \alpha\}$, i.e. define the extension by $T(K) = \sup\{f(x) : x \in K\}.$

• Open problem: $T(\{x, y\}) = f(x, y)$. Characterise all possible functions f such that T is extendable to a capacity functional. If X is stationary, then $T(\{x, y\}) = f(x - y)$.

Measurability issues

The fundamental measurability theorem implies that the following are equivalent (in case \mathbb{E} is Polish and the probability space is complete)

- $\{X \cap B \neq \emptyset\}$ is measurable event for all Borel B;
- $\{X \cap F \neq \emptyset\}$ is measurable event for all closed F;
- $\{X \cap F \neq \emptyset\}$ is measurable event for all open G;
- the distance function $\rho(y, X)$ is a random variable for all y;
- there exists a sequence of random singletons $\{\xi_n\}$ such that X is the closure of $\{\xi_n, n \ge 1\}$;
- the graph $\{(\omega, x); x \in X(\omega)\}$ is measurable set in the product space $\Omega \times \mathbb{E}$.

Notes to measurability issues

If \mathbb{E} is locally compact, all these statements are equivalent to the fact that *X* is a random closed set.

A random element ξ satisfying $\xi \in X$ a.s. is called a selection of X.

 \Box $X: \Omega \mapsto \mathcal{F}$ is called a multifunction, and

 $X^{-}(B) = \{\omega : X(\omega) \cap B \neq \emptyset\}$

is its inverse.

Capacity functionals and properties of random sets

 \Box T_X determines the distribution of X and so all features of X.

 \Box E.g. if μ is a σ -finite measure, then

$$\mathbf{E}\,\mu(X) = \int T_X(\{x\})\mu(dx) = \int \mathbf{P}\{x \in X\}\mu(dx)$$

(Robbins' theorem).

In general, the situation is more complicated, e.g. if μ is a Hausdorff measure.

Convex random sets

X is said to be convex if its realisations are a.s. convex (check that the family of convex closed sets is measurable!).

Theorem. X is convex if and only if

 $T_X(K_1 \cap K_2) + T_X(K_1 \cup K_2) = T_X(K_1) + T_X(K_2)$

for all convex compact sets K_1, K_2 such that $K_1 \cup K_2$ is also convex. Reason: If X is convex, then

 $0 = \mathbf{P}\{X \cap K = \emptyset, \ X \cap K_1 \neq \emptyset, \ X \cap K_2 \neq \emptyset\} = -\Delta_{K_2} \Delta_{K_1} T_X(K) \,.$

In the reverse direction take $K_1 = [x, z]$ and $K_2 = [z, y]$.

Weak convergence

 $\Box \quad X_n \xrightarrow{d} X \text{ (weakly converges) iff the corresponding probability measures weakly converge.}$

This is equivalent to

 $T_{X_n}(K) \to T_X(K)$

for all compact sets K such that $T_X(K) = T_X(\operatorname{Int} K)$ (continuity sets).

Each sequence of random closed sets in a locally compact space possesses a weak convergent subsequence.

Capacities elsewhere

 \Box $\varphi(A), A \subset \mathbb{E}$, is a non-additive measure if $\varphi(\emptyset) = 0, \varphi(\mathbb{E}) = 1$ and φ is monotonic. Such non-additive measures (capacities) build a topological space, it is possible to study their random variants, weak convergence etc.

Game theory: elements of $\mathbb E$ are players, subsets of $\mathbb E$ are coalitions, φ is a game. Dual $\tilde{\varphi}(A) = 1 - \varphi(A^c)$.

If $\varphi(A) = \mathbf{P}\{X \subset A\}$ (containment functional of X), then $\tilde{\varphi}(A) = T(A) = \mathbf{P}\{X \cap A \neq \emptyset\}$ is the capacity functional.

Core of non-additive measure

The core of φ is the family of finite-additive measures μ such that $\mu(A) \ge \varphi(A)$ for all A. In terms of random sets $\mathbf{P}\{X \subset A\} \le \mu(A) \le \mathbf{P}\{X \cap A \neq \emptyset\}$.

If φ is convex, i.e.

 $\varphi(A \cap B) + \varphi(A \cup B) \ge \varphi(A) + \varphi(B),$

then the core is non-empty.

If φ is the containment functional of a.s. non-empty random set X, then all σ -additive measures from the core correspond to selections of X, i.e. μ is the distribution of ξ such that $\xi \in X$ a.s.

Selections and comparison

If $\xi \in X$, then $\mathbf{P}\{\xi \in K\} \leq T_X(K)$ for all $K \in \mathcal{K}$. This is also sufficient condition for ξ being a selection of X.

If $Y \subset X$ a.s., then $T_Y(K) \leq T_X(K)$ for all K.

However the inequality between the capacity functionals does not suffice to deduce that $Y \subset X$. One needs inequalities between successive differences $\Delta(\cdots)$ of all orders.

Choquet integral

Probability measure μ	Non-additive measure $arphi$
Expectation $\int \xi(\omega) \mu(d\omega)$	Choquet integral

Choquet integral is defined for a non-negative function f as

$$\int f d\varphi = \int_0^\infty \varphi(\{x: f(x) \ge t\}) dt.$$

Compare: if $\mu = \mathbf{P}$ is a probability measure and $\xi \geq 0$ a.s., then

$$\mathbf{E}\,\xi = \int_0^\infty \mathbf{P}\{\xi \ge t\}dt\,.$$

It is easy to see that

$$\int f dT_X = \mathbf{E} \sup\{f(x) : x \in X\}.$$

Choquet integral and pricing

The Lebesgue integral (expectation of a random variable X) \Leftrightarrow linear pricing functional.

Choquet integral \Leftrightarrow sub-additive and comonotone additive, i.e. $\int (f+g)d\varphi = \int fd\varphi + \int gd\varphi$ if f and g are comonotonic.

Random variables X and Y are comonotonic if $(X(\omega) - X(\omega'))(Y(\omega) - Y(\omega')) \ge 0 \text{ a.s. } \omega, \omega' \in \Omega$

Note that $f \mapsto \mathbf{E} \sup f(X)$ is comonotonic with respect to f (but not necessarily additive)

Risk measures

 $\xi \in L^{\infty}$ represents a financial gain. Functional $\rho : L^{\infty} \mapsto \mathbb{R}$. Translation invariance. For all $\xi \in L^{\infty}$ and $t \in \mathbb{R}$: $\rho(\xi + t) = \rho(\xi) - t$. Subadditivity. For all $\xi_1, \xi_2 \in L^{\infty}$: $\rho(\xi_1 + \xi_2) \leq \rho(\xi_1) + \rho(\xi_2)$. Positive homogeneity. For all $c \geq 0$ and $\xi \in L^{\infty}$: $\rho(c\xi) = c\rho(\xi)$. Monotonicity. If $\xi_1 \leq \xi_2$ a.s., then $\rho(\xi_1) \geq \rho(\xi_2)$.

Then ρ is called a coherent risk measure.

Representation of coherent risk measures

If ρ is coherent and lower semicontinuous in probability, then there exists a convex set A of probability measures, such that

$$\rho(\xi) = \sup\{\mathbf{E}_{\mu}\,\xi:\ \mu \in \mathcal{A}\}.$$

Particularly important families of risk measures are given by Choquet integrals

$$\rho(\xi) = \int \xi d\varphi \,.$$

If φ is the capacity functional T_X with $X\subset \Omega,$ then

$$\rho(\xi) = \mathbf{E} \sup\{\xi(\omega) : \ \omega \in X\}.$$

Although too simple in the univariate case, this representation is useful for multivariate risk measures.

Belief and plausibility functions

Containment functional ${f P}\{X\subset K\}$	Belief function
Capacity functional T_X	Plausibility functional

Example: Likelihood plausibility $X = \{x : L(x) \ge \alpha\}$, where L is the normalised likelihood.

Aim: Update of belief functions.

Open problem. For a given belief function find a probability measure that dominates it and has the maximal entropy. In other words, find a selection (of a random set) with the maximal entropy.

Capacities in robust statistics

"Contaminated" families of probability measures, e.g.

 $(1-\varepsilon)\mathbf{P}+\varepsilon\mathbf{Q}$

for all probability measures ${f Q}$ (contaminations).

The corresponding upper probability is a capacity functional

$$T_X(K) = \varepsilon + (1 - \varepsilon) \mathbf{P}(K), \quad K \neq \emptyset,$$

so that X equals the whole space with probability ε and otherwise is the singleton with distribution **P**.

Statistical issues for random sets themselves

- Reference measure (like Lebesgue or Gaussian) is not available.
- Likelihood-based methods are not available (so far).
- Models are scarce.

Random set models

Point-based models $X = \{\xi_1, \ldots, \xi_n\}.$

Convex hull based models $X = co(\xi_1, \ldots, \xi_n)$.

E.g., random segments or triangles.

Given More general setting: $M : \mathbb{R}^m \to \mathcal{F}$ is a set-valued measurable function on an auxiliary space. Then $X = M(\zeta)$ becomes a random closed set.

Stationary random sets

Similar setting $X = M(\zeta)$, but ζ now is a point process.

If $\Psi = \{x_1, x_2, \ldots\}$ is a point process and X_1, X_2, \ldots i.i.d. random compact sets, then

 $\bigcup_{x_i \in \Psi} (x_i + X_i)$

is a germ-grain model. Called Boolean model if the point process is Poisson.

Random fractal sets

Example. Cantor set construction.

At each step we delete the mid-parts of the remaining intervals (starting from [0, 1]), so that the left remaining part occupies the C_1 -share and the right remaining part C_2 -share of the whole length.

The usual Cantor set appears if $C_1 = C_2 = 1/3$.

If C_1 and C_2 are random and i.i.d. at every step and every interval, then the Hausdorff dimension s of the obtained random fractal set satisfies

 $\mathbf{E}(C_1^s + C_2^s) = 1.$

is a random closed set if ζ is a.s. lower semicontinuous.

References

- [1] Ph. Artzner, F. Delbaen, J.-M. Eber, and D. Heath. Coherent measures of risk. *Math. Finance*, 9:203–228, 1999.
- [2] F. Delbaen. Coherent risk measures on general probability spaces. In
 K. Sandmann and P. J. Schönbucher, editors, *Advances in Finance and Stochastics*, pages 1–37. Springer, Berlin, 2002.
- [3] I. Molchanov. Theory of Random Sets. Springer, London, 2005.
- [4] T. Norberg. On the existence of ordered couplings of random sets with applications. *Israel J. Math.*, 77:241–264, 1992.
- [5] W. Vervaat. Random upper semicontinuous functions and extremal processes.
 In W. Vervaat and H. Holwerda, editors, *Probability and Lattices*, volume 110 of *CWI Tracts*, pages 1–56. CWI, Amsterdam, 1997.