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Definitions

❏ E locally compact Hausdorff second countable space (usually

E = R
d)

❏ F family of closed subsets of E

❏ (Ω, F,P) probability space

❏ X : Ω 7→ F is a random closed set if {ω : X(ω) ∩ K 6= ∅} ∈ F

for all K ∈ K (compact sets in E).

❏ In other words, X is measurable with respect to the σ-algebra on F

generated by families of sets

{F ∈ F : F ∩ K 6= ∅} for K ∈ K.
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Simple examples

❏ X = {ξ} random singleton

❏ X = Bη(ξ) random ball. Check measurability

{X ∩ K 6= ∅} = {ρ(K, ξ) ≤ η}

and use the fact that ρ(K, ξ) is a random variable

❏ X = △ξ1,ξ2,ξ3
random triangle

❏ X = {x ∈ R
d : 〈x, ξ〉 ≤ t} random half-space

❏ X = {t ≥ 0 : ξt = 0} for a continuous stochastic process ξt

I. Molchanov Random sets - Lecture 1. Winter School Sandbjerg, Jan 2007 3



Random variables associated with random
closed sets

• The norm ‖X‖ = sup{‖x‖ : x ∈ X} is a random variable (with

possibly infinite values).

• For every x ∈ E the indicator 1IX(x) is a random variable.

• If µ is a locally finite Borel measure on E, then µ(X) is a random

variable. This follows directly from Fubini’s theorem since

µ(X) =
∫

1IX(x)µ(dx).
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Capacity functional

❏ If X is a random closed set, then

TX(K) = P{X ∩ K 6= ∅}

is called the capacity functional of X . Also write T (K) instead of TX(K).

❏ Usually K belongs to the family K of compact sets, but TX can be

extended for more general arguments K .
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Simple examples

❏ If X = {ξ} random singleton, then

TX(K) = P{ξ ∈ K}

is the probability distribution of ξ. This is the only case of an additive TX .

❏ If X = Br(ξ) (ball of radius r centred at ξ), then

TX(K) = P{ξ ∈ Kr} ,

where Kr is the r-neighbourhood of K . Note that Kr
1 and Kr

2 are not

necessarily disjoint even if K1 and K2 are.

❏ If X = [ξ,∞) on R
1, then

TX(K) = P{ξ ≤ supK}
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Capacity functional (properties)

• Monotonic T (K1) ≤ T (K2) if K1 ⊆ K2.

• Subadditive T (K1 ∪ K2) ≤ T (K1) + T (K2).

• Concave T (K1 ∩ K2) + T (K1 ∪ K2) ≤ T (K1) + T (K2).

• Semicontinuous T (Kn) ↓ T (K) if Kn ↓ K .
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Complete alternation

Succesive differences for T = TX are defined as

∆K1
T (K) = T (K) − T (K ∪ K1) ,

∆Kn
· · ·∆K1

T (K) = ∆Kn−1
· · ·∆K1

T (K)

− ∆Kn−1
· · ·∆K1

T (K ∪ Kn) , n ≥ 2 .

Then ∆K1
T (K) = P{X ∩ K = ∅, X ∩ K1 6= ∅} and

− ∆Kn
· · ·∆K1

T (K)

= P{X ∩ K = ∅, X ∩ Ki 6= ∅, i = 1, . . . , n} ≥ 0 .

T is said to be completely alternating
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The Choquet theorem

Let E be a locally compact Hausdorff second countable space.

Theorem: A functional T : K 7→ [0, 1] such that T (∅) = 0 is the capacity

functional of a (necessarily unique) random closed set in E if and only if T

is upper semicontinuous and completely alternating.

❏ Reason: χK(F ) = 1IF∩K=∅ satisfies

χK(F1 ∪ F2) = χK(F1)χK(F2) (compare eit(x+y) = eitxeity).

Then EχK(X) = 1− TX(K) is the Laplace transform of the distribution

of X .

Complete alternation corresponds to the positive definiteness property.
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Point processes

❏ X in R
d is locally finite if X ∩ K is finite for each bounded set K

❏ A locally finite random closed set is a point process

❏ Then N(K) = card(X ∩K) is a random variable (counting random

measure)

❏ The Choquet theorem implies that the distribution of a simple (no

multiple points) point process is uniquely determined by the avoidance

probabilities P{X ∩ K = ∅} = P{N(K) = 0}.
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Special capacities

• If T (K) = sup{f(x) : x ∈ K}, then

X = {x : f(x) ≥ α}

with α uniformly distributed on [0, 1].

• If T (K) = 1 − e−Λ(K), then X is a Poisson point process with

intensity measure Λ.

• If T (K) = 1 − e−C(K), where C(K) is the Newton capacity. Then

X is related to graphs of Wiener processes.
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Random sets vs fuzzy sets

A fuzzy set is a function f : E 7→ [0, 1], so that f(x) is the “degree of

membership” for a point x.

If f is upper semicontinuous (usually assumed), then it is possible to write

f(x) = P{x ∈ X}

for

X = {x : f(x) ≥ α}.

However, the distribution of X contains more information than its one-point

covering probabilities.
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Extension problems

❏ T (K) is defined on some family of compact sets K .

Aim: find if it is possible to extend it to a capacity functional on K and find

(all possible) extensions.

❏ Trivial case: T ({x}) = f(x) defined for all singletons K . Then

define X = {x : f(x) ≥ α}, i.e. define the extension by

T (K) = sup{f(x) : x ∈ K}.

❏ Open problem: T ({x, y}) = f(x, y). Characterise all possible

functions f such that T is extendable to a capacity functional.

If X is stationary, then T ({x, y}) = f(x − y).
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Measurability issues

The fundamental measurability theorem implies that the following are

equivalent (in case E is Polish and the probability space is complete)

• {X ∩ B 6= ∅} is measurable event for all Borel B;

• {X ∩ F 6= ∅} is measurable event for all closed F ;

• {X ∩ F 6= ∅} is measurable event for all open G;

• the distance function ρ(y, X) is a random variable for all y;

• there exists a sequence of random singletons {ξn} such that X is the

closure of {ξn, n ≥ 1};

• the graph {(ω, x); x ∈ X(ω)} is measurable set in the product space

Ω × E.
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Notes to measurability issues

❏ If E is locally compact, all these statements are equivalent to the fact

that X is a random closed set.

❏ A random element ξ satisfying ξ ∈ X a.s. is called a selection of X .

❏ X : Ω 7→ F is called a multifunction, and

X−(B) = {ω : X(ω) ∩ B 6= ∅}

is its inverse.
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Capacity functionals and properties of random
sets

❏ TX determines the distribution of X and so all features of X .

❏ E.g. if µ is a σ-finite measure, then

Eµ(X) =

∫
TX({x})µ(dx) =

∫
P{x ∈ X}µ(dx)

(Robbins’ theorem).

❏ In general, the situation is more complicated, e.g. if µ is a Hausdorff

measure.
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Convex random sets

X is said to be convex if its realisations are a.s. convex (check that the

family of convex closed sets is measurable!).

Theorem. X is convex if and only if

TX(K1 ∩ K2) + TX(K1 ∪ K2) = TX(K1) + TX(K2)

for all convex compact sets K1, K2 such that K1 ∪ K2 is also convex.

Reason: If X is convex, then

0 = P{X∩K = ∅, X∩K1 6= ∅, X∩K2 6= ∅} = −∆K2
∆K1

TX(K) .

In the reverse direction take K1 = [x, z] and K2 = [z, y].
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Weak convergence

❏ Xn
d
→ X (weakly converges) iff the corresponding probability

measures weakly converge.

❏ This is equivalent to

TXn
(K) → TX(K)

for all compact sets K such that TX(K) = TX(Int K) (continuity sets).

❏ Each sequence of random closed sets in a locally compact space

possesses a weak convergent subsequence.
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Capacities elsewhere

❏ ϕ(A), A ⊂ E, is a non-additive measure if ϕ(∅) = 0, ϕ(E) = 1

and ϕ is monotonic. Such non-additive measures (capacities) build a

topological space, it is is possible to study their random variants, weak

convergence etc.

❏ Game theory: elements of E are players, subsets of E are coalitions,

ϕ is a game. Dual ϕ̃(A) = 1 − ϕ(Ac).

❏ If ϕ(A) = P{X ⊂ A} (containment functional of X ), then

ϕ̃(A) = T (A) = P{X ∩ A 6= ∅} is the capacity functional.
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Core of non-additive measure

❏ The core of ϕ is the family of finite-additive measures µ such that

µ(A) ≥ ϕ(A) for all A.

In terms of random sets P{X ⊂ A} ≤ µ(A) ≤ P{X ∩ A 6= ∅}.

❏ If ϕ is convex, i.e.

ϕ(A ∩ B) + ϕ(A ∪ B) ≥ ϕ(A) + ϕ(B),

then the core is non-empty.

❏ If ϕ is the containment functional of a.s. non-empty random set X ,

then all σ-additive measures from the core correspond to selections of X ,

i.e. µ is the distribution of ξ such that ξ ∈ X a.s.
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Selections and comparison

❏ If ξ ∈ X , then P{ξ ∈ K} ≤ TX(K) for all K ∈ K. This is also

sufficient condition for ξ being a selection of X .

❏ If Y ⊂ X a.s., then TY (K) ≤ TX(K) for all K .

❏ However the inequality between the capacity functionals does not

suffice to deduce that Y ⊂ X . One needs inequalities between successive

differences ∆(· · · ) of all orders.
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Choquet integral

Probability measure µ Non-additive measure ϕ

Expectation
∫

ξ(ω)µ(dω) Choquet integral

Choquet integral is defined for a non-negative function f as
∫

fdϕ =

∫ ∞

0

ϕ({x : f(x) ≥ t})dt .

Compare: if µ = P is a probability measure and ξ ≥ 0 a.s., then

E ξ =

∫ ∞

0

P{ξ ≥ t}dt .

It is easy to see that∫
fdTX = E sup{f(x) : x ∈ X} .
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Choquet integral and pricing

❏ The Lebesgue integral (expectation of a random variable X ) ⇔ linear

pricing functional.

❏ Choquet integral ⇔ sub-additive and comonotone additive, i.e.∫
(f + g)dϕ =

∫
fdϕ +

∫
gdϕ if f and g are comonotonic.

Random variables X and Y are comonotonic if

(X(ω) − X(ω′))(Y (ω) − Y (ω′)) ≥ 0 a.s. ω, ω′ ∈ Ω

Note that f 7→ E sup f(X) is comonotonic with respect to f (but not

necessarily additive)
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Risk measures

ξ ∈ L∞ represents a financial gain. Functional ρ : L∞ 7→ R.

Translation invariance. For all ξ ∈ L∞ and t ∈ R: ρ(ξ + t) = ρ(ξ)− t.

Subadditivity. For all ξ1, ξ2 ∈ L∞: ρ(ξ1 + ξ2) ≤ ρ(ξ1) + ρ(ξ2).

Positive homogeneity. For all c ≥ 0 and ξ ∈ L∞: ρ(cξ) = cρ(ξ).

Monotonicity. If ξ1 ≤ ξ2 a.s., then ρ(ξ1) ≥ ρ(ξ2).

Then ρ is called a coherent risk measure.
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Representation of coherent risk measures

If ρ is coherent and lower semicontinuous in probability, then there exists a

convex set A of probability measures, such that

ρ(ξ) = sup{Eµ ξ : µ ∈ A} .

Particularly important families of risk measures are given by Choquet

integrals

ρ(ξ) =

∫
ξdϕ .

If ϕ is the capacity functional TX with X ⊂ Ω, then

ρ(ξ) = E sup{ξ(ω) : ω ∈ X}.

Although too simple in the univariate case, this representation is useful for

multivariate risk measures.
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Belief and plausibility functions

Containment functional P{X ⊂ K} Belief function

Capacity functional TX Plausibility functional

Example: Likelihood plausibility X = {x : L(x) ≥ α}, where L is the

normalised likelihood.

Aim: Update of belief functions.

Open problem. For a given belief function find a probability measure that

dominates it and has the maximal entropy. In other words, find a selection

(of a random set) with the maximal entropy.
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Capacities in robust statistics

“Contaminated” families of probability measures, e.g.

(1 − ε)P + εQ

for all probability measures Q (contaminations).

The corresponding upper probability is a capacity functional

TX(K) = ε + (1 − ε)P(K) , K 6= ∅ ,

so that X equals the whole space with probability ε and otherwise is the

singleton with distribution P.
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Statistical issues for random sets themselves

❏ Reference measure (like Lebesgue or Gaussian) is not available.

❏ Likelihood-based methods are not available (so far).

❏ Models are scarce.
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Random set models

❏ Point-based models X = {ξ1, . . . , ξn}.

❏ Convex hull based models X = co (ξ1, . . . , ξn).

E.g., random segments or triangles.

❏ More general setting: M : R
m → F is a set-valued measurable

function on an auxiliary space. Then X = M(ζ) becomes a random

closed set.
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Stationary random sets

❏ Similar setting X = M(ζ), but ζ now is a point process.

❏ If Ψ = {x1, x2, . . .} is a point process and X1, X2, . . . i.i.d. random

compact sets, then ⋃
xi∈Ψ

(xi + Xi)

is a germ-grain model. Called Boolean model if the point process is

Poisson.
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Random fractal sets

❏ Example. Cantor set construction.

❏ At each step we delete the mid-parts of the remaining intervals

(starting from [0, 1]), so that the left remaining part occupies the C1-share

and the right remaining part C2-share of the whole length.

❏ The usual Cantor set appears if C1 = C2 = 1/3.

If C1 and C2 are random and i.i.d. at every step and every interval, then the

Hausdorff dimension s of the obtained random fractal set satisfies

E(Cs
1 + Cs

2) = 1 .
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Sets related to stochastic processes

ζt, t ≥ 0, is a stochastic process.

❏ Level set, e.g.

X = {t ≥ 0 : ζt = 0}

is a random closed set if ζ is sample continuous.

❏ Epigraph

X = {(t, x) : x ≥ ζt, t ≥ 0, x ∈ R} = epi ζ

is a random closed set if ζ is a.s. lower semicontinuous.
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