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Definitions

❏ F family of closed subsets in locally compact Hausdorff second

countable space E (usually E = R
d).

❏ X is a random closed set in E.

❏ X1, X2, . . . are i.i.d. copies of X .

❏ ‖X‖ = sup{‖x‖ : x ∈ X} the norm of X .

❏ ρH(K,L) = inf{r > 0 : K ⊂ Lr, L ⊂ Kr}
the Hausdorff metric, whereKr and Lr are r-neighbourhoods ofK and L.
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Operations with sets

❏ Two basic operations with sets:

• Minkowski sum K + L = {x+ y : x ∈ K, y ∈ L}
• unionK ∪ L

❏ If K and L are singletons, their Minkowski sum is the usual addition.

❏ If K = (−∞, x] and L = (−∞, y], then the union corresponds to

the maximum x ∨ y.
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However

❏ For convex compact sets the Minkowski addition is similar to the usual

addition, but K +X = L does not necessarily have a solution X .

❏ The Minkowski sum of two convex (non-compact) sets is not

necessarily closed.

❏ For non-convex sets the Minkowski addition may have more peculiar

properties. E.g. K +X = K + Y does not imply X = Y

and X +X is not necessarily 2X , e.g. if X = {0, 1}.

❏ The union is idempotent operation, i.e. X ∪X = X .
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Characters

❏ Closed sets with a particular (commutative) operation form a

semigroup.

❏ Idea:

• define a family of characters, i.e. homomorphisms between this

semigroup and the complex unit disk with multiplication

χ(x+ y) = χ(x)χ(y);

• take the expectation in the unit complex disk Eχ(X) for randomX .

❏ The family of characters should be rich enough, namely if

χ(x) = χ(y) for all χ, then necessarily x = y.
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Implementation

❏ R+ with addition: χt(x) = e−tx. Then E e−tξ is Laplace transform

of random variable ξ.

❏ R with addition: χt(x) = eitx. Then E eitξ is the characteristic

function.

❏ Closed sets and unions: χK(X) = 1IX∩K=∅. Then

E 1IX∩K=∅ = 1 − TX(K) is the avoidance functional of X .

❏ Minkowski sums of convex compact sets. Support function

h(K,u) = sup{〈x, u〉 : x ∈ K} .

Then h(K + L, u) = h(K,u) + h(L, u). If all sets contain the origin,

the characters are

χu(K) = e−h(K,u).
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How to normalise the sum?

❏ Multiplicative normalisation

X1 + · · · +Xn

an
or

X1 ∪ · · · ∪Xn

an

❏ Additive normalisation

X1 + · · · +Xn +Kn or X1 ∪ · · · ∪Xn +Kn (or ∪Kn)

❏ Note that subtraction is not well defined and is generally impossible.

HoweverX1 + · · · +Xn generally “gets bigger” if n increases!
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Two main examples

❏ Minkowski sums

❏ Unions
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Minkowski sums of compact sets

❏ Reduction to sums of convex compact sets

Shapley-Folkman-Starr Theorem. If K1, . . . , Kn are compact subsets of

R
d, then

ρH(K1 + · · · +Kn, co (K1 + · · · +Kn)) ≤
√
d max

1≤i≤n
‖Ki‖ .

❏ Special caseK1 = · · · = Kn = K

ρH(
1

n
(K+· · ·+K),

1

n
co (K+· · ·+K)) ≤

√
d

n
‖K‖ → 0 as n→ ∞ .

❏ K is infinitely divisible for Minkowski sums (i.e. K = Ln + · · · + Ln

for all n ≥ 2) if and only if K is convex.
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Normalised sums

X1, X2, . . . are i.i.d. copies of random compact set X

❏ Idea:

h(
1

n
(X1 + · · · +Xn), u) =

1

n
(h(X1, u) + · · · + h(Xn, u))

The right-hand side is the arithmetic sum of functions on the unit sphere,

and so it is possible to use the law of large numbers in the Banach space of

functions.
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Expectation

❏ A real function f(u), u ∈ R
d, is a support function of a convex

compact set if and only if f is homogeneous (i.e. f(cu) = cf(u)) and

sublinear (i.e. f(u+ v) ≤ f(u) + f(v)).

❏ AssumeX is a random compact set with E ‖X‖ <∞ (X is called

integrably bounded).

❏ h(X, u) is homogeneous and sublinear almost surely.

❏ The expectation Eh(X, u) is also homogeneous and sublinear.

Thus, there exists a compact convex set denoted by EX such that

h(EX, u) = Eh(X, u).

❏ Note that EX is always convex.
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Definition using selections

❏ Assume that the underlying probability space is non-atomic. Then

EX can be equivalently defined as

EX = {E ξ : ξ ∈ X a.s.} .

So defined EX is also always convex on non-atomic probability spaces.

❏ If ‖X‖ is integrable, then all selections are integrable. It suffices

however to require that X possesses at least one integrable selection.

Then X is not necessarily compact and EX may be unbounded.
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Law of large numbers

Theorem (Artstein-Vitale). If E ‖X‖ <∞ (X is integrably bounded), then

ρH(n−1(X1 + · · · +Xn),EX) → 0 as n→ ∞ .

❏ Proof.

• If X is convex, apply LLN for support functions in C(Sd−1).

• In general, use the Shapley-Folkman-Starr theorem

ρH(n−1(X1+· · ·+Xn), n−1co (X1+· · ·+Xn)) ≤
√
d

n
max

1≤i≤n
‖Xi‖

Use the fact that ‖X‖ is integrable.
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An application: zonoids

❏ If X = [0, ξ] is a random segment, then EX is a zonoid

(zonoid of ξ).

❏ The law of large numbers implies that zonoids appear as limits for

sums of segments (zonotopes).

❏ Zonoid of ξ does not characterise the distribution of ξ, but it carries

useful information about it (multivariate statistics).

❏ The lift zonoid of ξ is EY for Y = [0, (1, ξ)] ⊂ R
d+1. The lift

zonoid characterises uniquely the distribution of ξ, since

h(EY, (t, u)) = Emax{0, (t+ 〈ξ, u〉)}

for all t ∈ R suffices to determine the distribution of 〈ξ, u〉 for each u.

I. Molchanov Random sets - Lecture 2. Winter School Sandbjerg, Jan 2007 14



Centring

X1 + · · · +Xn

n
→ EX

• It is not possible to “subtract” EX .

• If EX = {0}, then X is a singleton with mean zero.

So need to deal with centring in a different way. Compare

√
n

(

ξ1 + · · · + ξn
n

− E ξ

)

→ N (0, σ2)

and
√
nρ(

ξ1 + · · · + ξn
n

,E ξ) → |N (0, σ2)| .
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Central Limit theorem

Theorem (Weil). Let X,X1, X2, . . . be square integrable, i.e.

E ‖X‖2 <∞. Then

√
nρH(n−1(X1 + · · · +Xn),EX) → sup

‖u‖=1

|ζ(u)| ,

where ζ(u) is a centred Gaussian field on the unit sphere (or ball) with the

covariance

E ζ(u)ζ(v) = E[h(X, u)h(X, v)] − Eh(X, u)Eh(X, v) .
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Difficulties

❏ The random field ζ usually cannot be represented as a support

function. If this is the case, then necessarilyX = ξ +K .

Open problem: Find a useful geometric interpretation of ζ .

❏ Open problem. Asymptotic expansions of the type

X1 + · · · +Xn

n
= EX + n−1/2Z + · · ·

❏ ζ is multivariate field with a complicated covariance structure, so its

maximum does not have a simple distribution.

Tools: consider values of ζ on a finite subset of S
d−1;

use bootstrap-related techniques.

❏ Aim: get confidence intervals for EX .
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An application (Beresteanu & Molinari, 2006)

Incompletely specified models in econometrics. Explanatory variable x,

response interval-valued Y = [yl, yu].

Define random setG = {(y, xy) : y ∈ Y }.

Best linear predictor solves

E(y) = θ1 + θ2 E(x) , E(xy) = θ1 E(x) + θ2 E(x2) ,

where y is a selection of Y . Set-valued best linear predictor is

Θ =





1 E(x)

E(x) E(x2)





−1

EG .

The theoretical expectation is then replaced by Minkowski averages for

Gi = {(y, xiy) : y ∈ Yi}.
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Stability and limit theorems

Random variables ξ1, . . . , ξn

ξ1 + · · · + ξn
nα

→ ζ

The limits are necessarily stable, i.e.

a1/αζ1 + b1/αζ2
D
= (a+ b)1/αζ

The Gaussian limit appears if α = 2.

Although for random sets the limit theorem is formulated differently (for the

Hausdorff metric), it is possible to define the stability concept. However,

stable random sets are no longer immediately related to the limits, since the

limits are not set-valued.
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Gaussian and stable random sets

Random convex compact setX is strictly α-stable iff

a1/αX1 + b1/αX2
D
= (a+ b)1/αX

The Gaussian case α = 2 iff h(X, u) is a Gaussian random function of u.

Theorem. X is α-stable with α ∈ [1, 2] if and only if X = ξ +K where

K is deterministic and ξ is α-stable vector.

Reason (Gaussian case). Consider linear functional

s(X) =
1

κd

∫

Sd−1

h(X, u)udu

(the Steiner point of X ). Then s(X) = ξ is Gaussian and

Y = X − s(X) contains the origin a.s., so that h(Y, u) is Gaussian and

non-negative, thus deterministic.
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Extensions

• law of iterated logarithm

• three series theorem

• renewal theorem

• ergodic theorems

• large deviation results
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Unions of random sets

❏ The natural tool for unions is the capacity functional (because the

avoidance functional actually is the Laplace transform in this case).

❏ Need to figure out the cases when the Laplace transform vanishes. In

particular,

FX = {x : P{x ∈ X} = 1}
is the set of fixed points for X . Note that FX ⊂ X a.s. and

1 − T (K) = 0 if K ∩ FX 6= ∅.

❏ X is said to be infinite divisible for unions if, for each n ≥ 2,

X
D
= Xn1 ∪ · · · ∪Xnn

for i.i.d. random closed sets Xn1, . . . , Xnn.
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Infinite divisible sets

❏ Theorem (Matheron). X is union infinitely divisible iff

TX(K) = 1 − e−Ψ(K) ,

where Ψ is a completely alternating upper semicontinuous functional (like

TX but with values in [0,∞)) such that Ψ(K) <∞ if K ∩ FX = ∅.

❏ Ψ defines a measure ν on F such that

Ψ(K) = ν{F : F ∩K 6= ∅}. If we consider a Poisson process on F
with intensity measure ν, then X is the union of points (actually sets) which

are elements of this process.
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Sketch of Proof

• If X is infinitely divisible, then T = 1 − (1 − Tn)n with Tn being a

capacity functional.

• T (K) < 1 for all K such that K ∩ FX = ∅.

• nTn(K) = n(1− (1−T (K))1/n) → − log(1−T (K)) = Ψ(K),

so that Ψ is completely alternating and upper semicontinuous.

• T = 1 − eΨ is a capacity functional, and

1 − (1 − T (K))1/n = 1 − en−1Ψ(K) is a capacity functional.
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Union-stable random sets

X is said to be union-stable if, for every n ≥ 2,

anX
D
= X1 ∪ · · · ∪Xn,

where X1, . . . , Xn are i.i.d. and have the same distribution as X .

Theorem. A non-deterministicX is union-stable iff TX = 1 − e−Ψ with

Ψ(sK) = sαΨ(K) , K ∩ FX = ∅, s > 0 ,

and sFX = FX .
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Idea of the proof

• The stability definition implies that

T (K) = 1 − (1 − T (anK))n , n ≥ 1 ,

i.e. nΨ(anK) = Ψ(K).

• Then sΨ(a(s)K) = Ψ(K) for all rational s and

Ψ(a(s)a(s1)K) = ψ(a(ss1)K). Need to conclude that

a(s)a(s1) = a(ss1).

• This is not immediate! X
D
= cX (and so TX(K) = TX(cK)) is

possible for c 6= 1, e.g. zero sets of the Wiener process. However, the

stability property excludes this option.

• Show that a is continuous on rational numbers. Then a(s) = sγ with

γ = −1/α.
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Examples

❏ If X does not have fixed points, then α > 0. If α < 0, then 0 ∈ FX .

❏ If X is stationary, then α > 0.

❏ X = (−∞, ξ] is union-stable iff ξ is max-stable.

❏ If X is Poisson process with intensity measure Λ, then X is infinitely

divisible for unions and Λ(K) = Ψ(K). So X is union-stable iff

Λ(sK) = sαΛ(K). E.g. the stationary process in R
d is stable with

α = d (Λ is the Lebesgue measure).
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Weak convergence results

a−1
n (X1 ∪ · · · ∪Xn) weakly converges to a (necessarily union-stable)

random closed set Z .

Basic condition: regular variation of f(x) = T (xK) as a function of

x > 0 at x→ ∞. Note that f(x) is regular varying iff

lim
t→∞

f(tx)

f(t)
= xα

for each x > 0.
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Extensions

❏ Similar results exist for convex hulls of sets in terms of their

containment functionals. The alternative tool is provided by the support

function, since

h(co (K ∪ L), u) = max(h(K,u), h(L, u)) .

❏ It is also possible to work with intersections of random closed sets.
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