Random sets Random sets and stochastic processes Ilya Molchanov University of Bern, Switzerland

Definitions

- lacksquare \mathcal{F} family of closed subsets in locally compact Hausdorff second countable space \mathbb{E} (usually $\mathbb{E}=\mathbb{R}^d$).
- lacksquare X is a random closed set in \mathbb{E} .

Content of the lecture

- $lue{}$ Random sets X_t depending on parameter $t \geq 0$ (time).
- set-valued martingales
- applications in quantitative finance
- Random sets that appear in relation to graphs and level sets of stochastic processes
- Markov sets
- epigraphs and stochastic optimisation

Set-valued martingales

- $igspace X_n, n \geq 1$, an adapted sequence of integrable random sets, i.e. X_n is \mathfrak{F}_n -measurable
- $lue{}$ X_n is called a martingale if

$$\mathbf{E}(X_{n+1}|\mathfrak{F}_n) = X_n \quad \text{for all } n \ge 1.$$

The conditional expectation is understood as random closed set Y such that $h(Y, u) = \mathbf{E}(h(X_{n+1}, u) | \mathfrak{F}_n)$ for all $u \in \mathbb{S}^{d-1}$.

Sub- and supermartingales

- $oxedsymbol{\square}$ X_n is supermartingale if $\mathbf{E}(X_{n+1}|\mathfrak{F}_n)\subset X_n$
- $oxed{\Box} \quad X_n ext{ is submartingale if } \mathbf{E}(X_{n+1}|\mathfrak{F}_n) \supset X_n$
- lacksquare If X_n is singleton all these definitions leads to the usual martingale concept.
- It is not possible to turn a submartingale into supermartingale by changing its sign.

Main tools

- lacksquare Support functions, $h(X_n,u)$ becomes a martingale if X_n is a set-valued martingale.
- lacksquare Martingale selections, i.e. a sequence ξ_n of selections $\xi_n \in X_n$, which forms a martingale.

Any set-valued martingale admits at least one martingale selection and, moreover, it is possible to find a dense family of such selections, i.e. to "fill" X_n by its martingale selections.

Convergence theorem

Theorem (Hiai–Umegaki). If X_n is integrably bounded for each $n \geq 1$ and $\|X_n\|$ is uniformly integrable for a set-valued martingale X_n , then there exists a unique integrably bounded random convex closed set X_∞ such that $X_n = \mathbf{E}(X_\infty | \mathfrak{F}_n)$ and $\rho_{\mathrm{H}}(X_n, X_\infty) \to 0$.

Generalisations exist for supermartingales and martingales with possibly unbounded values.

If X_n is a set-valued martingale and τ_n is an increasing sequence of bounded stopping times, then X_{τ_n} is a set-valued martingale too.

Application: transaction costs

Bid price \leq Ask price

- \Box Price is interval [z', z].
- Price regions for multiple assets can be described as convex sets.
- A combination $u=(u_1,\ldots,u_d)$ (amounts of all assets) costs p(u). Then, $p(u+u') \leq p(u) + p(u')$ and $p(\lambda u) = \lambda p(u)$ for $\lambda > 0$ and $u \in \mathbb{R}^d$, i.e. p(u) is the support function of a convex set in \mathbb{R}^d

$$p(u) = h(Z, u) = \sup\{\langle z, u \rangle : z \in Z\} = \sup\langle Z, u \rangle.$$

Z is a price set (that may depend on time)

Set-valued price process

- $oldsymbol{\square}$ $Z(t), \quad t=0,1,\ldots,T$ satisfies a sort of no-arbitrage condition if and only if Z(t) possesses at least one strict martingale selection with respect to a martingale measure \mathbf{P}^* , i.e. a martingale $\xi(t)$, such that $\xi(t)$ a.s. belongs to the relative interior of Z(t) for all t.
- The set $Z^*(t)$, $t=0,1,\ldots,T$, of all martingale selections determines the prices of claims. If C is a claim (a random vector that gives amounts of assets), then its no-arbitrage price p(C) satisfies

$$-\mathbf{E}^* h(Z^*(T), -C) \le p(C) \le \mathbf{E}^* h(Z^*(T), C),$$

where \mathbf{E}^{*} is the martingale measure.

Important issue. Find ways to identify the largest set-valued martingale contained in an adapted set-valued process.

Level sets of stochastic processes

$$X = \{t \ge 0 : \zeta_t = 0\}$$

Two main issues

- ullet properties of X arising from particular stochastic process ζ (or family of processes)
- intrinsic characterisation of level sets for stochastic processes (i.e. conditions on $X\subset [0,\infty)$ that imply that X is the level set of a stochastic process from a certain family)

Strong Markov sets

 $X\subset [0,\infty)$, $X^{lat}$ is the set of isolated or right-limit points of X $\theta_t(X)=X\cap [t,\infty)-t$

Definition. X adapted to filtration \mathfrak{F}_t , $t\geq 0$, is said to be homogeneous strong Markov if $0\in X$ a.s. and, for every stopping time τ with $\tau\in X^{\flat}$ on $\{ au<\infty\}$

- (i) $\theta_{\tau}(X)$ and $X \cap [0, \tau]$ are conditionally independent given $\{\tau < \infty\}$;
- (ii) conditional distribution of $\theta_t(X)$ given $\{\tau < \infty\}$ coincides with the distribution of X.

Origin: recurrent events introduced by W.Feller (discrete time), later studied by J.F.C.Kingman as regenerative phenomena (continuous time)

$$\mathbf{P}\{\{t_1,\ldots,t_n\}\subset X\} = p(t_1)p(t_2-t_1)\cdots p(t_n-t_{n-1})$$

where $p(t) = \mathbf{P}\{t \in X\}$ is called the p-function of X.

Level sets of strong Markov processes

strong Markov property = Markov property at stopping times

Theorem. (Krylov–Yushkevich & Hoffman-Jørgensen) X is strong Markov iff there exists a right-continuous real valued strong Markov process ξ_t such that $X=\{t:\ \xi_t=0\}$ and $\xi_0=0$ a.s.

Most difficult part: If X is strong Markov, show that the backward recurrence process $x_t^-=t-\sup X\cap [0,t]$ is a strong Markov process, so that one can set $\xi_t=x_t^-$.

Subordinators

Every strong Markov set can be obtained as the range of a subordinator (non-decreasing process with independent increments), i.e.

$$X = \{\zeta_t : t \ge 0\}$$

E.g. if $X=\{t: w_t=0\}$ is zero set for the Wiener process, then $\mathbf{E}\,e^{-t\zeta_s}=e^{-s\Phi(t)}$ with $\Phi(t)=\sqrt{t}$.

It is possible to express the hitting probability

$$\mathbf{P}\{X \cap (a,b] \neq \emptyset\} = \mathbf{P}\{\zeta_t \in (a,b] \text{ for some } t\}$$

in terms of the characteristics of the subordinator ζ .

Intrinsic characterisations of level sets

Open problems is to characterise level sets of

- Gaussian continuous processes
- Markov processes (not strong Markov)
- diffusions

etc.

Epigraphs

$$f: \mathbb{E} \mapsto \mathbb{R}$$
 epi $f = \{(x, t) \in \mathbb{E} \times \mathbb{R} : t \ge f(x)\}$

 \Box f is lower semicontinuous, i.e.

$$\liminf_{x \to a} f(x) \ge f(a) \quad \text{for all } a \,,$$

if and only if $\operatorname{epi} f$ is a closed set

ldea: treat functions as closed sets (their epigraphs).

Epiconvergence

- $oldsymbol{\Box}$ f_n epiconverges to f if $\operatorname{epi} f_n \to \operatorname{epi} f$ as closed sets.
- lacksquare Recall that $F_n \to F$ means
- $F \cap G \neq \emptyset$ for an open G implies $F_n \cap G \neq \emptyset$ for all large n
- $F \cap K = \emptyset$ for compact K implies that $F_n \cap K = \emptyset$ for all large n.
- lacksquare Epiconvergence is the weakest convergence type that implies convergence of minima, i.e. $f_n \xrightarrow{\mathrm{epi}} f$ implies that

$$\limsup_{n \to \infty} \left(\inf f_n \right) \le \inf f$$

with the equality if f_n has a relatively compact sequence of ε -optimal points (e.g. if $\mathbb E$ is compact).

Normal integrands

- Possible to treat non-separable stochastic processes, e.g. if

$$\zeta(x) = \begin{cases} 0, & x = \xi \\ 1, & \text{otherwise} \end{cases}$$

for a random point ξ , then ${\rm epi}\,\zeta$ is a non-trivial random closed set, although $\zeta(x)=0$ a.s. for all x if ξ has a continuous distribution.

- Weak epiconvergence of normal integrands.
- An integrand is sharp if $\partial \operatorname{epi} \zeta = \operatorname{epi} \zeta$ and the family of points $(x,t) \in \operatorname{epi} \zeta$ such that $(x,s) \notin \operatorname{epi} \zeta$ for all s < t is locally finite.

Stochastic optimisation

Theorem. If ζ_n weakly epiconverges to ζ , then

$$\mathbf{P}\{\inf \zeta < t\} \leq \liminf_{n \to \infty} \mathbf{P}\{\inf \zeta_n < t\}, \quad t \in \mathbb{R}.$$

- \square $\inf \zeta_n$ converges in distribution to $\inf \zeta$ if for every $t \in \mathbb{R}$ there exists a compact set K such that $\{\zeta_n \leq t\} \subset K$ a.s. for all $n \geq 1$.
- lacktriangle This condition always holds if $\Bbb E$ is compact itself.

Convergence of averages

- igspace normal integrand, $\mathbf{E} \zeta(x)$ is well defined (perhaps, infinite).
- \Box ζ_n are i.i.d copies of ζ , then

$$\eta_n(x) = \frac{1}{n} \sum_{i=1}^n \zeta_i(x)$$

estimates $\mathbf{E} \zeta(x)$ for all x.

Theorem (Artstein–Wets). Assume that each $x_0 \in \mathbb{E}$ has an open neighbourhood G such that $\zeta(x) \geq \alpha$ for all $x \in G$ and an integrable random variable α . Then ζ_n epiconverges to $\mathbf{E} \zeta$ a.s. as $n \to \infty$.

Maximum likelihood estimators

Maximum likelihood estimator $\hat{\theta}_n$ appears as the maximiser of the log-likelihood function

$$\sum_{i=1}^{n} \log f_{\theta}(x_i)$$

Under certain technical conditions, one can derive consistency of the maximum likelihood estimator.

Polyhedral approximations

- lacksquare F strictly convex in \mathbb{R}^d with twice differentiable boundary
- $oxedsymbol{\Box}$ ξ_1,\ldots,ξ_n i.i.d. on F with density f and $\Xi_n=\operatorname{co}\left(\xi_1,\ldots,\xi_n\right)$
- $\Box \quad \text{Define } \eta_n(u) = h(F, u) h(\Xi_n, u).$
- lacksquare Then $H_n=\operatorname{epi}\eta_n=X_1\cup\cdots\cup X_n$ where

$$X_i = \{(u, t) : ||u|| = 1, t \ge 0, \langle u, \xi_i \rangle \ge h(F, u) - t\}$$

It is possible to use limit theorems for unions of random closed sets.

Theorem. If f does not vanish identically on ∂F , then $n\eta_n$ weakly epiconverges to a sharp integrand generated by the Poisson process with intensity measure

$$\Lambda(K) = \int_{F_K} f(x) \mathcal{H}^{d-1}(dx) dt, \quad K \subset \mathbb{S}^{d-1} \times [0, \infty),$$

where

$$F_K = \bigcup_{(u,t)\in K} \{(x,s): x \in \partial F, \mathbf{n}(x) = u, s \in [0,t]\}.$$

If f(x)=0 for all $x\in\partial F$ and $\langle f'(x),\mathbf{n}(x)\rangle$ does not vanish identically, then $\sqrt{n}\eta_n$ weakly epiconverges.

Graphical convergence

Non-traditional convergence

- $f_n(t)=nt\, 1\!\!1_{0\leq t\leq 1/n}+1\!\!1_{t>1/n}$ converges pointwisely to $f(t)=1\!\!1_{t>0}$ but not uniformly
- $f_n(t) = nt$, $0 \le t \le 1$, "converges" to the vertical line
- $f_n(t) = \sin nt$, $0 \le t \le 1$, "fills" the rectangle $[0,1] \times [-1,1]$
- Formalise as convergence of graphs (also for possible set-valued functions F_n)

$$\{(t,x): t \in \mathbb{E}, x \in F_n(t)\}$$

In the single-valued case $F_n(t) = \{f_n(t)\}.$

Random step-functions

 α_n , $n \geq 0$, i.i.d. random variables

Step-function

$$\zeta_n(t) = a_n^{-1} \alpha_{[nt]}, \quad 0 \le t \le 1.$$

The graphs of ζ_n weakly converge as random closed sets iff

$$n\mathbf{P}\{\alpha_0 \in a_n[x,y]\} \to \nu([x,y])$$

for a measure ν . The limiting random set has the capacity functional

$$T_X(K) = 1 - \exp\{-(\text{mes}_1 \otimes \nu)(K)\}, \quad K \subset [0, 1] \times \mathbb{R}.$$

Random broken lines

The linearly interpolated step-function ζ_n graphically converges to random closed set Z with the capacity functional

$$T_Z(K) = 1 - \exp\{-(\text{mes}_1 \otimes \nu)(\text{co}(K \cup K'))\}, \quad K \subset [0, 1] \times \mathbb{R},$$

where K^{\prime} is the projection of K onto [0,1].

Excursion sets

f is lower semicontinuous function

Then

$$F_t = \{ f \le t \} = \{ x : f(x) \le t \}, \quad t \in \mathbb{R},$$

becomes an increasing set-valued process.

- $lue{}$ Consider various convergence concepts for the process F_t , in particular, the Skorohod convergence.
- Define operations with normal integrands by performing set-operations with their excursion sets and then stacking them together to obtain the resulting function.

References

- [1] Ch. Hess. Epi-convergence of sequences of normal integrands and strong consistency of the maximum likelihood estimator. *Ann. Statist.*, 24:1298–1315, 1996.
- [2] Ch. Hess. Conditional expectation and martingales of random sets. *Pattern Recognition*, 32:1543–1567, 1999.
- [3] F. Hiai and H. Umegaki. Integrals, conditional expectations, and martingales of multivalued functions. *J. Multiv. Anal.*, 7:149–182, 1977.
- [4] J. Hoffman-Jørgensen. Markov sets. Math. Scand., 24:145–166, 1969.
- [5] K. Kaval and I. Molchanov. Link-save trading. J. Math. Econ., 42:710–728, 2006.
- [6] J. F. C. Kingman. Regenerative Phenomena. Wiley, London, 1972.
- [7] I. Molchanov. *Theory of Random Sets*. Springer, London, 2005.
- [8] G. Salinetti and R. J.-B. Wets. On the convergence in distribution of measurable multifunctions (random sets), normal integrands, stochastic processes and stochastic infima. *Math. Oper. Res.*, 11:385–419, 1986.