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Definitions

[1 JF family of closed subsets in locally compact Hausdorff second

countable space E (usually E = R%).

[1 X isarandom closed set in [E.

(1 ((t),t > 0ort € E, is a stochastic process.
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Content of the lecture

[1 Random sets X; depending on parameter ¢ > 0 (time).

e set-valued martingales

e applications in quantitative finance

[] Random sets that appear in relation to graphs and level sets of
stochastic processes

e Markov sets

e epigraphs and stochastic optimisation
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Set-valued martingales

[l  X,,,n > 1, an adapted sequence of integrable random sets,

i.e. X,, is §,,-measurable

L1 X, is called a martingale if

E(X,11|8,) = X,, foraln > 1.

[1  The conditional expectation is understood as random closed set Y
suchthat 2(Y,u) = E(h(X, o1, u)|F,) forall u € S4—1.
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Sub- and supermartingales

(1 X, is supermartingale if E( X, 1|5,) C X,
[ X, is submartingale if E(X,, . 1|§,) D X,

L1 If X, is singleton all these definitions leads to the usual martingale

concept.

[] Itis not possible to turn a submartingale into supermartingale by

changing its sign.
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Main tools

(1 Support functions, h(X,, ©) becomes a martingale if X,, is a

set-valued martingale.

[] Martingale selections, i.e. a sequence &,, of selections &,, € X,

which forms a martingale.
Any set-valued martingale admits at least one martingale selection and,
moreover, it is possible to find a dense family of such selections, i.e. to “fill”

X, by its martingale selections.
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Convergence theorem

Theorem (Hiai-Umegaki). If X,, is integrably bounded for each n > 1 and
| X, || is uniformly integrable for a set-valued martingale X,,, then there

exists a unique integrably bounded random convex closed set X . such
that X,, = E(X|§.) and pu(X,,, Xo) — 0.

Generalisations exist for supermartingales and martingales with possibly

unbounded values.
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Optional sampling

If X,, is a set-valued martingale and 7,, is an increasing sequence of

bounded stopping times, then X, is a set-valued martingale too.
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Application: transaction costs

Bid price < Ask price
[ Price is interval |2/, z].
[1  Price regions for multiple assets can be described as convex sets.

(1 A combination u = (uq, ..., uq) (@mounts of all assets) costs p(u).

Then. p(u + u’) < p(u) + p(u’) and p(Auw) = Ap(u) for A > 0 and
u € R ie. p(u) is the support function of a convex set in R4

p(u) = h(Z,u) =sup{(z,u): z € Z} =sup(Z,u).

Z is a price set (that may depend on time)
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Set-valued price process

0 Z(t), t=0,1,...,T satisfies a sort of no-arbitrage condition if
and only if Z(t) possesses at least one strict martingale selection with
respect to a martingale measure P*, i.e. a martingale £(t), such that £(¢)

a.s. belongs to the relative interior of Z(t) for all .

(1 Theset Z*(t),t =0,1,...,T, of all martingale selections
determines the prices of claims. If C'is a claim (a random vector that gives

amounts of assets), then its no-arbitrage price p(C ) satisfies
—E"h(Z°(T),-C) < p(C) <E"h(Z*(T),0),

where E* is the martingale measure.

[ Important issue. Find ways to identify the largest set-valued martingale

contained in an adapted set-valued process.
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Level sets of stochastic processes

Two main issues

e properties of X arising from particular stochastic process ( (or family of

processes)

e intrinsic characterisation of level sets for stochastic processes (i.e.
conditions on X C [0, oo) that imply that X is the level set of a

stochastic process from a certain family)
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Strong Markov sets

X C [0,00), X" is the set of isolated or right-limit points of X
0:(X)=XnNJ[t,o0) —t

Definition. X adapted to filtration §;, ¢ > 0, is said to be homogeneous

strong Markov if 0 € X a.s. and, for every stopping time 7 with 7 € X"’ on

{1 < o0}
(i) 0-(X)and X N[0, 7| are conditionally independent given {7 < co};

(i) conditional distribution of 6 (X ) given {7 < oo} coincides with the
distribution of X .

Origin: recurrent events introduced by W.Feller (discrete time), later studied

by J.F.C.Kingman as regenerative phenomena (continuous time)

P{{tl, e ,tn} C X} = p(tl)p(tg — tl) . 'p(tn — tn—l)

where p(t) = P{t € X} is called the p-function of X.
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Level sets of strong Markov processes

strong Markov property = Markov property at stopping times

Theorem. (Krylov—Yushkevich & Hoffman-Jgrgensen) X is strong Markov
iff there exists a right-continuous real valued strong Markov process &; such
that X = {t: & =0}and &y = 0 as.

Most difficult part: If X is strong Markov, show that the backward

recurrence process x; = t — sup X N [0, t] is a strong Markov process,

so that one can set & = x, .
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Subordinators

Every strong Markov set can be obtained as the range of a subordinator

(non-decreasing process with independent increments), i.e.

E.g.if X = {t: wy = 0} is zero set for the Wiener process, then
E et = ¢ with ®(t) = V1.

It is possible to express the hitting probability

P{X N (a,b] # 0} = P{¢ € (a,b] for some t}

in terms of the characteristics of the subordinator (.
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Intrinsic characterisations of level sets

Open problems is to characterise level sets of
e (Gaussian continuous processes

e Markov processes (not strong Markov)

e diffusions

etc.
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Epigraphs

f:E—R
epif ={(z,t) e ExXR: t> f(x)}

[1  f is lower semicontinuous, i.e.

liminf f(x) > f(a) foralla,

r—a

if and only if epi f is a closed set

[1 Idea: treat functions as closed sets (their epigraphs).
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Epiconvergence
[1 £, epiconvergesto f if epi f,, — epi [ as closed sets.

[l Recall that F,, — F' means
e FFN G +# () for an open G implies F;, N G # () for all large n
e ' N K = () for compact K implies that I, N K = () for all large n.

[1 Epiconvergence is the weakest convergence type that implies

. , epi . .
convergence of minima, i.e. f,, — [ implies that

limsup (inf f,,) < inf f

n—aoo

with the equality if f,, has a relatively compact sequence of £-optimal points

(e.g. if £ is compact).
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Normal integrands

[ ((z) = ((x,w) is normal integrand if epi { (-, w) is a random closed
setin £ X R.

[] Possible to treat non-separable stochastic processes, e.g. if

0, x=¢

1, otherwise

¢ ()

for a random point &, then epi ( is a non-trivial random closed set, although
((x) = 0 as. for all z if £ has a continuous distribution.

[]  Weak epiconvergence of normal integrands.

[]  Anintegrand is sharp if 0 epi ( = epi ( and the family of points
(x,t) € epi( suchthat (x,s) ¢ epi( for all s < tis locally finite.
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Stochastic optimisation

Theorem. If (;, weakly epiconverges to (, then

P{inf ( <t} <liminf P{inf (, < t}, t€R.

(I inf (,, converges in distribution to inf ( if for every t € IR there exists
a compact set K suchthat {(, <t} C K as. foralln > 1.

[  This condition always holds if I£ is compact itself.
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Convergence of averages
[1 ¢ normal integrand, E C(x) is well defined (perhaps, infinite).

[l (, arei.i.d copies of (, then

(@) = " Glo)

estimates E () for all x.

Theorem (Artstein—Wets). Assume that each xy € K has an open
neighbourhood G such that {(x) > « forall x € G and an integrable

random variable c.. Then (,, epiconvergesto E ( a.s. asn — oo.
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Maximum likelihood estimators

Maximum likelihood estimator 6,, appears as the maximiser of the

log-likelihood function

> log fo(w:)
1=1

Under certain technical conditions, one can derive consistency of the

maximum likelihood estimator.
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Polyhedral approximations

F strictly convex in R? with twice differentiable boundary
£1,...,&, iid. on F with density f and =, = co (&1,...,&R)
Define 1, (u) = h(F,u) — h(Z,,u).

Then H,, = epin, = X1 U---U X,, where
Xi={(u,t) : [Jul| =1,t >0,(u,&) > h(F,u) -t}

It is possible to use limit theorems for unions of random closed sets.
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Theorem. If f does not vanish identically on OF’, then nn),, weakly
epiconverges to a sharp integrand generated by the Poisson process with

intensity measure

(2)H (dx)dt, K c S¥1 x[0,00),
Fi

Fx= |J {(@s): 2 €0F n(z) =u,s€0,1]}.
(u,t)eEK

[ if f(x) =0forallxz € OF and (f'(x),n(x)) does not vanish
identically, then \/ﬁnn weakly epiconverges.
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Graphical convergence

Non-traditional convergence

o fn(t) = nt Mp<i<i/n + Lisq/y converges pointwisely to

f(t) = M;~¢ but not uniformly
e f,(t) =nt, 0 <t <1,*“converges” to the vertical line
o f,(t) =sinnt, 0 <t < 1,ills” the rectangle [0, 1] x [—1, 1]

[] Formalise as convergence of graphs (also for possible set-valued

functions F},)
{(t,x): teE, x € F,(t)}

In the single-valued case F,(t) = {f.(?)}.
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Random step-functions

a,, n > 0,ii.d. random variables

Step-function

Cn(t) = ay oy, 0<t<1.

The graphs of (,, weakly converge as random closed sets iff

nP{ao € anlz,yl} — v([z,9])

for a measure v. The limiting random set has the capacity functional

Tx(K)=1—exp{—(mes; ®v)(K)}, K CI0,1] xR.
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Random broken lines

The linearly interpolated step-function (,, graphically converges to random

closed set Z with the capacity functional

T7(K)=1—exp{—(mes; ®v)(co(KUK"))}, K C0,1]xR,

where K is the projection of K onto [0, 1].
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Excursion sets

f is lower semicontinuous function

Fo={f<t}={o: f2) <t}, teR,

becomes an increasing set-valued process.

[] Consider various convergence concepts for the process F}, in

particular, the Skorohod convergence.

[1 Define operations with normal integrands by performing set-operations
with their excursion sets and then stacking them together to obtain the

resulting function.
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