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A problem from Geology I

How to determine the quartz content in a block of granite?



A problem from Geology II

Delesse (1847):

-

volume fraction in 3D ≈ area fraction in a planar section



A problem from Geology III

Rosiwal (1898):

volume fraction in 3D ≈
length fraction in linear sections

Glagolev (1933):
+ + + + + +

+ + + + + +

+ + + + + +

+ + + + + +

+ + + + + +

volume fraction in 3D ≈
relative number of points in
quartz



Mathematical background

Let K be the phase of interest (quartz)

∫ ∞

−∞
Area(K ∩ LZ ) dz = Vol (K )Lz

K
z6?

Random sampling: z = uniform random “height” ξ ∈ [0, 1]:

Eξ Area(K ∩ Lξ) = Vol (K ).

@
@@I

expectation w.r.t. ξ



Two basic approaches

◮ Design based approach:
The sampling is done in a random, homogeneous way,
the set K is deterministic.

◮ Model based approach:
No assumptions on the sampling procedure
the set K is “stochastically homogeneous”

( stochastic geometry: stationary random set)

We will only use the design based approach here!



Stereology: A Definition

Stereology is a sub-area of stochastic geometry dealing with
the estimation of geometric characteristics (volume, area,
boundary length, particle number,. . .) of structures from
samples. Either the structure or the sampling scheme is
random.

Sampling schemes can be
◮ sections with lower dimensional test planes

(Delesse, Rosival),
◮ sections with full-dimensional test windows,
◮ sections with point lattices (Glagolev).

Digital stereology deals with point lattice samples.



Assumptions on the structure

We first specify assumptions on the structure K ⊂ R
d , d > 1,

and then define certain geometric characteristics of K .

C:={K ⊂ R
d | K is compact}.

K:={K ∈ C | K is convex, nonempty} “convex bodies”.

R:={K ∈ C | K is a finite union of convex bodies}
“polyconvex sets”.@@I “convex ring”

K

General assumption K ∈ C, often K ∈ R.



The Hausdorff metric

We will need Minkowski addition on C: For K , K ′ ∈ C set

K ⊕ K ′ := {x + x ′ | x ∈ K , x ′ ∈ K ′}.

K ⊂ R
2

K ⊕ αB2

with Bd := unit ball in R
d ,

and α > 0.

The Hausdorff metric δ on C is given by

δ(K , K ′) := min{α > 0 | K ⊂ K ′⊕αBd , K ′ ⊂ K⊕αBd}, K , K ′ ∈ C.



Steiner’s formula

Let Vol(·) denote Lebesgue measure on R
d , κd :=Vol(Bd).

Jakob Steiner [1840]: If K is a convex body, then

Vol(K ⊕ εBd ) =

d
∑

j=0

κd−jVj(K )εd−j , ε > 0.

Vj(K ) =: j-th intrinsic volume of K .
(Minkowski functional,

quermass-integral)

e.g. Vd(K ) =Vol(K ).



Intrinsic Volumes

Properties of Vj on K:

1. motion-invariant: Vj
(

ϑ(K + x)
)

= Vj(K ),
HHY

translation vector x ∈ R
d���

rotation ϑ ∈ SOd := rotation group

2. additive: Vj(K ∪ K ′) = Vj(K ) + Vj(K ′) − Vj(K ∩ K ′)
(where K , K ′ and K ∪ K ′ are convex bodies)

3. homogeneous: Vj(αK ) = αjVj(K ), α > 0

4. monotone: K ⊂ K ′ ⇒ Vj(K ) 6 Vj(K ′)

5. continuous: δ(Kn, K )
n→∞
−→ 0 ⇒ Vj(Kn)

n→∞
−→ Vj(K )



Characterization Theorem

Hadwiger [1957]:

Let ϕ : K → R be motion-invariant and additive.
If ϕ is monotone or continuous, then
it is a linear combination of V0, . . . , Vd .

Hence: if we want to find ϕ(K ), where ϕ has the above
properties, it is enough to determine V0(K ), . . . , Vd(K ).

If ϕ is in addition homogeneous of degree j then ϕ = cVj .



Additive Extension of Vj

The Inclusion-exclusion formula

Vj

(

n
⋃

i=1

Ki

)

=
∑

∅6=I⊂{1,...,n}

(−1)|I|+1 Vj

(

⋂

i∈I

Ki

)

(1)

extends Vj additively to R (Groemer [1978]).
This extension is again denoted by Vj .

Properties of Vj on R:

1. motion-invariant, homogeneous,

2. additive, and (1) holds for K1, . . . , Kn ∈ R,

3. not monotone for 0 6 j 6 d − 1,

4. not continuous for 0 6 j 6 d .



Vj on R

Geometric interpretation:

Vd (K ) = Vol(X ) is the volume (Lebesgue measure) of K ,
2Vd−1(K ) = surface area of K

(= (d − 1)-dim. Hausdorff measure Hd−1(∂K )),
...

Vj(K ) = cd ,j

∫

∂K
Hd−j−1(x) dHd−1(x) (∂K smooth)

...

...
V0(K ) = Euler-Poincaré characteristic of K .

@@I elementary symmetric function
of the principal curvatures at x



The Euler-Poincaré characteristic

For a convex body K : V0(K ) = 1.

For K ∈ R:

◮ d = 1: V0(K ) = # components (closed intervals) of K .
◮ d = 2: V0(K ) = # components −# “holes” of K .

K V0(K ) = 4 − 1 = 3.

◮ d = 3:
V0(K ) = # components −# “tunnels” +# “holes” of K .

◮ arbitrary d : V0(K ) = alternating sum of Betti numbers of K .



Crofton’s formula

Let L be a fixed k-dimensional linear subspace in R
d .

arbitrary movement of L: ϑ(L + y), y ∈ L⊥, ϑ ∈ SOd .

ν := invariant probability measure on SOd .

Crofton’s formula for K ∈ R:
∫

SOd

∫

L⊥
Vj
(

K ∩ ϑ(L + y)
)

dy dν(ϑ) =

cd ,j ,kVd+j−k(K ).

In particular j = k : "Fubini’s theorem"

Proof: For K ∈ K apply Hadwiger’s theorem to

ϕ(K ) :=

∫

SOd

∫

L⊥
Vj
(

K ∩ ϑ(L + y)
)

dy dν(ϑ).



Sampling with lower dimensional planes

As K is bounded, we may exclude planes lying "far out"
(i.e. restrict to |y | 6 M for some M > 0.)

Intersections with a IUR planes.

EϑE|y |6M Vj
(

K ∩ ϑ(L + y)
)

= c · Vd+j−k(K ).

◮ Unbiased estimator for Vd+j−k from a k-dim. IUR section.

◮ For j = 0, k = 0, . . . , d − 1, this yields all intrinsic volumes
except V0(K ).



Principal kinematic formula

Let W ∈ R be a fixed test window.

arbitrary movement of W : ϑ(W + x), x ∈ R
d , ϑ ∈ SOd .

Principal kinematic formula for K , W ∈ R

∫

SOd

∫

Rd
Vj
(

K ∩ ϑ(W + x)
)

dx dν(ϑ) =

d
∑

k=j

cd ,j ,kVk (K )Vd+j−k(W ).

Proof: Hadwiger’s theorem.

Application: Measuring all intrinsic volumes of K in a randomly
moved sampling window allows unbiased estimation of
V0(K ), . . . , Vd(K ) (Solve a linear system!).



Hadwiger’s inductive definition of V0 on R:

Choose a unit vector u ∈ R
n and set Hα := u⊥ + αu. Fix K ∈ R.

V0(K ) =
∑

α∈R

(

V0(K ∩ Hα) − limβ→α+ V0(K ∩ Hβ)
)

with V0(∅) = 0 and V0(K ) = 1 for ∅ 6= K ⊂ R
1.



The disector

Assume: K =
⋃n

j=1 Kj disjoint union of K1, . . . Kn ∈ K
(⇒ V0(K ) = n).

Problem: # particles in planar sections 6∼ # particles in 3D!

The disector solves this problem. Fix h > 0.

V0(K ) = 1
h

∫

R

∑n
j=1

(

V0(Kj ∩ Hα)(1 − V0(Kj ∩ Hα+h))
)

dα

Necessary assumption:
Particles have a height
> h.



Local sections

Motivation: Microscopy images
of a biological cell K :
K has an identifiable “center” 0 ∈ K .

Use this information: Take isotropic planar sections through 0:



Local volume estimators

The nucleator (Volume of K ∈ K from central line sections):

Vd(K ) =

∫

SOd

F (K ∩ ϑL) dν(ϑ)

with F (A) = cd
∑

x∈vert(A) ‖x‖d .

◮ proof: polar coordinates,
◮ can be generalized to k-dimensional central probes,
◮ can be generalized to Hj replacing Vd .

Proof uses the coarea-formula.



Vertical sections

Example: surface area estimation in R
3

Choose a “vertical” direction u .

Choose an plane E containing
direction u, otherwise uniform.

Check intersections with a IUR test
line Lθ in E .

V2(K ) = 2
∫

{E‖u}

∫

{Lθ⊂E} V0(K ∩ Lθ) sin(θ)dLθdE .



More variation

Other sampling schemes
◮ thick planar sections
◮ projections
◮ combinations of the above

Other geometric characteristics
◮ non-additive characteristics

e.g. # connected components
◮ local quantities

e.g. surface area measures, curvature measures
◮ ...
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