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A problem from Geology |

How to determine the quartz content in a block of granite?
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A problem from Geology I

Delesse (1847):

volume fraction in 3D = area fraction in a planar section
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A problem from Geology llI

Rosiwal (1898):

=
o

Glagolev (1933):

volume fraction in 3D ~
length fraction in linear sections

volume fraction in 3D ~
relative number of points in
quartz
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Mathematical background

Let K be the phase of interest (quartz)

L K| = /OOArea(KﬂLz)dz:VoI(K)

| —00

Random sampling: z = uniform random “height” ¢ € [0, 1]:

E¢ Area(K NL¢) = Vol (K).

\ expectation w.r.t. ¢
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Two basic approaches

» Design based approach:
The sampling is done in a random, homogeneous way,
the set K is deterministic.

» Model based approach:
No assumptions on the sampling procedure
the set K is “stochastically homogeneous”

(~ stochastic geometry: stationary random set)

We will only use the design based approach here!

L THIELE CENTRE



Stereology: A Definition

Stereology is a sub-area of stochastic geometry dealing with
the estimation of geometric characteristics (volume, area,
boundary length, particle number,. . .) of structures from
samples. Either the structure or the sampling scheme is
random.

Sampling schemes can be

» sections with lower dimensional test planes
(Delesse, Rosival),

» sections with full-dimensional test windows,
» sections with point lattices (Glagolev).

Digital stereology deals with point lattice samples.
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Assumptions on the structure
We first specify assumptions on the structure K C RY, d>1,
and then define certain geometric characteristics of K.

C:={K Cc RY | K is compact}.
K:={K € C | K is convex, nonempty} “convex bodies”.

R:={K € C | K is a finite union of convex bodies}
“convex ring” “polyconvex sets”.

"By

General assumption K € C, often K € R.
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The Hausdorff metric

We will need Minkowski addition on C: For K,K’ € C set

KaK ={x+x"|xeK, x eK'}.

with B9 := unit ball in RY,
and o > 0.

K @ aB?2

The Hausdorff metric 6 on C is given by

§(K,K') :==min{fa >0 |K ¢ K'@aBY, K’ c KgaBY}, K,K'eC.
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Steiner’s formula

Let VVol(-) denote Lebesgue measure on RY, x4 :=Vol(BY).
Jakob Steiner [1840]: If K is a convex body, then

Vj(K) =: j-th intrinsic volume of K.
(Minkowski functional,
guermass-integral)

e.g. Vq(K) =Vol(K).
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Intrinsic Volumes

Properties of V; on K:
1. motion-invariant: V;

—

I(K +x)) = V;(K),
translation vector x € RY

rotation ¢4 € SOy := rotation group

2. additive: Vj(K UK’) = V;(K) + V;(K’) — V(K N K’)
(where K, K" and K UK’ are convex bodies)

3. homogeneous: Vj(aK) = alV;(K), a > 0

4. monotone: K C K’ = V;(K) < V;(K’')

n—oo n—oo

5. continuous: 6(Kn,K) — 0 = V;(K,) — V;(K)
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Characterization Theorem

Hadwiger [1957]:

Let ¢ : K — R be motion-invariant and additive.
If ¢ is monotone or continuous, then
it is a linear combination of Vg, ..., Vq.

Hence: if we want to find ¢(K), where ¢ has the above
properties, it is enough to determine Vy(K), ..., V4 (K).

If ¢ is in addition homogeneous of degree j then ¢ = cV;.
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Additive Extension of V;

The Inclusion-exclusion formula

Vi (0 Ki) = Y (nity (ﬂ Ki)

i=1 0#lc{1,...,n} i€l

extends V; additively to R (Groemer [1978]).
This extension is again denoted by V;.

Properties of V; on R
1. motion-invariant, homogeneous,
2. additive, and (1) holds for Ky, ..., K, € R,
3. not monotonefor0 <j <d -1,
4. not continuous for 0 < j < d.

(1)
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VjonR

Geometric interpretation:

Va (K)
2Vg-1(K)

Vol(X) is the volume (Lebesgue measure) of K,
surface area of K
(= (d — 1)-dim. Hausdorff measure H9~1(dK)),

Cd,j/ Hd—j—l(x)de_l(X) (0K smooth)
)

K
\ elementary symmetric function
of the principal curvatures at x

Euler-Poincaré characteristic of K.
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The Euler-Poincaré characteristic

For a convex body K: Vo(K) = 1.

ForK € R:

» d =1: V(K ) = # components (closed intervals) of K.
» d = 2: Vo(K) = # components —# “holes” of K.

@ [
» d=3:

Vo(K) = # components —# “tunnels” +# “holes” of K.
» arbitrary d: Vo(K) = alternating sum of Betti numbers of K.
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Crofton’s formula

Let L be a fixed k-dimensional linear subspace in RY.

arbitrary movementof L:  9(L+y), y €Lt 9 e SOq.

v .= invariant probability measure on SOy.

Crofton’s formula for K € R:

/ /v,-(K NJ(L+y))dy dv(d) =
S04 JLL-

Cd j kVd+j—k(K).

In particular j = k: "Fubini’s theorem"

Proof: For K € K apply Hadwiger’s theorem to

o(K) = /SO /LL Vi (K N (L +y)) dy du(9).

L THIELE CENTRE



Sampling with lower dimensional planes

As K is bounded, we may exclude planes lying "far out"
(i.e. restrict to |y| < M for some M > 0.)

Intersections with a IUR planes.

EsEyj<m Vi (K NI(L+Y)) = ¢ - Vayjk(K).

» Unbiased estimator for Vi from a k-dim. IUR section.

» Forj =0,k =0,...,d — 1, this yields all intrinsic volumes
except Vo(K).
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Principal kinematic formula

Let W € R be a fixed test window.
arbitrary movementof W:  9(W +x), x € R, ¢ € SOy.

Principal kinematic formula for K. W € R

/ /v,-(Km9(w 1 x)) dx du () =
SOy JRd

d
> cajkVk(K)Vayjk(W).
k=j

Proof: Hadwiger's theorem.

Application: Measuring all intrinsic volumes of K in a randomly
moved sampling window allows unbiased estimation of
Vo(K),..., V4(K) (Solve a linear system!).
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Hadwiger’s inductive definition of Vo on R

Choose a unit vector u € R" and set H, := u+ + au. FixK € R.

Vo(K) = > ner (VO(K NHy) —limg_o1 Vo(K N Hg))

with Vo(#) = 0 and Vo(K) = 1 for ) # K c RL.

1-0=1
1-1=0

12-1
1-1=0

1-0=1 ii
H, “I 1-1=0
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The disector

Assume: K = anzl K; disjoint union of Ky, ... K, € K
(= Vo(K) =n).

Problem: # particles in planar sections ¢ # particles in 3D!

The disector solves this problem. Fix h > 0.

Vo(K) = § Jp Zjta (Vo(Kj N Ha)(1 = Vo(Kj N Haxn))) da

Lookup section

Necessary assumption:
Particles have a height
> h.

Reference \) U
section
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Local sections

Motivation: Microscopy images
of a biological cell K:
K has an identifiable “center” 0 € K.

Use this information: Take isotropic planar sections through O:

o ®
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Local volume estimators

The nucleator (Volume of K € K from central line sections):

Va(K) = /SO F(K NoL)du()

with F(A) = cq ervert(A) HXHd
» proof: polar coordinates,
» can be generalized to k-dimensional central probes,
» can be generalized to 1! replacing Vg.

Proof uses the coarea-formula.
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Vertical sections

Example: surface area estimation in R3
Choose a “vertical” direction u .

Choose an plane E containing
direction u, otherwise uniform.

Vertical
direction

Check intersections with a IUR test
line Lg inE. Horizontal plane

Va(K) =2 [ig 0y Ji,cey Vo(K N Lg)sin(0)dLydE.

N
4 e
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More variation

Other sampling schemes
» thick planar sections
» projections
» combinations of the above

Other geometric characteristics

» non-additive characteristics
e.g. # connected components

» local quantities
e.g. surface area measures, curvature measures

> ...
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