Digital Stereology

Digitization and Multigrid Convergence

Markus Kiderlen

Thiele Centre University of Aarhus Denmark

Winter school Sandbjerg, January 2007

Outline of the talk

- Digitization of sets
 - Regular lattices
 - Digitization models
- Digitization of geometric characteristics
 - Multigrid convergence
 - A general criterion
- Digitization of the volume
 - Multigrid convergence and digitization error
 - Randomized digitization

Regular lattices in \mathbb{R}^d

Definition: x_1, \ldots, x_d basis of \mathbb{R}^d .

$$\mathbb{L} = \{n_1 x_1 + \ldots + n_d x_d \mid n_1, \ldots, n_d \in \mathbb{Z}\}$$

is called the regular lattice generated by x_1, \ldots, x_d .

- The parallelepiped $C := [0, x_1] \oplus \ldots \oplus [0, x_d]$ is a cell of \mathbb{L} .
- Any cell C₀ with minimal diameter ∆(L) is called fundamental cell.
- ► $C_0^* = C_0 (x_1 + ... + x_d)/2$: centered fundamental cell.

► x_1, \ldots, x_d standard basis \Rightarrow $\mathbb{L} = \mathbb{Z}^d = \text{standard lattice, } \mathbf{C}_0 = [0, 1]^d$ standard cube, $\Delta(\mathbb{L}) = \sqrt{d}, \, \mathbf{C}_0^* = [-1/2, 1/2]^d.$

Digitizations of a set

A digitization of a set *K* is a representation of the continuous set *K* on a discrete lattice \mathbb{L} .

 $\mathcal{C}:=\{\text{ compact subsets of } \mathbb{R}^d\}.$ $\mathcal{P}(\mathbb{L}):=\text{ power set of } \mathbb{L}.$

Definition: Any mapping from \mathcal{C} to $\mathcal{P}(\mathbb{L})$, $K \mapsto \hat{K}$ is called a digitization on \mathbb{L} .

Remark: the notion "digitization" is used in many different ways. Often it refers to a pixel/voxel image of K. It can also refer to a matrix representation.

Commonly used digitizations

- ► The hit-or-miss digitization (Gauss digitization): $\hat{K} := K \cap \mathbb{L}$.
- ► The cell covering digitization (outer Jordan digitization): $\hat{K} := \{x \in \mathbb{L} \mid (x + C_0^*) \cap K \neq \emptyset\} = (K \oplus C_0^*) \cap \mathbb{L}$
- ► The volume-threshold digitization with param. $0 < \theta \le 1$: $\hat{K} := \{x \in \mathbb{L} \mid \text{Vol}((x + C_0^*) \cap K) \ge \theta \cdot \text{Vol}(x + C_0^*)\}.$

Approximation of characteristics from digitizations I

Motivation: Approximate boundary length in \mathbb{R}^2 .

Hit-or-miss digitization. From knowledge of \hat{K} find $\varphi(K) = 2V_1(K) = 4.$

The cell union of \hat{K} $\hat{P} = \bigcup_{x \in \hat{K}} (x + C_0^*)$ Approximation: $\hat{\varphi}(\hat{K}) := 2V_1(\hat{P}) = 4.2.$

Approximation of characteristics from digitizations II

Improved resolution: replace \mathbb{L} by $t\mathbb{L}$, 0 < t < 1.

- Digitization $\hat{K}_t := K \cap t \mathbb{L}$ (similar for other digitizations of K)
- Cell union $\hat{P}_t := \bigcup_{x \in \hat{K}_t} (x + tC_0^*)$
- Approximation $\hat{\varphi}_t(\hat{K}_t) := 2V_1(\hat{P}_t)$.

Then we have $\lim_{t\to 0+} \hat{\varphi}_t(\hat{K}_t) = \varphi(K)$ for the unit square "multigrid convergence".

$$\hat{arphi}_t(\hat{K}_t) = 2V_1(\hat{P}_t) \ o 4\sqrt{2} = \sqrt{2}arphi(K)$$

Deviation of 41 % !!!

Digitization of Characteristics: Definition

Assumptions:

- $\mathcal{M} \subset \mathcal{C}$ is a family of sets,
- $\varphi : \mathcal{M} \to \mathbb{R}$ is a function,
- φ̂ : P(tL) → ℝ is a function, a "digitization of φ".

If $\hat{\varphi}$ satisfies

$$\lim_{t\to 0+}\hat{\varphi}(\hat{K}_t)=\varphi(K), \qquad K\in\mathcal{M},$$

we say that $\hat{\varphi}$ is multigrid convergent to φ on \mathcal{M} .

Generalization to set valued characteristics $\varphi : \mathcal{M} \to \mathcal{C}$. (Serra [1982], Heijmans [1992], Klette & Rosenfeld [2004], K. [2005]).

Digitization of the identity I

Is there a multigrid convergent digitization for the set *K*? ($\iff \exists \hat{\varphi}_t$ multigrid convergent to $\varphi = i$ =identity on a "large" class \mathcal{M} ?)

Observation: For the hit-or-miss digitization $\mathcal{M} \neq \mathcal{C}$:

To avoid "lower dimensional parts", we sometimes assume

$$K \in C_{reg} = \{M \in C \mid M = \operatorname{clint} M\}.$$

Digitization of the identity II

Lemma. There is a digitization î_t of the identity on
M = C_{reg} for the

hit-or-miss digitization, and for the
volume-threshold digitization,

M = C for the cell covering digitization, with K ⊂ î_t(K̂_t), K ∈ C.

In all cases

$$\hat{\iota}_t(\hat{K}_t) = \bigcup_{x \in \hat{K}_t} (x + t \mathbf{C}_0^*)$$

is the cell union.

Digitization of the identity III

Fix a set digitization $K \mapsto \hat{K}$. Let $\mathcal{M} \subset \mathcal{C}$ be such that there is a multigrid convergent digitization $\hat{\iota}_t$ for the identity *i* on \mathcal{M} .

Proposition.

- If φ : M → C is continuous, there is a multigrid convergent digitization of φ on M.
- If $\varphi : \mathcal{M} \to \mathcal{C}$ is upper semi-continuous, i.e.

$$K_n \searrow K \Rightarrow \lim_{n \to \infty} \varphi(K_n) \to \varphi(K),$$

and monotone, and $\hat{\iota}_t : \mathcal{M} \to \mathcal{M}$ satisfies

$$\mathbf{K} \subset \hat{\iota}_t(\hat{\mathbf{K}}_t), \qquad \mathbf{K} \in \mathcal{C},$$

then $\varphi(\hat{\iota}_t(\cdot))$ is multigrid convergent to φ on \mathcal{M} .

Digitization criterion

- hit-or-miss digitization, and v.-threshold digitization: For any continuous φ : M → C, there is a multigrid convergent digitization, if M ⊂ C_{reg}.
- ► cell covering digitization: For any upper semi-continuous, monotone φ : C → C, there is a multigrid convergent digitization.

Application (Serra [1982]):

For the cell covering digitization, morphological dilation $(K \mapsto K \oplus M, M \in C \text{ fixed})$, erosion, opening and closing have multigrid convergent digitizations on C.

Intrinsic volumes!?

Recall: The intrinsic volumes are continuous on \mathcal{K} .

- ► hit-or-miss digitization, and v.-threshold digitization: There is a multigrid convergent digitization of V_j on $\mathcal{K}_{reg} = \{ K \in \mathcal{K} \mid K = cl intK \}.$
- cell covering digitization:

There is a multigrid convergent digitization of V_j on \mathcal{K} .

In both cases, $\hat{V}_j(\hat{K}) = V_j(\text{convex hull}(\hat{K}))$.

Attention: On \mathcal{R} , V_j is not continuous for $0 \le j \le d$ and not monotone for $0 \le j \le d - 1$.

Digitization of the volume

We have

- hit-or-miss digitization, and v.-threshold digitization: There is a multigrid convergent digitization of Vol on *R*.
- cell covering digitization:

There is a multigrid convergent digitization of Vol on \mathcal{C} .

For both results, we used the cell union

$$\widehat{\operatorname{Vol}}_t(\hat{K}_t) = \operatorname{Vol}(\bigcup_{x \in \hat{K}_t} (x + t\mathbf{C}_0^*)).$$

For the hit-or-miss digitization with $\mathbb{L} = \mathbb{Z}^d$ this is

$$\widehat{\operatorname{Vol}}_t(\hat{K}_t) = t^d \cdot \#(K \cap t\mathbb{Z}^d).$$

Quality of the digitization

Consider the simple case of the hit-or-miss digitization with $\mathbb{L} = t\mathbb{Z}^2$, $t \leq 1$, K being the unit disk. Set $\hat{A} = t^2 \# (K \cap t\mathbb{Z}^2)$.

Bounds for the deviation from the true value?

Quality of the digitization

Consider the simple case of the hit-or-miss digitization with $\mathbb{L} = t\mathbb{Z}^2$, $t \leq 1$, K being the unit disk. Set $\hat{A} = t^2 \# (K \cap t\mathbb{Z}^2)$.

Bounds for the deviation from the true value?

$$(1-1/\sqrt{2}t)^2\pi \leqslant \hat{A} \leqslant (1+1/\sqrt{2}t)^2\pi$$

Hence (Gauss): $|\hat{A} - \pi| \leqslant c \cdot t$.
(Error decreases linear)

There are better values for γ in $|\hat{A} - \pi| \leq c \cdot t^{\gamma}$.

Gauss' Circle problem

Find largest
$$\gamma$$
 in $|\hat{A} - \pi| \leq c \cdot t^{\gamma}!$

Gauss	$\gamma \geqslant 1$
Voronoi & Sierpinski [1903]	$\gamma \geqslant 4/3 pprox 1.333$
Littlewood and Walfisz [1924]	$\gamma \geqslant$ 75/56 $pprox$ 1.340
Chen [1963]	$\gamma \geqslant$ 50/37 $pprox$ 1.351
Vinogradov	$\gamma \geqslant$ 72/53 $pprox$ 1.358
Huxley [1990]	$\gamma \geqslant$ 100/73 $pprox$ 1.370
Hardy & Landau [1915]	γ < 3/2

Gauss' circle problem:

Is there, for any $\varepsilon > 0$, a constant c with $|\hat{A} - \pi| \leq c \cdot t^{3/2-\varepsilon}$?

Illustration

Problem: Very strong fluctuation of the measurements.

 $\hat{A} = t^2 \# (K \cap t\mathbb{Z}^2)$ with K = unit disk in \mathbb{R}^2 .

Random digitization

We randomize the sampling scheme

- randomly translated lattice:
 Choose ξ uniformly in C^{*}₀ and consider t(ξ + L).
- randomly rotated lattice: Choose ϑ uniformly in SO_d and consider ϑ(tL).

In both cases: \hat{K}_t becomes a (finite) random closed set. Write \tilde{K}_t for \hat{K}_t , whenever the randomized lattice is used.

We will only work with randomly translated lattices here, these are stationary random closed sets.

Unbiased digitization of the volume

Let \tilde{K}_t be a random hit-or-miss digitization of $K \in C$ in \mathbb{R}^d ,

 $\tilde{V}_t := \text{Vol}(tC_0^*) \ \#\tilde{K}_t.$ Important observation: $\mathbb{E}\tilde{V}_t = \text{Vol}(K).$

Proof:
$$(t = 1)$$

 $\operatorname{Vol}(C_0^*) \mathbb{E} \# \tilde{K}_1 = \int_{C_0^*} \# (K \cap (x + \mathbb{L})) dx = \sum_{y \in \mathbb{L}} \int_{C_0^*} \mathbf{1}_K (x + y) dx$
 $= \sum_{y \in \mathbb{L}} \operatorname{Vol}(K \cap (y + C_0^*)) = \operatorname{Vol}(K).$

Variance of unbiased volume digitization What is the variance of \tilde{V}_t ?

• Huxley's result implies for sufficiently smooth $K \subset \mathbb{R}^2$,

$$\mathbb{V}$$
ar $ilde{\mathcal{V}}_t = \mathbb{E}ig(ilde{\mathcal{V}}_t - ext{Vol}(\mathcal{K})ig)^2 \leqslant c \cdot t^{200/73}, \quad 0 < t \leqslant 1.$

Kiěu & Mora [2004]:

$$\mathbb{V}$$
ar $ilde{V}_t = \mathbb{E} ig(ilde{V}_t - ext{Vol}(\mathcal{K}) ig)^2 \leqslant c V_1(\mathcal{K}) \cdot t^3, \quad 0 < t \leqslant 1,$

for sufficiently smooth and "randomized" $K \subset \mathbb{R}^2$.

▶ Hlawka [1950] showed for general regular \mathbb{L} in \mathbb{R}^d :

$$\mathbb{E}\big(\tilde{V}_t - \mathsf{Vol}(\mathcal{K})\big)^2 \leqslant c \cdot t^{4d/(d+1)}, \quad 0 < t \leqslant 1.$$

where ∂K is smooth and has positive curvature everywhere. (cf. Kendall [1948], d = 2.)

Hlawka's result

The main steps of the proof ($\mathbb{L} = \mathbb{Z}^d$):

• Express $\mathbb{E}\tilde{V}_t^2$ with the geometric covariogram

$$\mathbb{E}\tilde{V}_t^2 = t^d \sum_{x \in t\mathbb{Z}^d} C_{\mathcal{K}}(x)$$

with $C_{\mathcal{K}}(x) = \operatorname{Vol}(\mathcal{K} \cap (\mathcal{K} - x))$.

► Poisson's formula $t^d \sum_{x \in t\mathbb{Z}^d} f(x) = \sum_{x \in \frac{1}{t}\mathbb{Z}^d} \hat{f}(x)$, $(\hat{f} = \text{Fourier transform of } f)$ implies

$$\mathbb{V}$$
ar $(\tilde{V}_t) = \sum_{x \in 1/t\mathbb{Z}^d \setminus \{0\}} \hat{C}_{\mathcal{K}}(x)$

► Use that $\hat{C}_{\kappa}(x) = |\hat{\mathbf{1}}_{\kappa}(x)|^2$ (power spectral density) can be estimated for large *x*.

