Digital Stereology

Digitization and Multigrid Convergence

Markus Kiderlen

Thiele Centre
University of Aarhus
Denmark
Winter school Sandbjerg, January 2007

Outline of the talk

- Digitization of sets
- Regular lattices
- Digitization models
- Digitization of geometric characteristics
- Multigrid convergence
- A general criterion
- Digitization of the volume
- Multigrid convergence and digitization error
- Randomized digitization

Regular lattices in \mathbb{R}^{d}

Definition: x_{1}, \ldots, x_{d} basis of \mathbb{R}^{d}.
$\mathbb{L}=\left\{n_{1} x_{1}+\ldots+n_{d} x_{d} \mid n_{1}, \ldots, n_{d} \in \mathbb{Z}\right\}$
is called the regular lattice generated by x_{1}, \ldots, x_{d}.

- The parallelepiped $\mathrm{C}:=\left[0, x_{1}\right] \oplus \ldots \oplus\left[0, x_{d}\right]$ is a cell of \mathbb{L}.
- Any cell C_{0} with minimal diameter $\Delta(\mathbb{L})$ is called fundamental cell.
- $\mathrm{C}_{0}^{*}=\mathrm{C}_{0}-\left(x_{1}+\ldots+x_{d}\right) / 2$: centered fundamental cell.
- x_{1}, \ldots, x_{d} standard basis \Rightarrow
$\mathbb{L}=\mathbb{Z}^{d}=$ standard lattice, $\mathrm{C}_{0}=[0,1]^{d}$ standard cube, $\Delta(\mathbb{L})=\sqrt{d}, \mathrm{C}_{0}^{*}=[-1 / 2,1 / 2]^{d}$.

Digitizations of a set

A digitization of a set K is a representation of the continuous set K on a discrete lattice \mathbb{L}.
$\mathcal{C}:=\left\{\right.$ compact subsets of $\left.\mathbb{R}^{d}\right\}$.
$\mathcal{P}(\mathbb{L}):=$ power set of \mathbb{L}.
Definition: Any mapping from \mathcal{C} to $\mathcal{P}(\mathbb{L}), K \mapsto \hat{K}$ is called a digitization on \mathbb{L}.

Remark: the notion "digitization" is used in many different ways. Often it refers to a pixel/voxel image of K. It can also refer to a matrix representation.

Commonly used digitizations

- The hit-or-miss digitization (Gauss digitization): $\hat{K}:=K \cap \mathbb{L}$.
- The cell covering digitization (outer Jordan digitization):

$$
\hat{K}:=\left\{x \in \mathbb{L} \mid\left(x+\mathrm{C}_{0}^{*}\right) \cap K \neq \emptyset\right\}=\left(K \oplus \mathrm{C}_{0}^{*}\right) \cap \mathbb{L}
$$

- The volume-threshold digitization with param. $0<\theta \leqslant 1$:
$\hat{K}:=\left\{x \in \mathbb{L} \mid \operatorname{Vol}\left(\left(x+\mathrm{C}_{0}^{*}\right) \cap K\right) \geqslant \theta \cdot \operatorname{Vol}\left(x+\mathrm{C}_{0}^{*}\right)\right\}$.

-	,	.	-	-	-	-	-	-	-	-
-	-	-	-	-	-	.	-	-	- ${ }^{\circ}$,
-	-	F	-	-	-	.	-	-	-	-
-	-	.	-	-	-	-	-	-	-	-
-	.	.	.	-	-	-	-	-	,	

$$
\theta=1 / 2
$$

Approximation of characteristics from digitizations I

Motivation: Approximate boundary length in \mathbb{R}^{2}.

Hit-or-miss digitization.
From knowledge of \hat{K} find
$\varphi(K)=2 V_{1}(K)=4$.

The cell union of \hat{K}

$$
\hat{P}=\bigcup_{x \in \hat{K}}\left(x+\mathrm{C}_{0}^{*}\right)
$$

Approximation:
$\hat{\varphi}(\hat{K}):=2 V_{1}(\hat{P})=4.2$.

Approximation of characteristics from digitizations II

Improved resolution: replace \mathbb{L} by $t \mathbb{L}, 0<t<1$.

- Digitization $\hat{K}_{t}:=K \cap t \mathbb{L}$ (similar for other digitizations of K)
- Cell union $\hat{P}_{t}:=\bigcup_{x \in \hat{K}_{t}}\left(x+t \mathrm{C}_{0}^{*}\right)$
- Approximation $\hat{\varphi}_{t}\left(\hat{K}_{t}\right):=2 V_{1}\left(\hat{P}_{t}\right)$.

Then we have $\lim _{t \rightarrow 0+} \hat{\varphi}_{t}\left(\hat{K}_{t}\right)=\varphi(K)$ for the unit square "multigrid convergence".

$$
\begin{aligned}
\hat{\varphi}_{t}\left(\hat{K}_{t}\right)= & 2 V_{1}\left(\hat{P}_{t}\right) \\
& \rightarrow 4 \sqrt{2}=\sqrt{2} \varphi(K)
\end{aligned}
$$

Deviation of 41 \% !!!

Digitization of Characteristics: Definition

Assumptions:

- $\mathcal{M} \subset \mathcal{C}$ is a family of sets,
- $\varphi: \mathcal{M} \rightarrow \mathbb{R}$ is a function,
- $\hat{\varphi}: \mathcal{P}(t \mathbb{L}) \rightarrow \mathbb{R}$ is a function, a "digitization of φ ".

$$
\left.\begin{array}{rll}
K \in \mathcal{M} & \xrightarrow{\varphi} & \varphi(K) \\
\downarrow^{K} & & \upharpoonright ? \text { as } t \rightarrow 0+ \\
\hat{K}_{t} & & \xrightarrow{\hat{\varphi}}
\end{array}\right) \hat{\varphi}\left(\hat{K}_{t}\right)
$$

If $\hat{\varphi}$ satisfies

$$
\lim _{t \rightarrow 0+} \hat{\varphi}\left(\hat{K}_{t}\right)=\varphi(K), \quad K \in \mathcal{M}
$$

we say that $\hat{\varphi}$ is multigrid convergent to φ on \mathcal{M}.
Generalization to set valued characteristics $\varphi: \mathcal{M} \rightarrow \mathcal{C}$.
(Serra [1982], Heijmans [1992], Klette \& Rosenfeld [2004], K. [2005]).

Digitization of the identity I

Is there a multigrid convergent digitization for the set K ?
($\Longleftrightarrow \exists \hat{\varphi}_{t}$ multigrid convergent to $\varphi=i=$ identity on a "large" class \mathcal{M} ?)
Observation: For the hit-or-miss digitization $\mathcal{M} \neq \mathcal{C}$:

To avoid "lower dimensional parts", we sometimes assume

$$
K \in \mathcal{C}_{r e g}=\{M \in \mathcal{C} \mid M=\mathrm{clint} M\} .
$$

Digitization of the identity II

Lemma. There is a digitization $\hat{\iota}_{t}$ of the identity on

- $\mathcal{M}=\mathcal{C}_{\text {reg }}$ for the
- hit-or-miss digitization, and for the
- volume-threshold digitization,
- $\mathcal{M}=\mathcal{C}$ for the cell covering digitization, with

$$
K \subset \hat{\iota}_{t}\left(\hat{K}_{t}\right), \quad K \in \mathcal{C} .
$$

In all cases

$$
\hat{\iota}_{t}\left(\hat{K}_{t}\right)=\bigcup_{x \in \hat{K}_{t}}\left(x+t \mathrm{C}_{0}^{*}\right)
$$

is the cell union.

Digitization of the identity III

Fix a set digitization $K \mapsto \hat{K}$. Let $\mathcal{M} \subset \mathcal{C}$ be such that there is a multigrid convergent digitization $\hat{\iota}_{t}$ for the identity i on \mathcal{M}.

Proposition.

- If $\varphi: \mathcal{M} \rightarrow \mathcal{C}$ is continuous, there is a multigrid convergent digitization of φ on \mathcal{M}.
- If $\varphi: \mathcal{M} \rightarrow \mathcal{C}$ is upper semi-continuous, i.e.

$$
K_{n} \searrow K \Rightarrow \lim _{n \rightarrow \infty} \varphi\left(K_{n}\right) \rightarrow \varphi(K)
$$

and monotone, and $\hat{\iota}_{t}: \mathcal{M} \rightarrow \mathcal{M}$ satisfies

$$
K \subset \hat{\iota}_{t}\left(\hat{K}_{t}\right), \quad K \in \mathcal{C}
$$

then $\varphi\left(\hat{\iota}_{t}(\cdot)\right)$ is multigrid convergent to φ on \mathcal{M}.

Digitization criterion

Theorem. (Heijmans [1992], K. [2005])

- hit-or-miss digitization, and v.-threshold digitization: For any continuous $\varphi: \mathcal{M} \rightarrow \mathcal{C}$, there is a multigrid convergent digitization, if $\mathcal{M} \subset \mathcal{C}_{\text {reg }}$.
- cell covering digitization:

For any upper semi-continuous, monotone $\varphi: \mathcal{C} \rightarrow \mathcal{C}$, there is a multigrid convergent digitization.

Application (Serra [1982]):
For the cell covering digitization, morphological dilation ($K \mapsto K \oplus M, M \in \mathcal{C}$ fixed), erosion, opening and closing have multigrid convergent digitizations on \mathcal{C}.

Intrinsic volumes!?

Recall: The intrinsic volumes are continuous on \mathcal{K}.

- hit-or-miss digitization, and v.-threshold digitization:

There is a multigrid convergent digitization of V_{j} on

$$
\mathcal{K}_{\text {reg }}=\{K \in \mathcal{K} \mid K=\operatorname{clint} K\}
$$

- cell covering digitization:

There is a multigrid convergent digitization of V_{j} on \mathcal{K}.
In both cases, $\hat{V}_{j}(\hat{K})=V_{j}($ convex $\operatorname{hull}(\hat{K}))$.
Attention: On \mathcal{R}, V_{j} is
not continuous for $0 \leqslant j \leqslant d$ and
not monotone for $0 \leqslant j \leqslant d-1$.

Digitization of the volume

We have

- hit-or-miss digitization, and v.-threshold digitization: There is a multigrid convergent digitization of Vol on \mathcal{R}.
- cell covering digitization:

There is a multigrid convergent digitization of Vol on \mathcal{C}.
For both results, we used the cell union

$$
\widehat{\operatorname{Vol}}_{t}\left(\hat{K}_{t}\right)=\operatorname{Vol}\left(\bigcup_{x \in \hat{K}_{t}}\left(x+t \mathrm{C}_{0}^{*}\right)\right)
$$

For the hit-or-miss digitization with $\mathbb{L}=\mathbb{Z}^{d}$ this is

$$
\widehat{\operatorname{Vol}}_{t}\left(\hat{K}_{t}\right)=t^{d} \cdot \#\left(K \cap t \mathbb{Z}^{d}\right)
$$

Quality of the digitization

Consider the simple case of the hit-or-miss digitization with $\mathbb{L}=t \mathbb{Z}^{2}, t \leqslant 1, K$ being the unit disk. Set $\hat{A}=t^{2} \#\left(K \cap t \mathbb{Z}^{2}\right)$.

Bounds for the deviation from the true value?

Quality of the digitization

Consider the simple case of the hit-or-miss digitization with $\mathbb{L}=t \mathbb{Z}^{2}, t \leqslant 1, K$ being the unit disk. Set $\hat{A}=t^{2} \#\left(K \cap t \mathbb{Z}^{2}\right)$.

Bounds for the deviation from the true value?

$$
\begin{aligned}
& (1-1 / \sqrt{2} t)^{2} \pi \leqslant \hat{A} \leqslant(1+1 / \sqrt{2} t)^{2} \pi \\
& \text { Hence (Gauss): }|\hat{A}-\pi| \leqslant c \cdot t \\
& \text { (Error decreases linear) }
\end{aligned}
$$

There are better values for γ in $|\hat{A}-\pi| \leqslant c \cdot \boldsymbol{t}^{\gamma}$.

Gauss' Circle problem

Find largest γ in $|\hat{A}-\pi| \leqslant c \cdot t^{\gamma}$!

Gauss	$\gamma \geqslant 1$
Voronoi \& Sierpinski [1903]	$\gamma \geqslant 4 / 3 \approx 1.333$
Littlewood and Walfisz [1924]	$\gamma \geqslant 75 / 56 \approx 1.340$
Chen [1963]	$\gamma \geqslant 50 / 37 \approx 1.351$
Vinogradov	$\gamma \geqslant 72 / 53 \approx 1.358$
Huxley [1990]	$\gamma \geqslant 100 / 73 \approx 1.370$
Hardy \& Landau [1915]	$\gamma<3 / 2$

Gauss' circle problem:
Is there, for any $\varepsilon>0$, a constant c with

$$
|\hat{A}-\pi| \leqslant c \cdot t^{3 / 2-\varepsilon} ?
$$

Illustration

Problem: Very strong fluctuation of the measurements.
$\hat{A}=t^{2} \#\left(K \cap t \mathbb{Z}^{2}\right)$ with $K=$ unit disk in \mathbb{R}^{2}.

Random digitization

We randomize the sampling scheme

- randomly translated lattice:

Choose ξ uniformly in C_{0}^{*} and consider $t(\xi+\mathbb{L})$.

- randomly rotated lattice:

Choose ϑ uniformly in $S O_{d}$ and consider $\vartheta(t \mathbb{L})$.

In both cases: \hat{K}_{t} becomes a (finite) random closed set.
Write \tilde{K}_{t} for \hat{K}_{t}, whenever the randomized lattice is used.
We will only work with randomly translated lattices here, these are stationary random closed sets.

Unbiased digitization of the volume

Let \tilde{K}_{t} be a random hit-or-miss digitization of $K \in \mathcal{C}$ in \mathbb{R}^{d},

$$
\tilde{V}_{t}:=\operatorname{Vol}\left(t C_{0}^{*}\right) \# \tilde{K}_{t} .
$$

Important observation: $\mathbb{E} \tilde{V}_{t}=\operatorname{Vol}(K)$.

$$
\begin{aligned}
& \text { Proof: }(t=1) \\
& \begin{aligned}
\operatorname{Vol}\left(\mathrm{C}_{0}^{*}\right) \mathbb{E} \# \tilde{K}_{1} & =\int_{\mathrm{C}_{0}^{*}} \#(K \cap(x+\mathbb{L})) d x=\sum_{y \in \mathbb{L}} \int_{\mathrm{C}_{0}^{*}} 1_{K}(x+y) d x \\
& =\sum_{y \in \mathbb{L}} \operatorname{Vol}\left(K \cap\left(y+\mathrm{C}_{0}^{*}\right)\right)=\operatorname{Vol}(K)
\end{aligned}
\end{aligned}
$$

Variance of unbiased volume digitization

What is the variance of \tilde{V}_{t} ?

- Huxley's result implies for sufficiently smooth $K \subset \mathbb{R}^{2}$,

$$
\operatorname{Var} \tilde{V}_{t}=\mathbb{E}\left(\tilde{V}_{t}-\operatorname{Vol}(K)\right)^{2} \leqslant c \cdot t^{200 / 73}, \quad 0<t \leqslant 1 .
$$

- Kiěu \& Mora [2004]:

$$
\operatorname{Var} \tilde{V}_{t}=\mathbb{E}\left(\tilde{V}_{t}-\operatorname{Vol}(K)\right)^{2} \leqslant c V_{1}(K) \cdot t^{3}, \quad 0<t \leqslant 1,
$$

for sufficiently smooth and "randomized" $K \subset \mathbb{R}^{2}$.

- Hlawka [1950] showed for general regular \mathbb{L} in \mathbb{R}^{d} :

$$
\mathbb{E}\left(\tilde{V}_{t}-\operatorname{Vol}(K)\right)^{2} \leqslant c \cdot t^{4 d /(d+1)}, \quad 0<t \leqslant 1 .
$$

where ∂K is smooth and has positive curvature everywhere. (cf. Kendall [1948], $d=2$.)

Hlawka's result

The main steps of the proof $\left(\mathbb{L}=\mathbb{Z}^{d}\right)$:

- Express $\mathbb{E} \tilde{V}_{t}^{2}$ with the geometric covariogram

$$
\mathbb{E} \tilde{V}_{t}^{2}=t^{d} \sum_{x \in t \mathbb{Z}^{d}} C_{K}(x)
$$

with $C_{K}(x)=\operatorname{Vol}(K \cap(K-x))$.

- Poisson's formula $t^{d} \sum_{x \in t \mathbb{Z}^{d}} f(x)=\sum_{x \in \frac{1}{t} \mathbb{Z}^{d}} \hat{f}(x)$, ($\hat{f}=$ Fourier transform of f) implies

$$
\mathbb{V a r}\left(\tilde{V}_{t}\right)=\sum_{x \in 1 / t \mathbb{Z}^{d} \backslash\{0\}} \hat{C}_{K}(x)
$$

- Use that $\hat{C}_{K}(x)=\left|\widehat{\mathbf{1}}_{K}(x)\right|^{2}$ (power spectral density) can be estimated for large x.

