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Regular lattices in R
d

Definition: x1, . . . , xd basis of R
d .

L = {n1x1+. . .+ndxd | n1, . . . , nd ∈ Z}

is called the regular lattice
generated by x1, . . . , xd .

◮ The parallelepiped C := [0, x1] ⊕ . . . ⊕ [0, xd ] is a cell of L.
◮ Any cell C0 with minimal diameter ∆(L) is called

fundamental cell.
◮ C∗

0 = C0 − (x1 + . . . + xd )/2: centered fundamental cell.
◮ x1, . . . , xd standard basis ⇒

L = Z
d = standard lattice, C0 = [0, 1]d standard cube,

∆(L) =
√

d , C∗
0 = [−1/2, 1/2]d .



Digitizations of a set

A digitization of a set K is a representation of the continuous
set K on a discrete lattice L.

C:= { compact subsets of R
d}.

P(L):= power set of L.

Definition: Any mapping from C to P(L), K 7→ K̂ is called a
digitization on L.

Remark: the notion “digitization” is used in many different ways.
Often it refers to a pixel/voxel image of K .
It can also refer to a matrix representation.



Commonly used digitizations

◮ The hit-or-miss digitization (Gauss digitization):

K̂ := K ∩ L.

◮ The cell covering digitization (outer Jordan digitization):

K̂ := {x ∈ L | (x + C∗
0) ∩ K 6= ∅} = (K ⊕ C∗

0) ∩ L

◮ The volume-threshold digitization with param. 0 < θ 6 1:

K̂ := {x ∈ L | Vol
(
(x + C∗

0) ∩ K
)

> θ · Vol
(
x + C∗

0

)
}.

θ = 1/2



Approximation of characteristics from digitizations I

Motivation: Approximate boundary length in R
2.

Hit-or-miss digitization. The cell union of K̂
From knowledge of K̂ P̂ =

⋃
x∈K̂ (x + C∗

0)

find Approximation:
ϕ(K ) = 2V1(K ) = 4. ϕ̂(K̂ ) := 2V1(P̂) = 4.2.



Approximation of characteristics from digitizations II

Improved resolution: replace L by tL, 0 < t < 1.

◮ Digitization K̂t := K ∩ tL (similar for other digitizations of K )
◮ Cell union P̂t :=

⋃
x∈K̂t

(x + tC∗
0)

◮ Approximation ϕ̂t(K̂t) := 2V1(P̂t).

Then we have limt→0+ ϕ̂t(K̂t) = ϕ(K ) for the unit square

“multigrid convergence”.

ϕ̂t(K̂t) = 2V1(P̂t)

→ 4
√

2 =
√

2ϕ(K ).

Deviation of 41 % !!!



Digitization of Characteristics: Definition

Assumptions:
◮ M ⊂ C is a family of sets,
◮ ϕ : M → R is a function,
◮ ϕ̂ : P(tL) → R is a function,

a “digitization of ϕ”.

K ∈ M ϕ−→ ϕ(K )y
x? as t → 0+

K̂t
ϕ̂−→ ϕ̂(K̂t)

If ϕ̂ satisfies

lim
t→0+

ϕ̂(K̂t) = ϕ(K ), K ∈ M,

we say that ϕ̂ is multigrid convergent to ϕ on M.

Generalization to set valued characteristics ϕ : M → C.

(Serra [1982], Heijmans [1992], Klette & Rosenfeld [2004], K.
[2005]).



Digitization of the identity I

Is there a multigrid convergent digitization for the set K ?
( ⇐⇒ ∃ϕ̂t multigrid convergent to ϕ = i =identity

on a “large” class M?)

Observation: For the hit-or-miss digitization M 6= C:

r r r r r r r

r r r r r r r

r r r r r r r

r r r r r r r

�-

t

tL

To avoid "lower dimensional parts", we sometimes assume

K ∈ Creg = {M ∈ C | M = cl int M}.



Digitization of the identity II

Lemma. There is a digitization ι̂t of the identity on
◮ M = Creg for the

◮ hit-or-miss digitization, and for the
◮ volume-threshold digitization,

◮ M = C for the cell covering digitization, with

K ⊂ ι̂t(K̂t), K ∈ C.

In all cases
ι̂t(K̂t) =

⋃

x∈K̂t

(x + tC∗
0)

is the cell union.



Digitization of the identity III

Fix a set digitization K 7→ K̂ . Let M ⊂ C be such that there is a
multigrid convergent digitization ι̂t for the identity i on M.

Proposition.
◮ If ϕ : M → C is continuous,

there is a multigrid convergent digitization of ϕ on M.
◮ If ϕ : M → C is upper semi-continuous, i.e.

Kn ց K ⇒ lim
n→∞

ϕ(Kn) → ϕ(K ),

and monotone, and ι̂t : M → M satisfies

K ⊂ ι̂t(K̂t), K ∈ C,

then ϕ(ι̂t (·)) is multigrid convergent to ϕ on M.



Digitization criterion

Theorem. (Heijmans [1992], K. [2005])
◮ hit-or-miss digitization, and v.-threshold digitization:

For any continuous ϕ : M → C, there is a multigrid
convergent digitization, if M ⊂ Creg .

◮ cell covering digitization:
For any upper semi-continuous, monotone ϕ : C → C,
there is a multigrid convergent digitization.

Application (Serra [1982]):

For the cell covering digitization, morphological dilation
(K 7→ K ⊕ M, M ∈ C fixed), erosion, opening and closing have
multigrid convergent digitizations on C.



Intrinsic volumes!?

Recall: The intrinsic volumes are continuous on K.

◮ hit-or-miss digitization, and v.-threshold digitization:
There is a multigrid convergent digitization of Vj on
Kreg = {K ∈ K | K = cl intK}.

◮ cell covering digitization:
There is a multigrid convergent digitization of Vj on K.

In both cases, V̂j(K̂ ) = Vj
(
convex hull(K̂ )

)
.

Attention: On R, Vj is

not continuous for 0 6 j 6 d and

not monotone for 0 6 j 6 d − 1.



Digitization of the volume

We have

◮ hit-or-miss digitization, and v.-threshold digitization:
There is a multigrid convergent digitization of Vol on R.

◮ cell covering digitization:
There is a multigrid convergent digitization of Vol on C.

For both results, we used the cell union

V̂olt(K̂t) = Vol
( ⋃

x∈K̂t
(x + tC∗

0)
)
.

For the hit-or-miss digitization with L = Z
d this is

V̂olt(K̂t) = td · #(K ∩ tZd).



Quality of the digitization

Consider the simple case of the hit-or-miss digitization with
L = tZ2, t 6 1, K being the unit disk. Set Â = t2#(K ∩ tZ2).

Bounds for the deviation from the true value?



Quality of the digitization

Consider the simple case of the hit-or-miss digitization with
L = tZ2, t 6 1, K being the unit disk. Set Â = t2#(K ∩ tZ2).

Bounds for the deviation from the true value?

(1−1/
√

2t)2π 6 Â 6 (1+1/
√

2t)2π

Hence (Gauss): |Â − π| 6 c · t .
(Error decreases linear)

There are better values for γ in |Â − π| 6 c · tγ .



Gauss’ Circle problem

Find largest γ in |Â − π| 6 c · tγ !

Gauss γ > 1
Voronoi & Sierpinski [1903] γ > 4/3 ≈ 1.333
Littlewood and Walfisz [1924] γ > 75/56 ≈ 1.340
Chen [1963] γ > 50/37 ≈ 1.351
Vinogradov γ > 72/53 ≈ 1.358
Huxley [1990] γ > 100/73 ≈ 1.370
Hardy & Landau [1915] γ< 3/2

Gauss’ circle problem:

Is there, for any ε > 0, a constant c with
|Â − π| 6 c · t3/2−ε?



Illustration

Problem: Very strong fluctuation of the measurements.

Â = t2#(K ∩ tZ2) with K = unit disk in R
2.

Â

1
t



Random digitization

We randomize the sampling scheme
◮ randomly translated lattice:

Choose ξ uniformly in C∗
0 and consider t(ξ + L).

◮ randomly rotated lattice:
Choose ϑ uniformly in SOd and consider ϑ(tL).

In both cases: K̂t becomes a (finite) random closed set.
Write K̃t for K̂t , whenever the randomized lattice is used.

We will only work with randomly translated lattices here, these
are stationary random closed sets.



Unbiased digitization of the volume

Let K̃t be a random hit-or-miss digitization of K ∈ C in R
d ,

Ṽt := Vol(tC∗
0) #K̃t .

Important observation: EṼt = Vol(K ).

Proof: (t = 1)

Vol(C∗
0) E#K̃1 =

∫

C∗

0

#
(
K ∩ (x + L)

)
dx =

∑

y∈L

∫

C∗

0

1K (x + y) dx

=
∑

y∈L

Vol(K ∩ (y + C∗
0)) = Vol(K ).



Variance of unbiased volume digitization

What is the variance of Ṽt?

◮ Huxley’s result implies for sufficiently smooth K ⊂ R
2,

VarṼt = E
(
Ṽt − Vol(K )

)2
6 c · t200/73, 0 < t 6 1.

◮ Kiěu & Mora [2004]:

VarṼt = E
(
Ṽt − Vol(K )

)2
6 cV1(K ) · t3, 0 < t 6 1,

for sufficiently smooth and “randomized” K ⊂ R
2.

◮ Hlawka [1950] showed for general regular L in R
d :

E
(
Ṽt − Vol(K )

)2
6 c · t4d/(d+1), 0 < t 6 1.

where ∂K is smooth and has positive curvature
everywhere. (cf. Kendall [1948], d = 2.)



Hlawka’s result

The main steps of the proof (L = Z
d ):

◮ Express EṼ 2
t with the geometric covariogram

EṼ 2
t = td

∑

x∈tZd

CK (x)

with CK (x) = Vol
(
K ∩ (K − x)

)
.

◮ Poisson’s formula td ∑
x∈tZd f (x) =

∑
x∈ 1

t Zd f̂ (x),

(f̂ = Fourier transform of f ) implies

Var(Ṽt) =
∑

x∈1/tZd \{0}

ĈK (x)

◮ Use that ĈK (x) = |1̂K (x)|2 (power spectral density) can be
estimated for large x .
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