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Reminder: Digitization of intrinsic volumes

Recall:

◮ hit-or-miss digitization, and v. threshold digitization:
There is a multigrid convergent digitization of Vj on
Kreg = {K ∈ K | K topological regular}.

◮ cell covering digitization:
There is a multigrid convergent digitization of Vj on K.

For the volume (j = d ), there is a multigrid convergent
digitization on R = { finite unions of convex bodies }.

Question: Are there better digitizations for j < d?

For d = 2, we have to consider V0 (Euler-Poincaré
characteristic) and 2V1 (boundary length).



Outline of the talk

Digitization of the Euler characteristic in the plane
Graph theoretic approach
Polygonal approximations
Discretization of continuous approaches

Digitization of boundary length in the plane
Common approaches
Configuration theory

Extensions to higher dimensions



Neighbourhood graphs

In the following write χ = V0 = # components −# holes.

Motivation: red points= K̂

Define a neighbourhood graph on L:

4-neighbourhood 6-neighbourhood 8-neighbourhood



Adjacency graph

Choose a neighbourhood graph N on L.
Define a planar adjacency graph GN(K̂ ) with nodes K̂ and all
edges in the neighbourhood graph on L with endpoints in K̂
(For the 8-neighbourhood omit all diagonals in cells).

For the 4-connected graph For the 6-connected and
the 8-connected graph

The number of components of K is approximated by the #
components of GN(K̂ ).



Adjacency graph for the complement

Idea: do the same for the complement L \ K̂ and get an
approximation for # components(R2 \ K ).

Problem: Jordan’s curve theorem in a digital setting?!

Foreground and background
are both supplied with the
8-neigbourhood.

Solution:
Provide the background with another neigbourhood graph.
The pairs (4, 8), (6, 6) and (8, 4) are Jordan pairs, i.e. a digital
version of Jordan’s curve theorem holds.



Graph theoretic Euler characteristic I

Digitization χ̂ of the Euler charcteristic:
Choose a Jordan pair (N, N) and set

χ̂(K̂ ) := #components
(
GN(K̂ )

)

−#components
(
GN(L \ K̂ )

)
+ 1.

Euler’s relation ⇒ #components
(
GN(K̂ )

)
= v − e + f − 1

with v = #vertices, e = #edges, f = #faces of ĜN(K̂ ).

Hence χ̂(K̂ ) = v − e + c

with c = #cells of ĜN(K̂ ).



Graph theoretic Euler characteristic II

χ̂(K̂ ) = v − e + c

Count configurations:

Example: #

(
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• •

)

◮ 4-neighbourhood
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· ·

)

−

(

#
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+ #
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.



Graph theoretic Euler characteristic III

χ̂(K̂ ) = v − e + c

◮ 4-neighbourhood

χ̂4(K̂ ) = #

(
• ·

• •

)

− #

(
• •

• •

)

.

◮ 6-neighbourhood

χ̂6(K̂ ) = . . . = #

(
• •

• •

)

− #

(
• •

• •

)

.

◮ 8-neighbourhood

χ̂8(K̂ ) = . . . = #

(
• •

• •

)

− #

(
• ·

• •

)

.



Definition of polygonal approximations I

Idea:
◮ Approximate K by a polygon P only depending on K̂ ,
◮ condsider χ(P) as an approximation for χ(K ).

Definition of P:
◮ Cell covering P8:

K̂ −→ P8 :=
⋃

x∈K̂

(x + C∗
0)



Definition of polygonal approximations II

◮ Square digitization P4:

Define “elementary polygons” E = {·,−, |,� } (and all their
lattice translations).

K̂ −→ P4 :=
⋃

F∈E

vertices of F in K̂

F

◮ More genereal: define P using other sets E .



Properties of the polygonal approach

◮ Additivity of χ ⇒ χ(P8) = χ̂8(K̂ ) , χ(P4) = χ̂4(K̂ ) ,
similar simple formulas for other polygonal approximations.

◮ Efficient implementations use e.g.
quadtrees (Dyer [1980]),
induction on dimension (Bieri & Nef [1984]),
use of variuos filter masks (Ohser & Mücklich [2000]).



Multigrid convergence I

K may not have “too small structures”.

Let B be a compact set.
◮ Minkowski addition:

K ⊕ (−B) = {x − b | x ∈ K , b ∈ B} = {x | (x + B)∩ K 6= ∅}
“dilation with B”,

◮ Minkowski substraction: K ⊖ B = {x | (x + B) ⊂ K},
◮ morphological opening: K ◦ B := (K ⊖ (−B)) ⊕ B,

◮ morphological closing: K • B := (K ⊕ (−B)) ⊖ B.

K is morphologically open and closed wrt. B ⇐⇒

K = K ◦ B = K • B.



Multigrid convergence II

Let K̂ be the hit-or-miss digitization of K .

Roc(ε) := the class of all K ∈ R, which are morphologically
open and closed w.r.t. any set in ε{−, |, /, \}.
(“horizontal”, “vertical” and “diagonals” of the fundamental cell).

Ohser & Nagel [1996] ⇒

Theorem.

The digital algorithms χ̂4 and χ̂6 are multigrid convergent to
χ on the class Roc(ε) for any ε > 0.



A variant of the polygonal approach I

The problem of isolated points:

Idea to estimate # components(K ):
Let N̂:= #components of P8

that contain four neighbouring cells.

N̂ = 2.



A variant of the polygonal approach II

Approximate #holes(K):
– Interchange background and foreground, to obtain N̂c ,
– approximate #components(R2 \ K ) by N̂c − 1.

Theorem. (K. [2006])

The digital algorithm N̂ − (N̂c −1) is multigrid convergent to
χ on the class R̃.

R̃ = family of all K ∈ R with a representation K =
⋃n

i=1 Ki ,
Ki ∈ K, such that

◮ for any I ⊂ {1, . . . , n} the set
⋂

i∈I Ki is empty or has
interior points.

◮ i 6= j ⇒ ∂Ki ∩ ∂Kj is finite.



Discretization of continuous approaches

◮ Discrete intrinsic volumes
(Bieri & Nef [1984], Voss [1993]), ( χ̂4),

◮ Integral geometry on the lattice (cf. K. Mecke [1993]),

◮ Discretization of Hadwiger’s definition of χ
(Ohser, Nagel [1996]), ( χ̂4),

◮ Discretization of Schneider’s index function
(Guderlei et al. [2007]).



Digitization of χ in R
2

Summary:

◮ For the hit-or-miss digitization, good multigrid convergent
discretizations of χ are known in R

2,
◮ for other digitizations, known results are rather weak,

"Serra’s regular model" (Serra [1988])
◮ it is not known whether a randomization of L can improve

properties of digitizations.



Boundary length: common digitizations

Digitizations of the boundary length L(K ) = 2V1(K ).

◮ Local approaches

Essentially: use L(P), where P is a polygonal
approximation
(the union of suitable translates of polygons in E).

Not even multigrid convergent on Kreg .

◮ Global approaches (cf. Klette & Rosenfeld [2004])
◮ DSS based (digital straight line segment)
◮ Tangent based (estimate tangent vector)

Multigrid convergent at least on Kreg .



The length measure

Define a local counterpart of L(K ) = 2V1(K ) :

The length measure L(K , ·) of K ∈ R is the image measure of
H1 on ∂K under the spherical image map.

K S1

A ⊂ S1L(K ,A)



Configuration theory

General assumptions:
ξ + Z

d stationary random lattice
(ξ uniform in the fundamental cell C∗

0 = [0, 1]d ).
K̃ = hit-or-miss digitization in ξ + Z

d .

Motivation: Assume

K = halfplane with
outer unit normal u,

C = configuration,

e.g. C =

(
• •

• •

) K

u

hC(−u)



Asymptotic result for configuration counts I

General setting: K ∈ Rreg arbitrary.
Set #Ct := {x ∈ t(ξ + Z

d) | x + tR ⊂ K̃t , (x + tB) ∩ K̃t = ∅}
(number of observed occurrencies of tC in K̃t ).

Theorem. (Jensen, K. [2003])

t E#Ct−→

∫

S1
hC(−u) dL(K , u), t → 0+.

Write C as C = (R, B) with (“red” and “black”) R, B ⊂ Z
d

hC(−u) =
(

minr∈R r · u − maxb∈B b · u
)+

,

with a+ = max{a, 0}.



Asymptotic result for configuration counts II

t E#Ct−→

∫

S1
hC(−u) dL(K , u), t → 0+.

Far reaching generalizations (K. & Rataj [2007])
◮ also holds for cell covering and v. threshold digitizations,
◮ extends to R

d , d > 2,
◮ extends to much more general set classes containing Rreg ,
◮ is based on a local Steiner-type formula for closed sets

(Hug et al. [2004]).

Observation: Asymptotically, we obtain directional information
on the boundary.



Excursion: L(K , ·) estimation I

All 2 × 2-configurations that yield non-vanishing integrals:
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Excursion: L(K , ·) estimation II

Application: For sufficientely small t > 0 the counts

#Ct ≈ t−1
∫

S1
hC(−u) dL(K , u)

lead to (estimates of) 8 different integrals of L(K , ·).

Model: L̂(K , ·) =

8∑

i=1

αiδui with α1, . . . , α8 > 0. u1

u2

u8

S1

. . .

Approach: Determine α1, . . . , α8 > 0 in such a way that
t
∫

S1 hC(−u) dL̂(K , u) is "close to" #Ct .



Application example: Rolled Steel

The digital image of a
rolled steel (black phase = K ).

The estimated masses
of L(K , ·) from

2 × 2-configurations.

The total mass of this estimator also yields an estimator for
L(K ) = 2V1(K ).

(cf. Jensen & K. [2003], K. & Jensen [2003])



Digitization of the total projection

t E#Ct−→

∫

S1
hC(−u) dL(K , u), t → 0+.

Ct = (R, B) =: Ct(x) with singletons R = {x}, B := {0},
x ∈ tZd .

tE#Ct(x) →

∫

S1
(x · u)+ L(K , du).

“total projection of K in direction x/‖x‖”

Application in R
2:

Choose x1, . . . , xk ∈ Z
2 and weights α(xi ) > 0, i = 1, . . . , k , and

consider

L̂t := t
k∑

i=1

α(xi )‖xi‖
−1#Ct(xi ).



Digitization of boundary length I

EL̂t →

∫

S1

k∑

i=1

α(xi )

(
xi

‖xi‖
· u

)+

︸ ︷︷ ︸

should ≈1

L(K , du), t → 0 + .

Common choice of the weights α(x1), . . . , α(xk ):

–2

–1

1

2

–2 –1 1 2

xj

xi
2α(xi )

xj/‖xj‖

α(xi ) := ( length of the spherical Voronoi cell of xi/‖xi‖)/2.



Digitization of boundary length II

Refinement: Choose ρt > 0 with ρt → ∞ and tρt → 0, as t → 0.

L̂t := t
∑

x∈L,‖x‖6ρt

α(x)‖x‖−1#Ct(x).

Theorem.
If K ∈ Rreg is digitized with the randomized hit-or-miss,
cell covering or volume-threshold digitization K̃t , then

lim
t→0+

EL̂t = L(K ),

i.e. L̂ is multigrid convergent in mean to L on Rreg .

Note: L̂t is not local!



Extensions to higher dimensions

◮ Discretization of Hadwiger’s definition of χ
(Nagel et al. [2000])

◮ Adjacency systems
as generalization of graph theoretic and polygonal
approach.

◮ Discretization of Crofton’s formula
(cf. Ohser & Mücklich [2000])

◮ Configuration theory
in R

d to treat surface area.
(d = 3: Gutkowski et al. [2004])
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