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Abstract. The aim of the series of three lectures is to give an introduction
and overview of some basic results of geometric measure theory which can be

applied in stochastic geometry.
The first lecture will start with the definition of the Hasdorff measures in

R
d, Hausdorff dimension and (Hausdorff) k-dimensional density of a set. Then,

a survey of basic properties of Lipschitz mappings and the area and coarea the-

orems will be presented. Finally, Hausdorff rectifiable sets will be introduced
and a general area-coarea formula presented, together with examples.

The second lectures will be devoted to currents. First, the basic multilinear

algebra (multivectors and their wedge products) will be introduced. Then, the
general definition of a current will follow, with emphasis to rectifiable currents,
together with certain forms of convergence of currents and a few chosen general
results, accompanied by illustrating examples.

The aim of the third lecture is to introduce curvature measures for general
convex bodies and sets with positive reach. This will be done by means of the
unit normal bundle and the associated normal cycle (current). Some integral-

geometric formula will be presented and possible extensions to more general
sets will be discussed.

1. Area, coarea and rectifiability

1.1. Hausdorff measure. The Hausdorff measures are defined as outer measure
on R

d. An outer measure on a set X is a set function µ : P(X) → [0,∞] defined
on all subsets of X with the properties:

(i) µ(∅) = 0,
(ii) A ⊆ B =⇒ µ(A) ≤ µ(B),
(iii) µ(

⋃∞
i=1Ai) ≤

∑∞
i=1 µ(Ai).

To an outer measure µ, the system of µ-measurable sets is assigned:

Aµ := {A ⊆ X : µ(T ) = µ(T ∩A) + µ(T \A)∀T ⊆ X}.

Theorem 1.1. Aµ is a σ-algebra and the restriction of µ to Aµ is a (σ-additive)
measure.

There is a plenty of outer measures whose σ-algebra is very poor or even trivial.
There exists, however, a simple criterion assuring that the σ-algebra is rich enough.
We say that an outer measure µ on a metric space (X, ρ) is metric if µ(A ∪ B) =
µ(A) + µ(B) whenever

dist (A,B) := inf{ρ(a, b) : a ∈ A, b ∈ B} > 0.
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Theorem 1.2. If µ is a metric outer measure on a metric space (X, ρ) then Aµ

contains all Borel sets. Moreover, µ is Borel regular, i.e., to any A ⊆ X there exists
a Borel set B ⊇ A such that µ(A) = µ(B).

Let s ≥ 0. Denote

ωs =
πs/2

Γ( s
2 + 1)

(note that if s is an integer then ωs is the volume of the unit ball in R
s). We define

the s-dimensional Hausdorff measure in R
d as

Hs(A) = lim
δ→0+

inf
A⊆

S
i Gi

diam Gi≤δ

∑

i

ωs

(
diamGi

2

)s

.

The infimum above is taken over all finite or countable coverings of A with (arbi-
trary) subsets G1, G2, . . . of R

d of diameters at most δ.

Proposition 1.3. (1) Hs is a metric outer measure on R
d for any 0 ≤ s ≤ d.

(Hence, Hs is Borel regular.)
(2) The measures Hs are translation and rotation invariant.
(3) H0 is the counting measure.
(4) Hd is the Lebesgue measure (Hd = λd).
(5) Hs = 0 if s > d.

Note that the definition of Hs would not change if coverings by only say open,
or closed, or even compact convex, sets would be considered. Covering by balls
would, however, produce another measure (though its values on “nice” sets would
be the same).

Let A be a subset of R
d. The Hausdorff dimension of A is defined as

dimH A := inf{s ≥ 0 : Hs(A) <∞}.
The Hausdorff dimension has the following meaning.

Proposition 1.4. If s < dimH A then Hs(A) = ∞. If s > dimH A then Hs(A) =
0.

Examples: Any nonempty open set in R
d has Hausdorff dimension d. A k-dimenional

C1-submanifold has Hausdorff dimension k. Any countable set has Hausdorff dime-
sion 0. The Cantor set in R

1 has Hausdorff dimension log 2
log 3 . The trajectory of

Brownian motion in R
d has almost surely Hausdorff dimension 2 (nevertheless, its

two-dimensional Hausdorff measure vanishes).

1.2. Densities of sets. Given a ∈ R
d and r > 0, let B(a, r) denote the closed ball

with centre a and radius r. Let A be a subset of R
d and a ∈ R

d a point. Let s > 0.
Define

Θ∗s(A, a) = lim sup
r→0+

Hs(A ∩B(a, r))

ωsrs
,

Θs
∗(A, a) = lim inf

r→0+

Hs(A ∩B(a, r))

ωsrs
,

the upper and lower s-dimensional density of A at a. If both the upper and lower
densities agree we call the common value s-dimensional density of A at a and denote
it by Θs(A, a).
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Theorem 1.5. (1) If A ⊆ R
d is Lebesgue measurable then Θd(A, ·) equals 1

λd-almost everywhere on A and equals 0 λd-almost everywhere on the com-
plement of A (Lebesgue Density Theorem).

(2) If Hs(A) <∞ then Θ∗s(A, ·) ≤ 1 Hs-almost everywhere on A.

1.3. Lipschitz mappings. A mapping f : A → R
n defined on a set A ⊆ R

d is
Lipschitz if there exists a number L ≥ 0 such that

|f(y) − f(x)| ≤ L|y − x| for all x, y ∈ A.

The infimum of all constants L with the above property as called the Lipschitz
constant of f and denoted L = Lip f . Of course, any Lipschitz mapping is contin-
uous, but not vice versa. The following result says that we can mostly work with
Lipschitz mappings defined on the whole space.

Theorem 1.6 (Kirszbraun). Any Lipschitz mapping from a subset of R
d to R

n

can be extended to a Lipschitz mapping defined on the whole R
d, with the same

Lipschitz constant.

Lipschitz mapping are used in geometric measure theory in place of C1 smooth
mappings from the classical calculus. The following two results make this possible.

Theorem 1.7 (Rademacher). A Lipschitz mapping f : R
d → R

n is differentiable
λd-almost everywhere.

Theorem 1.8 (Whitney). Let f : R
d → R

n be Lipschitz and let ε > 0. Then there
exists a C1 mapping g : R

d → R
n such that

λd{x ∈ R
d : f(x) 6= g(x)} < ε.

The basic connection of Hausdorff measure and Lipschitz mappings is given in
the following simple proposition.

Proposition 1.9. If A ⊆ R
d and f : A → R

n is Lipschitz then Hs(f(A)) ≤
(Lip f)sHs(A), s ≥ 0.

Let a function f with values in R
n be differentiable at a point a ∈ R

d (with
differential Df(a)) and let 0 ≤ k ≤ d be an integer. The k-dimensional Jacobian
of f at a is defined as

Jkf(a) = sup{Hk(Df(a)(C)) : C is a k-dimensional unit cube in R
d}.

Particular cases:

(1) If k = d = n then Jdf(a) = |detDf(a)|.
(2) If k = d < n then Jdf(a) =

√
det(Df(a))T(Df(a)). Moreover, Jdf(a) =

Hd(Df(a)(C)) for any unit cube in R
d, or Jdf(a) = Hd(Df(a)(A))/λd(A)

for any measurable subset A ⊆ R
d of positive finite Lebesgue measure.

(3) If k = n < d then Jnf(a) =
√

det(Df(a))(Df(a))T. If the rank of
Df(a) is less than n then Jnf(a) = 0. If the rank of Df(a) equals n
then Jnf(a) = Hn(Df(a)(C)) for any unit n-cube in (kerDf(a))⊥, the
orthogonal complement of the kernel of Df(a) (kerDf(a) = {u ∈ R

d :
Df(a)u = o}), or Jnf(a) = Hn(Df(a)(A))/Hn(A) for any measurable
subset A ⊆ (kerDf(a))⊥ of positive finite n-dimensional Hausdorff mea-
sure.
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Theorem 1.10 (Area formula). Let f : R
d → R

n be Lipschitz, d ≤ n, and let
A ⊆ R

d be Lebesgue measurable. Then
∫

A

Jdf dλ
d =

∫

Rn

card(A ∩ f−1{z})Hd(dz).

If, moreover, h ≥ 0 is a λd-measurable function on A then
∫

A

h(x)Jdf(x)λd(dx) =

∫

Rn

∑

x∈A∩f−1{z}
h(x)Hd(dz).

Theorem 1.11 (Coarea formula). Let f : R
d → R

n be Lipschitz, d ≥ n, and let
A ⊆ R

d be Lebesgue measurable. Then
∫

A

Jnf dλ
d =

∫

Rn

Hd−n(A ∩ f−1{z})Hn(dz).

If, moreover, h ≥ 0 is a λd-measurable function on A then
∫

A

h(x)Jnf(x)λd(dx) =

∫

Rn

∫

A∩f−1{z}
h(x)Hd−n(dx)Hn(dz).

1.4. Tangent cones. If A ⊆ R
d and a ∈ R

d, the tangent cone of A at a is defined
as

Tan(A, a) = {u ∈ R
d : ∃(an) ⊆ A \ {a}, (rn) ⊆ (0,∞), an → a, rn(an − a) → u}.

Another description is that a nonzero vector u belongs to Tan(A, a) if and only if
there exist points an 6= a from A such that an−a

|an−a| → u
|u| . Tan(A, a) is always a

closed cone with vertex at the origin.
Given an integer 0 ≤ k ≤ d, the cone of (Hk, k)-approximate tangent vectors of

A at a is defined as

Tank(A, a) =
⋂

{Tan(E, a) : E ⊆ A,Θk(A \ E, a) = 0}.

Clearly, Tank(A, a) is a closed subcone of Tan(A, a).

1.5. Approximate differential. A function f : A → R
n (A ⊆ R

d) is said to be
(Hk, k)-approximatively differentiable at a ∈ A if there exists a mapping g : R

d →
R

n differentiable at a and such that

Θk({x ∈ A : f(x) 6= g(x)}, a) = 0.

The mapping

(Hk, k)apDf(a) := Dg(a) | Tank(A, a)

(restricion of Dg(a) to Tank(A, a)) is called the (Hk, k)-approximate differential of
f at a. We often write only apDf(a) for brevity.

It can be shown that apDf(a) does not depend on the choice of the function g.
Assume that f is (Hk, k)-approximatively differentiable at a ∈ A and that

Tank(A, a) is a k-dimensional subspace of R
d. For an integer 0 ≤ m ≤ k, we

define the m-dimensional approximate Jacobian of f at a as

ap Jmf(a) = sup{Hm(apDf(a)(C)) : C is a unit m-cube in Tank(A, a)}.
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1.6. Rectifiable sets. Let k ∈ [0, d] be an integer. A set A ⊆ R
d is called k-

rectifiable if it is a Lipschitz image of a bounded subset of R
k. A is called (Hk, k)-

rectifiable if Hk(A) < ∞ and there exist k-rectifiable sets W1,W2, . . . such that
Hk(A \ ⋃iWi) = 0 (see [2]). Finally, we call A k-dimensional rectifiable if it is
(Hk, k)-rectifiable and Hk-measurable. (The last terminology is taken from Morgan
[6]; it should be noticed that the (Hausdorff) dimension of A can be less than k.)
Examples:

(1) A k-dimensional C1-submanifold M of R
d is locally k-rectifiable (i.e., to

any a ∈ M there exists a neighbourhood U of a in R
d such that M ∩ U is

k-rectifiable).
(2) The graph of a Lipschitz function from a bounded subset of R

d−1 to R is
(d− 1)-rectifiable.

(3) If A ⊆ R
d is k-dimensional rectifiable and f : A→ R

n Lipschitz then f(A)
is k-dimensional rectifiable as well.

Theorem 1.12 (Federer). Let A ⊆ R
d be k-dimensional recitiable and γ > 1.

Then

(1) there exist C1-diffeomorphisms g1, g2, . . . from R
k to R

d with Lip gi ≤ γ
and Lip g−1

i ≤ γ and compact subsets K1,K2, . . . of R
d such that the images

gi(Ki) ∩ gj(Kj) = ∅ for i 6= j and

Hk

(
A \

⋃

i

gi(Ki)

)
= 0;

(2) for Hk-almost all a ∈ A, Θk(A, a) = 1 and Tank(A, a) is a k-dimensional
subspace of R

d.

Proposition 1.13. Let A ⊆ R
d be k-dimensional recitiable and f : A → R

n

Lipschitz. Then for Hk-almost all a ∈ A, Tank(A, a) is a k-dimensional subspace
and f is (Hk, k)-approximatly differentiable at a.

Theorem 1.14 (General Area-coarea Formula). Let A ⊆ R
d be k-dimensional

rectifiable and Z ⊆ R
n m-dimensional recifiable, k ≥ m, and let f : A → Z be

Lipschitz. Then

(1) f−1{z} is (k −m)-dimensional rectifiable for Hm-almost all z ∈ Z,
(2)

∫
A

ap Jmf dHk =
∫
Z

Hk−m(f−1{z})Hm(dz),

(3) for any nonegative Hk-measurable function h on A,
∫

A

ap Jmf(x)h(x)Hk(dx) =

∫

Z

∫

f−1{z}
h(x)Hk−m(dx)Hm(dz).

Example 1.1. Given two subspaces Lp, Lq of R
d, of dimension p, q, respectively,

we define
J(Lp, Lq) = Jr(pLq

| Lp),

the r-dimensional Jacobian of the orthogonal projection to Lq defined on Lp, where
r = min{p, q}.

Let A ⊆ R
d be k-dimensional rectifiable, let L be a j-dimensional subspace of

R
d and set r = min{j, k}. If f = pL | A : A → L is the orthogonal projection pL

from R
d to L restricted to A, then

Jrf(a) = J(Tan(A, a), L)



6 JAN RATAJ

for Hk-almost all a ∈ A. The area-coarea theorem thus yields
∫

A

J(Tan(A, a), L)Hk(da) =

∫

L

Hk−j(A ∩ p−1
L {z})Hj(dz)

if k ≥ j and
∫

A

J(Tan(A, a), L)Hk(da) =

∫

pL(A)

Hj−k(A ∩ p−1
L {z})Hk(dz)

if k ≤ j. Assume now that k = j; integrating the last formula with respect to the
invariant probability measure νd

k over the Grassmannian G(d, k) all k-subspaces,
we get the Crofton formula

Hk(A) = c(d, k)

∫

G(d,k)

∫

L

card(A ∩ p−1
L {z})Hk(dz)νd

k(dL)

with

c(d, k) =
Γ
(

k+1
2

)
Γ
(

d−k+1
2

)

Γ
(

d+1
2

)
Γ
(

1
2

) .

1.7. Purely unrectifiable sets. A set E ⊆ R
d is called purely k-unrectifiable if it

contains no k-rectifiable subset of positive Hk-measure.

Proposition 1.15. Any Hk-measurable set W ⊆ R
d with Hk(W ) < ∞ can be

written as disjoint union W = A∪E of a k-dimensional rectifiable set A and purely
k-unrectifiable set E.

Theorem 1.16 (Structure Theorem). If E is purely k-unrectifiable then Hk(pL(E)) =
0 for almost all k-subspaces E of R

d. Consequently, the Crofton formula fails for
purely unrectifiable sets with positive Hk-measure.

Exercises:

(1) Compute Θ∗1(A, 0) and Θ1
∗(A, 0) for the set A = [ 12 , 1]∪ [ 18 ,

1
4 ]∪ [ 1

32 ,
1
16 ]∪· · ·

in R.
(2) Show that the distance function dA : x 7→ dist (x,A) to a nonempty set is

Lipschitz, find Lip dA, and compute J1dA(x) for x 6∈ clA.
(3) Prove Proposition 1.9.
(4) Calculate J1f(x) for the mapping f : x 7→ |x| defined in R

d and use the
coarea formula to show that for any cone C with vertex at the origin and
any R > 0,

λd(C ∩B(o,R)) =
Rd

d
Hd−1(C ∩ Sd−1).

(5) Let L be a j-subspace of R
d and let πL : R

d \ L⊥ → L ∩ Sd−1 be de-
fined by πL(x) = pLx

|pL(x)| (pL is the orthogonal projection to L). Calculate

Jj−1πL(x).

(6) Find Tan(A, a), Tan2(A, a) and Tan1(A, a) for the planar set

A = {x ≤ 0, y ≤ 0} ∪ {x = 0} ∪ {( 1

n
, 0), n ∈ N}.

(7) Show that the approximate differential apDf(x) is uniquely determined.
(8) Show that the boundary of a convex body in R

d is (d− 1)-rectifiable.
(9) (*) If Hk(A) = 0 then Hk+1(A× [0, 1]) = 0.
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(10) If A is k-rectifiable then A× [0, 1] is (k+1)-rectifiable. If A is k-dimensional
rectifiable then A× [0, 1] is (k + 1)-dimensional rectifiable.

(11) Let A ⊆ {(x1, . . . , xd ∈ R
d : xd = 1} be k-dimensional rectifiable. Show

that W = {ta : a ∈ A, 0 ≤ t ≤ 1} is (k + 1)-dimensional rectifiable, and
compute Hk+1(W ).

2. Differential forms and currents

2.1. Multilinear algebra. Let V be a finite (d-)dimensional vector space over R

(usually V = R
d). If k ≥ 0 is an integer, we denote by

⊗k
V the linear space of all

k-linear functions f : V k → R. Elements of
⊗k

V are called covariant k-tensors

and dim
⊗k

V = dk. We say that a covariant k-tensor f is antisymmetric if for any
permutation σ ∈ Σ(k) of {1, . . . , k} and for all vectors v1, . . . , vk ∈ V ,

f
(
vσ(1), . . . , vσ(k)

)
= (sgnσ)f (v1, . . . , vk) .

The set of all antisymmetric covariant k-tensors will be denoted by
∧k

V . It is

a linear subspace of
⊗k

V . Elements of
∧k

V are called k-covectors or multi-
covectors. It follows from the antisymmetry that f(v1, . . . , vk) = 0 whenever the

vectors v1, . . . , vk are linearly dependent. Thus, if k > d then
∧k

V is trivial. Given

two multi-covectors f ∈ ∧k
V , g ∈ ∧m

V , we define their exterior (or wedge) product
by

(f ∧ g)(v1, . . . , vk+m) =
∑

σ∈Σ(k,m)

(sgnσ)f(vσ(1), . . . , vσ(k))g(vσ(k+1), . . . , vσ(k+m)),

where

Σ(k,m) = {σ ∈ Σ(k +m) : σ(1) < · · · < σ(k), σ(k + 1) < · · · < σ(k +m)}.
It is easy to verify that f ∧ g ∈ ∧k+m

V . k-covectors of the form v∗1 ∧ · · · ∧ v∗k,

where v∗1 , . . . , v
∗
k ∈ V ∗ ∼=

∧1
V , are called simple. Any k-covector can be written as

a linear combination of simple k-covectors.

The dual space to
∧k

V will denoted by
∧

kV and its elements called k-vectors or
multivectors. k-vectors corespond naturally to k-covectors of the dual space, thus∧

kV
∼=
∧k

V ∗. Hence, the exterior product is defined on multivectors as well.
To any vectors v1, . . . , vk from V , a k-vector can be naturally assigned:

Fv1,...,vk
: f 7→ f(v1, . . . , vk), f ∈ ∧k

V.

The mapping (v1, . . . , vk) 7→ Fv1,...,vk
is k-linear and antisymmetric. We shall de-

note the k-vector Fv1,...,vk
simply by v1 ∧ · · · ∧ vk and we remark that this notation

is consistent with the definition of wedge product. k-vectors of this type are again
called simple.

Note that if {e1, . . . , ed} is a basis of V then

{ei1 ∧ · · · ∧ eik
: 1 ≤ i1 < · · · < ik ≤ d}

is a basis of
∧

kV and

{e∗i1 ∧ · · · ∧ e∗ik
: 1 ≤ i1 < · · · < ik ≤ d}

is a basis of
∧k

V , where e∗i are the dual forms to ei. These linear forms are often

denoted by dxi = e∗i . It follows that the dimension of
∧

kV and
∧k

V is
(

d
k

)
.
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Example 2.1. (1) If u = α1e1 + · · · + αded and v = β1e1 + · · · + βded then

u ∧ v =
∑

i<j

(αiβj − αjβi)(ei ∧ ej).

(2) If u1, . . . , ud ∈ V , ui =
∑d

j=1 u
j
iej , then

u1 ∧ · · · ∧ ud = det
(
uj

i

)d

i,j=1
(e1 ∧ · · · ∧ ed).

(3) There exists multivectos which are not simple if dimV ≥ 4, e.g., e1 ∧ e2 +
e3 ∧ e4 is not simple.

If φ ∈ ∧k
V is a k-covector and ξ ∈ ∧kV a k-vector, we shall write 〈ξ, φ〉 instead

of φ(ξ) or ξ(φ) is the sequel.
The operations of interior multiplication are defined as follows. Let ξ ∈ ∧kV

and φ ∈ ∧m
V .

(1) If k ≤ m we define ξyφ ∈ ∧m−k
V by 〈α, ξyφ〉 = 〈α ∧ ξ, φ〉, α ∈ ∧m−kV .

(2) If k ≥ m we define ξxφ ∈ ∧k−mV by 〈ξxφ, ψ〉 = 〈ξ, φ ∧ ψ〉, ψ ∈ ∧k−m
V .

Let now V = R
d and let {e1, . . . , ed} be its canonical basis. We define a scalar

product on
∧

kR
d as follows. Assume that i1 < · · · < ik and j1 < · · · < jk and set

(ei1 ∧ · · · ∧ eik
) · (ej1 ∧ · · · ∧ ejk

) =

{
1 if i1 = j1, . . . ik = jk,
0 otherwise.

The corresponding norm on
∧

kR
d will be denoted by | · |. On the dual space

∧k
R

d,
besides of the dual norm | · |, we define another norm (called comass)

‖ϕ‖ = sup{|〈ξ, ϕ〉 : ξ ∈ ∧kR
d simple , |ξ| = 1}, ϕ ∈ ∧k

R
d.

Example 2.2. We have

(u1 ∧ · · · ∧ uk) · (v1 ∧ · · · ∧ vk) = det (ui · vj)
k
i,j=1 .

If L : V → W is a linear mapping between two finite-dimensional vector spaces
over R and if k ≤ max{dimV,dimW}, we define the linear mapping

∧
kL :

∧
kV → ∧

kW

by

(
∧

kL) (v1 ∧ · · · ∧ vk) = (Lv1) ∧ · · · ∧ (Lvk).

2.2. The Grassmannian. Let G(d, k) denote the set of all k-dimensional linear
subspaces of R

d. With any k-vector ξ ∈ ∧kR
d we associate the subspace

L(ξ) = {u ∈ R
d : ξ ∧ u = o}.

Proposition 2.1. (1) o 6= ξ ∈ ∧kR
d is simple if and only if dimL(ξ) = k.

(2) If ξ, ζ are two simple k-vectors with L(ξ) = L(ζ) then ξ = cζ for some
c ∈ R.

Consequently, we can represent G(d, k) as the submanifold

{ξ ∈ ∧kR
d simple, |ξ| = 1}

of
∧

kR
d modulo the change of sign. We have dimG(d, k) = k(d− k).
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2.3. Vectorfields and differential forms. Let U be an open subset of R
d. A

k-vectorfield on U is a mapping ξ : U → ∧
kR

d. A differential form of power k (or

briefly a k-form) on U is a C∞ differentiable mapping φ : U → ∧k
R

d.

Example 2.3. If f1, · · · , fd are C∞-functions then

φ(x) = f1(x)dx1 + · · · + fd(x)dxn

is a 1-form on R
d. A k-form can always be expressed in the form

φ(x) =
∑

1≤i1<···<ik≤d

φi1,...,ik
(x)(dxi1 ∧ · · · ∧ dxik

)

with C∞ functions φi1,...,ik
(called coefficients of φ).

The pull-back of a k-form φ on U ⊆ R
d with a differentiable mapping f : G ⊆

R
n → U is a k-form on G denoted by f#φ and defined by

〈ξ, f#φ(x)〉 = 〈(∧kDf(x))ξ, φ(f(x)〉.
The exterior derivative dφ od a k-form φ on U is a (k + 1)-form on U defined by

〈v1 ∧ · · · ∧ vk+1, dφ(x)〉 =

k+1∑

i=1

(−1)i−1〈v(i),Dφ(x)vi〉,

where v(i) = v1 ∧ · · · ∧ vi−1 ∧ vi+1 ∧ · · · ∧ vk+1 and Dφ is the k-form on U obtained
by differentiating the coefficients of φ. Using coordinates, one can write

dφ(x) =

d∑

i=1

dxi ∧
∂

∂xi
φ(x).

The differential operator d is additive and has the property d2 = 0.

2.4. Currents. Let U be an open set in R
d, let Ek(U) denote the linear space of all

k-forms on U and let Dk(U) be the subspace of k-forms with compact support. The
dual space to Dk(U) is denoted by Dk(U) and its elements are called k-dimensional
currents on U . The support of T is defined as

sptT = U \
⋃

{V ⊆ U open, sptφ ⊆ V =⇒ T (φ) = 0}.

Example 2.4. Let A ⊆ U be a k-dimensional (locally) rectifiable set in R
d con-

tained in an open set U . We say that ξ : A→ ∧
kR

d is its unit orienting k-vectorfield
if ξ is Hk-measurable and for Hk-almost all a ∈ A, ξ(a) is a unit simple k-vector

with associated k-subspace Tank(A, a). Then, the mapping

T : φ 7→
∫

A

〈ξ(a), φ(a)〉Hk(da), φ ∈ Dk(U),

is a k-dimensional current in U and is denoted by

T = (Hk
xA) ∧ ξ.

We can generalize this notion by allowing ξ(x) to carry positive multiplicities (i.e.,

ξ(x) is again a simple k-vector associated with Tank(A, a), but |ξ(x)| is an integer.
Such currents are called (locally) rectifiable.

To any current T ∈ Dk(U) we attach a functional ‖T‖ on the space of continuous
nonegative functions f on U with bounded support

‖T‖(f) = sup{T (φ) : φ ∈ Dk(U), ‖φ(x)‖ ≤ f(x)∀x}.



10 JAN RATAJ

Theorem 2.2. Assume that ‖T‖(f) <∞ for any nonnegative continuous function
f on U with bounded support. Then ‖T‖ defines a Radon measure on R

d and there
exists a ‖T‖-measurable k-vectorfield ξ : U → ∧

kR
d such that

T (φ) =

∫

G

〈ξ(x), φ(x)〉 ‖T‖(dx), φ ∈ Dk(U).

Currents T fulfilling the assumption of the above theorem are called representable
by integration. For such currents, T (φ) is defined even for nonsmooth k-forms φ,

namely whenever φ : U → ∧k
R

d is ‖T‖-measurable with
∫
‖φ‖ d‖T‖ < ∞. Of

course, rectifiable currents are representable by integration.
Let T ∈ Dk(U) be a k-dimensional current and φ ∈ Dm(U) an m-form, m ≤ k.

Then Txφ is a (k −m)-dimensional current on U defined by

(Txφ)(ψ) = T (φ ∧ ψ), ψ ∈ Dk−m(U).

If ξ is a C∞ m-vectorfield on U , we define the (k +m)-dimensional current T ∧ ξ
on U by

(T ∧ ξ)(φ) = T (ξyφ), φ ∈ Dk+m(U).

If T is representable by integration then T ∧ ξ and Tyφ are defined even whenever
ξ and φ are ‖T‖-integrable.

If T is a k-dimensional current on U (k ≥ 1), its boundary ∂T is a (k − 1)-
dimensional current on U given by

∂T (φ) = T (dφ), φ ∈ Dk(U).

Example 2.5 (Gauss-Green formula). Let Ed = λd ∧ (e1 ∧ · · · ∧ ed) denote the
d-dimensional current in R

d defined by Lebesgue integration, with the cannonical
orientation of R

d. If U is an open simply connected subset of R
d then T = Ed

xU
is the d-dimensional current given by integration over U and its boundary fulfills
spt (∂T ) ⊆ ∂U . If, moreover, ∂U is smooth and n(x) is the unit outer normal to U
at x ∈ ∂U , then

∂(Ed
xU) = (∂U) ∧ η,

where η(x) = (e1 ∧ · · · ∧ ed)xdn(x) (η is the unit simple (d− 1)-vectorfield orienting
∂U with orientation given by η(x) ∧ n(x) = 1).

Example 2.6. Let ξ : R
d → ∧

kR
d be a C1 smooth k-vectorfield in R

d (k ≥ 1)
such that

∫
K
‖ξ‖ dλd <∞ for any compact set K. Then λd ∧ ξ ∈ Dk(Rd) and

∂(λd ∧ ξ) = −λd ∧ div ξ,

where the divergence of ξ, div ξ : R
d → ∧

k−1R
d, is defined through

div ξ(x) =

d∑

i=1

(
∂

∂xi
ξ(x)xdxi

)
.

Theorem 2.3 (Stokes Theorem). Let M be an oriented k-dimensional C1 subman-
ifold of R

d with boundary ∂M , let ξ be the smooth orienting k-vectorfield over M
and set T = (Hk

xM) ∧ ξ. Then

∂T = (Hk−1
x∂M) ∧ η,

where η is a unit smooth (k − 1)-vectorfield orienting ∂M .
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The push-forward of a current T ∈ Dk(U) by a smooth proper mapping F : U →
V is a k-dimensional current on V defined by

F#T (φ) = T (F#φ), φ ∈ Dk(V ).

(F is proper if the preimage of any compact set is compact.) If T is (locally)
rectifiable then the definition can be extended even for (locally) Lipschitz proper
mappings F .

Theorem 2.4 (Area formula for rectifiable currents). Let T = (Hk
xA) ∧ ξ be a

locally rectifiable k-dimensional current in an open set U ⊆ R
d and let F : U → R

n

be proper and Lipschitz. Denote f = F | A. Then

F#T = (Hk
xf(A)) ∧ η

with

η(y) =
∑

x∈f−1{y}

(
∧

kapDf(x))ξ(x)

ap Jkg(x)
=

∑

x∈f−1{y}

(
∧

kapDf(x))ξ(x)

|(∧kapDf(x))ξ(x)| |ξ(x)|.

Example 2.7. Let A ⊆ R
d be bounded and Lebesgue measurable and let f : R

d →
R

d be Lipschitz. Then

f#(Ed
xA) = Ed

x(deg f | A),

where

(deg f | A)(y) =
∑

x∈A∩f−1{y}
sgn detDf(x).

deg f | A is zero outside f(A) and constant on any connected component of R
d \

f(∂A).

Theorem 2.5 (Constancy Theorem). Let T be a d-dimensional current in an open
set U ⊆ R

d, let G be a connected open subset of U and assume that spt ∂T ⊆ U \G.
Then there exists a real number c such that

spt (T − c(Ed
xU)) ⊆ U \G.

The comass of a k-form φ on U is defined as

M(φ) = sup{‖φ(x)‖ : x ∈ U}
and the mass of a k-dimensional current T on U as

M(T ) = sup{T (φ) : φ ∈ Dk(U),M(φ) ≤ 1}.
If, in particular, T is representable by integration then M(T ) = ‖T‖(G). If k ≥ 1
we define the norm

N(T ) = M(T ) +M(∂T ).

Given a compact set K ⊆ R
d, we define the flat seminorm of T

FK(T ) = sup{T (φ) : φ ∈ Dk(U), ‖φ(x)‖ ≤ 1, ‖dφ(x)‖ ≤ 1∀x ∈ K}.
Theorem 2.6 (Compactness Theorem). Let K be a full-dimensional convex body
in R

d, k ∈ [0, d] an integer and C > 0. Then the set

{T ∈ Dk(Rd) : sptT ⊆ K, N(T ) ≤ C}
is FK-compact.
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The flat convergence of currents Ti to T is defined by FK(Ti − T ) → 0, i → ∞,
for all compact sets K. If Ti, T are rectifiable currents with ∂Ti, ∂T = 0 then
flat convergence Ti → T is equivalent to weak convergence (Ti(φ) → T (φ) for any
differential form φ).
Exercises:

(1) Show that e1 ∧ · · · ∧ ed = u1 ∧ · · · ∧ud with uk = e1 + · · ·+ ek, k = 1, . . . , d.
(2) Let L ∈ G(d, k) and let {u1, . . . , ud} be an orthonormal basis of R

d such
that u1, . . . , uk ∈ L. Show that the k-vectors

u1 ∧ · · · ∧ ui−1 ∧ uj ∧ ui+1 ∧ · · · ∧ uk, 1 ≤ i ≤ k, k + 1 ≤ j ≤ d,

form an orthonormal basis of Tan(G(d, k), L).
(3) Let u be a fixed unit vector and consider the mappings f : L 7→ pLu,

g : L 7→ pLu
|pLu| defined on G(d, k), {L ∈ G(d, k) : u 6⊥ L}, respectively,

where 1 ≤ k ≤ d− 1. Compute Jkf(L) and Jk−1g(L).
(4) Evaluate T (φ), where T = (H2

xA) ∧ (e1 ∧ e2), A = [0, 1]2 × {o} and

φ(x, y, z) = x sin(xy)dxdy + ex+y+zdxdz + (y − z)3dydz.

(5) Evaluate T (fdx + gdy) and ∂T (f) for T = (H1
xA) ∧

√
2(e1 + e2), A =

{(x, x) : 0 ≤ x ≤ 1} ⊆ R
2 and smooth real functions f, g in R

2.
(6) Find a 2-dimensional rectifiable current T in R

3 such that ∂T = 0 and
sptT = R

3. (Hint: Let T be carried by a countable union of circles.)
(7) Let Tn = Ed

xB(o, 1 + 1
n ), n ∈ N, T = Ed

xB(o, 1). Show that: (i) M(Tn −
T ) → 0, (ii) M(∂Tn − ∂T ) 6→ 0, (iii) FB(o,2)(∂Tn − ∂T ) → 0, n→ ∞.

3. Curvature measures and normal cycles

3.1. Sets with positive reach. Given a set X ⊆ R
d, we denote by UnpX the

set of all z ∈ R
d for which there exists a unique nearest point ΠA(z) ∈ X. The

mapping ΠX : UnpX → X is called metric projection to X.
The reach of a set X ⊆ R

d is the supremum of all r ≥ 0 such that UnpX contains
the open r-neighbourhood of X. Whenever reachX > 0 we say that X has positive
reach. Any set with positive reach is closed. Any closed convex set has infinite
reach.

Federer [1] introduced curvature measures for sets with positive reach by the
Steiner formula. Let Xr denote the closed r-neighbourhood of a set X, i.e.,

Xr = {z ∈ R
d : dist (z,X) ≤ r}.

If reachX > 0 and B ⊆ R
d is bounded then the local Steiner formula

λd(Xr ∩ Π−1
X (B)) =

d∑

k=0

ωd−kr
d−kC̄k(X;B), 0 < r < reachX,

defines the curvature measures C̄k(X; ·) of X, of orders k = 0, 1, . . . , d. C̄k(X; ·)
are signed Radon measures on R

d, they are positive for k = d − 1, d (in fact,
C̄d(X; ·) = λd(X ∩ ·)). The suport of C̄k(X; ·) is contained in ∂X whenever k < d.
If ∂X is bounded then the total values Vk(X) = C̄k(X; Rd) are defined and called
intrinsic volumes of X. Let χ denote the Euler-Poincaré characteristic (defined
through the simplicial cohomology).

Theorem 3.1 (Gauss-Bonnet Theorem, [1]). If reachX > 0 and X is bounded
then V0(X) = χ(X).
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Let Gd denote the space of all Euclidean motions equipped with the invariant
measure ϑd (normalized so that it corresponds to the product measure of λd (mo-
tions) and invariant probability measure on SO(d) (rotations)).

Theorem 3.2 (Principal Kinematic Formula, [1]). If reachX > 0, reachY > 0
and A,B are bounded Borel sets then

∫

Gd

C̄k(X ∩ gY ;A ∩ gB)ϑd(dg) =
∑

r+s=d+k

γd,r,sC̄r(X;A)C̄s(Y,B),

where

γd,r,s =
Γ
(

r+1
2

)
Γ
(

s+1
2

)

Γ
(

d+1
2

)
Γ
(

r+s−d+1
2

) .

3.2. Integral and current representation of curvature measures. If X ⊆ R
d

and x ∈ R
d we define the normal cone of X at x as the dual cone to the tangent

cone Tan(X,x), i.e.,

Nor(X,x) = {v ∈ R
d : v · u ≤ 0 for all u ∈ Tan(X,x)}.

The unit normal bundle of X is the subset of R
d × Sd−1

norX = {(x, n) ∈ R
d × Sd−1 : x ∈ X,n ∈ Nor(X,x)}.

Proposition 3.3. If reachX > 0 then Tan(X,x) is a convex cone for any x and
the unit normal bundle norX is closed.

Define the mapping ξX : z 7→ (ΠX(z), z−ΠX(z)
|z−ΠX(z)| ), z ∈ UnpX \X. The image of

ξX is norX. Modifying a bit the local Steiner formula, we can define the curvature
measures (called also support measures) Ck(X; ·) on R

d × Sd−1, k = 0, . . . , d− 1:

λd((Xr \X) ∩ ξ−1
X (A)) =

d−1∑

k=0

ωd−kr
d−kC̄k(X;A), 0 < r < reachX.

It is clear that sptCk(X; ·) ⊆ norX and C̄k(X; ·) is the first coordinate projection
of Ck(X; ·), k = 1, . . . , d− 1.

If 0 < r < reachX then ∂Xr is a C1,1 smooth (d− 1)-dimensional submanifold
of R

d (i.e., a C1 submanifold with Lipschitz normal field n(z)). Thus, n(z) is differ-

entiable Hd−1-almost everywhere on ∂Xr, and the principal curvatures κ
(r)
i (z) ∈ R

and principal directions a
(r)
i (z) ∈ Sd−1 are defined as eigenvalues and eigenvectors

of its differential, i = 1, . . . , d − 1 (note that the eigenvalues are real since the
differential is selfadjoint). The mapping

(x, n) 7→ x+ rn, (x, n) ∈ norX

defines a bi-Lipschitz correspondence between norX and ∂Xr such that n(x+rn)) =

n is the unit outer normal of ∂Xr at fr(x, n). The principal directions a
(r)
i (z) can

be chosen so that ai(x, n) := a
(r)
i (x + rn) does not depend on r and the limits

κi(x, n) := limr→0 κ
(r)
i (x+rn) exist, i = 1, . . . , d−1. The vectors ai(x, n) are called

(generalized) principal directions and κi(x, n) (generalized) principal curvatures of
A at (x, n), i = 1, . . . , d − 1. They are defined Hd−1-almost everywhere on norX
and κi(x, n) ∈ (−∞,∞].
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Theorem 3.4 (Zähle [9]). If reachX > 0 and A is a Borel subset of R
d × Sd−1

then

Ck(X;A) =

∫

A∩nor X

(
d−1

k

)

(d− k)ωd−k
Hd−1−k(X;x, n)Hd−1(d(x, n)),

where

Hj(X;x, n) =
1(

d−1
j

)
∑

1≤i1<···<ij≤d−1

κi1(x, n) · · ·κij
(x, n)√

1 + κ1(x, n)2 · · ·
√

1 + κd−1(x, n)2
.

The functions Hj(X; ·) are called generalized symmetric functions of principal
curvatures of X. If some of the principal curvatures is infinite then its contribution
is given by the convention 1√

1+∞2
= 0, ∞√

1+∞2
= 1.

3.3. Current representation of curvature measures. If reachX > 0 then the
unit normal bundle norX is locally (d − 1)-rectifiable. Thus, the approximate

tangent cone Tand−1(norX, (x, n)) is a (d − 1)-dimensional subspace of R
2d for

Hd−1-almost all (x, n) ∈ norX. If the principal curvatures and directions exist at
(x, n) then

(
1√

1 + κi(x, n)2
ai(x, n),

κi(x, n)√
1 + κi(x, n)2

ai(x, n)

)
, i = 1, . . . , n,

are approximate tangent vectors. Assume that the principal directions are ordered
in such a way that a1(x, n), . . . , ad−1(x, n), n form a positively oriented orthonormal
basis of R

d, and define

aX(x, n) =

d−1∧

i=1

(
1√

1 + κi(x, n)2
ai(x, n),

κi(x, n)√
1 + κi(x, n)2

ai(x, n)

)
.

Then aX is a unit simple (d− 1)-vectorfield orienting norX. Thus,

NX = (Hd−1
xnorX) ∧ aX

is a (d− 1)dimensional rectifiable current in R
2d. Since ∂NX = 0, we call it normal

cycle of X.
The kth Lipschitz-Killing curvature form ϕk is the d− 1-form in R

2d given by

〈
d−1∧

i=1

(ui
0, u

i
1), ϕk(x, n)

〉
=

1

(d− k)ωd−k

∑

ε1,...,εd−1=0,1

ε1+···+εd−1=d−1−k

〈
d−1∧

i=1

ui
εi
∧ n,Ωd

〉
,

where Ωd = dx1∧· · ·∧dxd. Note that ϕk(x, n) = ϕk(n) depends only on the second
coordinate vector n.

Theorem 3.5 (Zähle [9]). If reachX > 0 and A is a Borel subset of R
d × Sd−1

then

Ck(X;A) = (NXx1A)(ϕk), k = 0, . . . , d− 1.
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3.4. Intersection formulae. We consider for simplicity flat sections. Let reachX >
0 and let F be a j-dimensional affine subspace od R

d. Assuming that X and F do
not “osculate”, i.e., norX ∩norF = ∅, the section X ∩F has positive reach and its
unit normal bundle (relatively to F ) is

nor (X ∩ F ) = {(x, πF0
n), (x, n) ∈ norX}

(here F0 is the linear subspace parallel to F , πF0
(u) =

pF0
u

|pF0
u| and pF0

is the orthog-

onal projection to F0). Applying a coarea theorem for currents, one can derive the
following translative Crofton formula for curvature measures. Analogous formulae
exist for intersections of two (or finitely many) sets with positive reach.

Theorem 3.6 (Translative Crofton fomula). Let L be a j-subspace of R
d, 1 ≤ j ≤

d, and reachX > 0. Assume that

λd−j{z ∈ L⊥ : norX ∩ nor (L+ z) 6= ∅} = 0.

Then for any 0 ≤ k ≤ j − 1 and any bounded Borel measurable function g on
R

d × (L ∩ Sd−1) with compact support we have
∫

L⊥

g(x, v)Ck(X ∩ (L+ z); d(x, v))λd−j(dz)

=

(
d−1

d+k−j

)

(j − k)ωj−k

∫

nor X

g(x, πL(n))Hj−k−1(X;L;x, n)Hd−1(d(x, n)),

where

Hl(X;L; ·) =
1(

d−1
l

)
∑

1≤i1<···<il≤d−1

κi1 · · ·κil
J(L,Lin {ai1 , . . . , ail

})
√

1 + κ2
1 · · ·

√
1 + κ2

d−1

(for the definition of J(·, ·) see §1.6).

Integrating the formula above with respect to all linear subspaces, we obtain the
Crofton formula.

3.5. Additive extensions. Curvature measures are additive (in the sense that
Ck(X∪Y, ·)+Ck(X∩Y ; ·) = Ck(X; ·)+Ck(Y ; ·) provided that all the sets X,Y,X∩
Y,X ∪ Y have positive reach. This property makes it possible to extend curvature
measures additively to finite unions of sets with positive reach. Let UPR denote
the system of all sets representable as finite union of sets with positive reach such
that any nonempty intersection of the components has positive reach as well. (In
particular, any polyconvex set belongs to UPR.) If X ∈ UPR, we define the index
function

iX(x, n) = 1X(x)
(
1 − lim

r→0+

lim
s→0+

χ
(
X ∩B(x+ ((r + s)n, r)

))
,

x ∈ R
d, n ∈ Sd−1. The carrier norX := {(x, n) : iX(x, n) 6= 0} is locally (d − 1)-

rectifiable and the index function is Hd−1-integrable, hence,

NX = (Hd−1
xnorX) ∧ aX iX

is a rectifiable current. It is a cycle again and it extends additively the normal cycle
for sets with positive reach.
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3.6. Geometric sets of Fu. Fu [4] introduced the index function of a set X ⊆ R
d

ιX(x, n) = lim
r→0+

lim
s→0+

(
χ(X ∩B(x, r) ∩Hn,s(x)) − χ(X ∩B(x, r) ∩Hn,−s(x))

)
,

where Hn,s(x) = {z : (z − x) · n ≤ s}. (If X ∈ UPR then iX(x, n) and ιX(x, n)
equal up to sign.) We call a current NX normal cycle of X if

(a) NX is a rectifiable current in R
2d with support in X × Sd−1;

(b) ∂NX = 0 (NX is a cycle);
(c) NXxα = o, where α(x, n) = n1dx1 + · · · + nddxd (NX is Legendrian);
(d) NX(gϕ0) = 1

dωd

∫
Sd−1

∑
x∈Rd g(x, n)ιX(x, n)Hd−1(d(x, n)) for any C1 smooth

function g on R
2d with compact support.

Fu called a compact set X ⊆ R
d geometric if it admitx a normal cycle. He also

showed that if X is geometric then its normal cycle is uniquely determined [5]. The
assumption of compactness of X can be weakend by assuming ∂X to be compact.

The property (d) can be considered as a local Gauss-Bonet formula for sections
of X with hyperplanes.

Example 3.1 (Examples of geometric sets). (1) UPR-sets.
(2) Closures of complements of full-dimensional sets with positive reach. Let

X be a bounded set with positive reach such that for all x ∈ X, Nor(X,x)
contains no line. (As example, consider a full-dimensinal convex body.)

Then X̃ := cl (Rd \X) is geometric and

N eX = −ρ#NX ,

where ρ : (x, n) 7→ (x,−n). Consequently, the curvature measures satisfy

Ck(X̃;A) = (−1)d−1−kCk(X; ρ(A)), A ⊆ R
d × Sd−1 Borel.

(3) Lipschitz submanifolds of R
d with “bounded curvatures” [8].

(4) Subanalytic sets [5].

3.7. Approximation with parallel sets. If X is a compact set with positive
reach then the closed r-neighbourhoods Xr converge to X as r → 0 in the Hausdorff
metric and the corresponding normal cycles NXr

converge to NX weakly.

If X is polyconvex then X̃r (the closure of the complement of Xr) has positive
reach for r small enough and NfXr

converge to ρ#NX weakly [7]. This makes it

possible to approximate curvature measures of polyconvex sets by those of dilated
sets, without the index function.

The property that X̃r has positive reach for r small enough is preserved by many
very general sets (i.e., in R

2 or R
3, it holds for any set and λ1-almost all r, which has

been shown by Fu [3]). Suppose that for such a set X, the following two condition
hold.

(1) χ(Xr ∩H) → χ(X ∩H), r → 0, for almost all hyperplanes H;
(2) lim infr→0M(NXr

) <∞.

Then, by the compactness theorem for currents, there exists a sequence ri → 0
such that NXri

converges weakly to some rectifiable current T . One easily verifies

that T keeps the properties (a)-(c) of normal cycles. To verify (d), one needs the
convergence of the Euler characteristic of hyperplane sections (1). Thus, T is the
normal cycle of X (which is unique) and X is geometric. This procedure works for
certain Lipschitz manifolds.
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Exercises.

(1) Evaluate Vj(C), j = 0, 1, 2, 3, for the unit cube C in R
3, using the Steiner

formula.
(2) Let X ⊆ R

2 be the graph of the function y = sin(x), 0 ≤ x ≤ π. Determine
the curvature function of X. Compute C0(X;X × S1

+), where S1
+ is the

halfsphere S1 ∩ {y > 0}.
(3) Let X ⊆ R

2 be the graph of the function y = 1
n2 sinnx (n ∈ N). Compute

reachX.
(4) Evaluate the index function iX(o, n) for the coordinate cross X = {x =

0} ∪ {y = 0} in R
2, n ∈ S1. Find C̄0(X; {o}).

(5) Evaluate the index function iX(x, n) for the set X = {x ≤ 0} ∪ {y ≤
0} ∪ {z ≤ 0} ⊆ R

3, x ∈ ∂X, n ∈ S2.
(6) Show that if reachX > 0 then for all 0 ≤ k ≤ d − 1 and Hd−1-almost all

(x, n) ∈ norX,

〈aX(x, n), ϕk(n)〉 = constHd−1−k(X;x, n).

(7) (*) Show that ∂NX = 0 whenever reachX > 0. (Hint: If ∂X is C1 smooth,
apply the Stokes theorem. In the general case, approximate X by Xr,
r → 0.)

References

[1] H. Federer: Curvature measures. Trans. Amer. Math. Soc. 93 (1959), 418-491

[2] H. Federer: Geometric Measure Theory. Springer Verlag, Berlin 1969
[3] J.H.G. Fu: Tubular neighborhoods in euclidean spaces. Duke Math. J. 52 (1985), 1025–1046
[4] J. Fu: Monge-Ampère functions I. Indiana Univ. Math. J. 38 (1989), 745-771

[5] J. Fu: Curvature measures of subanalytic sets. Amer. J. Math. 116 (1994), 819-880
[6] F. Morgan: Geometric Measure Theory. A Beginner’s Guide. Academic Press, Boston 1987
[7] J. Rataj, M. Zähle: Curvatures and currents for unions of sets with positive reach, II. Ann.

Glob. Anal. Geom. 20 (2001), 1-21

[8] J. Rataj, M. Zähle: General normal cycles and Lipschitz manifolds of bounded curvature.
Ann. Global Anal. Geom. 27 (2005), 135-156

[9] M. Zähle: Integral and current representation of Federer’s curvature measures. Arch. Math.

46 (1986), 557-567

[10] M. Zähle: Curvatures and currents for unions of sets with positive reach. Geom. Dedicata 23

(1987), 155-171

Charles University

E-mail address: rataj@karlin.mff.cuni.cz


