# The HMC Algorithm with Overrelaxation and Adaptive—Step Discretization Numerical Experiments with Gaussian Targets

M. Alfaki, S. Subbey, and D. Haugland

Thiele Conference

July 17, 2008





- Background
  - Bayes Theorem
  - MCMC Algorithms
- Aim of Talk
- The Hamiltonian Monte Carlo (HMC) Algorithm
  - Practical Implementation
- 4 Improving Performance of HMC Algorithm
  - Improving Phase—Space Sampling
  - Improvement Strategies
- Mumerical Experiments & Results
  - The improved HMC algorithm





## **Bayes Theorem**

- Given model– $m(\mathbb{C}): \mathbb{C} \in \mathcal{R}^k$ , and data  $\mathcal{O}$
- Bayes Theorem: Prior belief × Likelihood → Posterior

$$\frac{p(m)p(\mathcal{O}|m)}{\left[\int_{\mathcal{R}^k} p(\mathcal{O}|m)p(m)dm\right]} = p(m|\mathcal{O}). \tag{1}$$

• Posterior pdf used in inference, e.g., expectation of J:  $\langle J \rangle$ 

$$\langle J \rangle = \int_{\mathcal{R}^k} J(m)p(m|\mathcal{O})dm = \frac{1}{n} \sum_{j=1}^n \frac{J(m_j)p(m_j|\mathcal{O})}{h(m_j)},$$
 (2)

$$pprox rac{1}{n} \sum_{j=1}^{n} J(m_j), ext{ for } h(m_j) pprox p(m_j | \mathcal{O}).$$
 (3)





- Background
  - Bayes Theorem
  - MCMC Algorithms
- 2 Aim of Talk
- 3 The Hamiltonian Monte Carlo (HMC) Algorithm
  - Practical Implementation
- 4 Improving Performance of HMC Algorithm
  - Improving Phase—Space Sampling
  - Improvement Strategies
- Mumerical Experiments & Results
  - The improved HMC algorithm





# MCMC Algorithms

- Avoid calculating (intractable) integral  $\int_{\mathbb{R}^k} p(\mathcal{O}|m)p(m)dm$ .
- Generate ensemble of models,  $m_1, m_2, \ldots, m_n | m_j \equiv m(\mathbb{C}_j)$
- Such that distribution of  $\{m_j\}_{j=1}^n \sim h(m)$
- $ullet h(m) pprox p(m|\mathcal{O}) \Rightarrow \langle J \rangle$  is an average over  $m_1, m_2, \dots, m_n$
- A popular implementation Metropolis–Hastings algorithm
- Some example drawbacks:
  - long burn-in time
  - slow convergence (especially in high dimensions)
- Recent developments attempt to address drawbacks





The Hamiltonian Monte Carlo (HMC) Algorithm Improving Performance of HMC Algorithm Numerical Experiments & Results

## Aim of Talk

#### Present

- The Hamiltonian Monte Carlo (HMC) Algorithm
  - A variant Monte Carlo algorithm
  - Incorporates gradient information in distribution space
- Investigated strategies for improving performance
- Numerical experimental results





# Algorithm Description-I

- Type of Markov Chain Algorithm
  - Combines advantages of Hamiltonian dynamics & Metropolis MC
  - Incorporates gradients in dynamic trajectories

Given vector of parameters  $\mathbf{C} \in \mathcal{R}^k$ ,

- Augment with conjugate momentum vector  $\mathbf{P} \in \mathcal{R}^k$
- Introduce function  $\mathcal{H}(\mathbf{C}, \mathbf{P})$ , on phase–space  $(\mathbf{C}, \mathbf{P})$ .
- $\mathcal{H}(\mathbf{C}, \mathbf{P}) \equiv$  Hamiltonian function (Classical dynamics)

$$\mathcal{H}(\mathbf{C}, \mathbf{P}) = V(\mathbf{C}) + K(\mathbf{P}),\tag{4}$$

$$V(\mathbf{C}) = -\log \pi(\mathbf{C}), \quad K(\mathbf{P}) = \frac{1}{2} |\mathbf{P}|^2.$$
 (5)

V, K,  $\pi(\mathbf{C}) \equiv \text{Pot.}$  & Kinetic energies, Target distribution





## Algorithm Description-II

If V(C) induces a Boltzmann distribution over C

$$p(\mathbf{C}) = \frac{e^{-V(\mathbf{C})}}{\int_{\mathcal{R}^n} e^{-V(\mathbf{C})} d\mathbf{C}}$$
(6)

•  $\mathcal{H}(\mathbf{C}, \mathbf{P})$  induces a similar distribution on  $(\mathbf{C}, \mathbf{P})$ ,

$$p(\mathbf{C}, \mathbf{P}) = \frac{e^{-\mathcal{H}(\mathbf{C}, \mathbf{P})}}{\int_{\mathcal{R}^n} \int_{\mathcal{R}^n} e^{-\mathcal{H}(\mathbf{C}, \mathbf{P})} d\mathbf{C} d\mathbf{P}} = p(\mathbf{C})p(\mathbf{P}), \quad (7)$$

$$p(\mathbf{P}) = (2\pi)^{-n/2} e^{(-\frac{1}{2}|\mathbf{P}|^2)}.$$
 (8)

- Simulate ergodic Markov chain with stationary distrib. ∼ (7)
- Estimate \( \lambda J \rangle \) use values of \( \mathbb{C} \) from successive Markov chain states with marginal distribution given by (6)





# Algorithm Description-III

- Stochastic Transition
  - Draw random variable  $\mathbf{P} \sim p(\mathbf{P}) = (2\pi)^{-n/2} e^{(-\frac{1}{2}|\mathbf{P}|^2)}$
- Dynamic Transition
  - New pair of  $(\mathbf{C}, \mathbf{P}) \sim p(\mathbf{C}, \mathbf{P})$ , starting from current  $\mathbf{C}$ ,
  - ullet Sample regions of constant  ${\mathcal H}$  without bias
    - Ensures ergodicity of the Markov chain
- Dynamic transitions—governed by Hamiltonian equations

$$\frac{d\mathbf{C}}{d\tau} = +\frac{\partial \mathcal{H}}{\partial \mathbf{P}} = \mathbf{P}, \quad \frac{d\mathbf{P}}{d\tau} = -\frac{\partial \mathcal{H}}{\partial \mathbf{C}} = -\nabla V(\mathbf{C}). \tag{9}$$

- Hamiltonian dynamic transitions satisfy
  - Time reversibility (invariance under  $\tau \to -\tau$ ,  $P \to -P$ ),
  - Conservation of energy (H(C, P) invariant with τ)
  - Liouville's theorem (conservation of phase-space volume).



- Background
  - Bayes Theorem
  - MCMC Algorithms
- Aim of Talk
- The Hamiltonian Monte Carlo (HMC) Algorithm
  - Practical Implementation
- Improving Performance of HMC Algorithm
  - Improving Phase—Space Sampling
  - Improvement Strategies
- Numerical Experiments & Results
  - The improved HMC algorithm





# Leapfrog HMC

- Choose chain length N & leapfrog steps L
- Simulate Hamiltonian dynamics with finite step size, €.

$$\mathbf{P}(\tau + \frac{\epsilon}{2}) = \mathbf{P}(\tau) - \frac{\epsilon}{2} \nabla V(\mathbf{C}(\tau)), \tag{10}$$

$$\mathbf{C}(\tau + \epsilon) = \mathbf{C}(\tau) + \epsilon \mathbf{P}(\tau + \frac{\epsilon}{2}), \tag{11}$$

$$\mathbf{P}(\tau+\epsilon) = \mathbf{P}(\tau+\frac{\epsilon}{2}) - \frac{\epsilon}{2}\nabla V(\mathbf{C}(\tau+\epsilon)). \tag{12}$$

- Transition is volume-preserving and time-reversible
- Finite  $\epsilon$  does not keep  $\mathcal{H}$  constant  $\rightarrow$  systematic error
- Elimate systematic error using a Metropolis rule



## The Algorithm-Example Implementation

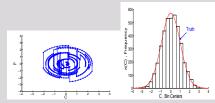
**Numerical Experiments & Results** 

#### **Algorithm**

```
Initialize C(0)
for i = 1 to N - 1
          Sample u \sim U_{[0,1]} and P^* \sim N(0,I)
          C_0 = C^{(i)} and P_0 = P^* + \frac{\varepsilon}{2} \nabla V(C_0)
          For l=1 to L
                     P_1 = P_{1-1} - \frac{\epsilon}{3} \nabla V(C_1)
                     C_1 = C_{1-1} + \varepsilon P_{1-1}
                     P_1 = P_{1-1} - \frac{\varepsilon}{2} \nabla V(C_1)
          end For
          dH = H(C_L, P_L) - H(C^{(i)}, P^*)
          if u < min\{1, exp(-dH)\}
                     (C^{(i+1)}, P^{(i+1)}) = (C_T, P_T)
          else
                     (C^{(i+1)}, P^{(i+1)}) = (C^{(i)}, P^{(i)})
end for
```

return  $C = [C^{(1)}, C^{(2)}, ..., C^{(N-1)}]$ 

#### Example



Phase-space and distribution plots for 2D correlated

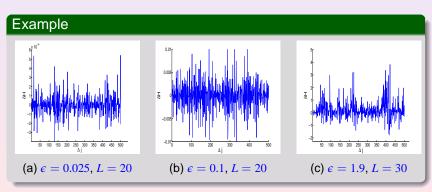
Gaussian distribution.



**Numerical Experiments & Results** 

## Issues with Implementation

• Given a chain of length N, the choices of L &  $\epsilon$  are decisive.







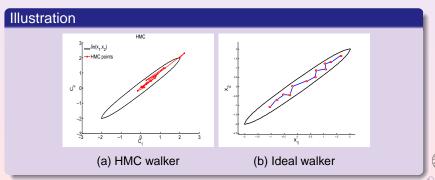
- Background
  - Bayes Theorem
  - MCMC Algorithms
- Aim of Talk
- The Hamiltonian Monte Carlo (HMC) Algorithm
  - Practical Implementation
- 4 Improving Performance of HMC Algorithm
  - Improving Phase–Space Sampling
  - Improvement Strategies
- Numerical Experiments & Results
  - The improved HMC algorithm





# Effect of Gibbs Sampling

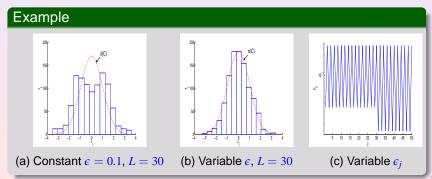
- Momentum variable P ~ Gibbs sampler → random walks
  - Could lead to sub-optimal sampling of phase-space
  - Doubling on movement leads to extra cost— CPU time





## Effect of Constant Step-size

- For usual implementations, € is constant
  - Inefficient when trajectory dynamics vary in different phase–space regions
  - Leads to extra cost— CPU time





**Numerical Experiments & Results** 

- Background
  - Bayes Theorem
  - MCMC Algorithms
- Aim of Talk
- 3 The Hamiltonian Monte Carlo (HMC) Algorithm
  - Practical Implementation
- Improving Performance of HMC Algorithm
  - Improving Phase–Space Sampling
  - Improvement Strategies
- Numerical Experiments & Results
  - The improved HMC algorithm





# **Investigate Two Approaches**

- Proposal 1: Suppressing random Walk in Gibbs sampling
  - Ordered over-relaxation (R. Neal)
- Proposal 2: Using a variable step—size for dynamics
  - Investigate a Runge–Kutta type integrator (simplectic)





# Applying over–relaxation to P– Over-rel. HMC (OHMC)

#### Ordered over-relaxation

To over–relax  $\mathcal{R}^n \ni P \sim \mathcal{N}(P; 0, I)$ 

For i = 1 : n

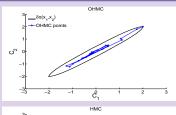
- Generated K values from  $\mathcal{N}(q_i|\{q_i\}_{i\neq i})$ .
- Order K values and the odd value  $P_i$ .

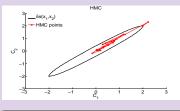
$$q_i^{(0)} \leq \cdots \leq q_i^{(r)} = P_i \leq \cdots \leq q_i^{(K)}$$

• Set  $P'_i = q_i^{(K-r)}$ .

End for

#### Example





# Variable Step-Size HMC Algorithm (SVHMC)

Explicit variable step-size using a Runge-Kutta scheme

#### Adaptive Störmer-Verlet

For 
$$l=1:L-steps$$
 
$$C_{l+\frac{1}{2}}=C_{l}+\frac{\epsilon}{2\rho_{l}}P_{l+\frac{1}{2}},$$
 
$$P_{l+\frac{1}{2}}=P_{l}-\frac{\epsilon}{2\rho_{l}}\nabla V(C_{l}),$$
 
$$\rho_{l+1}+\rho_{l}=2U(C_{l+\frac{1}{2}},P_{l+\frac{1}{2}}),$$
 
$$P_{l+1}=P_{l+\frac{1}{2}}-\frac{\epsilon}{2\rho_{l+1}}\nabla V(C_{l+1}),$$
 
$$C_{l+1}=C_{l+\frac{1}{2}}+\frac{\epsilon}{2\rho_{n+1}}P_{l+\frac{1}{2}}.$$

#### **End For**



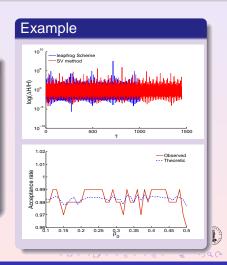
# Adaptive Step-size

#### Adaptive Störmer-Verlet

- Adaptive  $\epsilon$  reduces  $\Delta H$ .
- Parameter *ϵ* depends on

$$U(C,P) = \sqrt{\|\nabla V(C)\|^2 + P^T[\nabla^2 V(C)]^2 P}$$

- Observed ~ theoretical acceptance rates
- $\bullet$   $\rho_o$  is a fictive parameter



# **Numerical Experiments**

 Gaussian targets with uncorrelated covariates in 64 & 128D

$$\pi(\mathbf{C}) = \frac{1}{(2\pi)^{\frac{D}{2}} \det(\Sigma)^{\frac{1}{2}}} \exp\left(-\frac{1}{2}\mathbf{C}^T \Sigma^{-1} \mathbf{C}\right). \tag{13}$$

- Compare HMC, SVHMC & OSVHMC algorithms based on
  - Degree of chain autocorrelation
  - Effective number of samples in a given chain
  - Variance of sample means,  $\overline{\mathbf{C}}$ , of a finite chain
  - Convergence rates/ratio
  - Dimensionless efficiency,





Numerical Experiments & Results

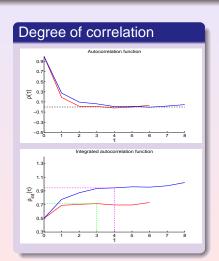
## **Evaluation Criteria**

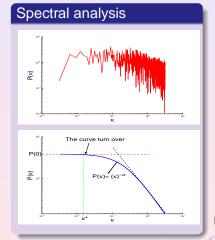
Suppose  $\{c_i\}_{i=1}^N$  is chain generated by algorithm.

- Degree of correlation criteria
  - Autocorrelation function  $\rho(l) = \frac{Cov(x_i, x_{i+l})}{Var(x_i)}$
  - Integrated autocorrelation time  $\tau_{int} = \frac{1}{2} + \sum_{t=1}^{\infty} \rho(t)$
  - Effective sample size  $N_{eff} = N/(2\tau_{int})$
- Spectral analysis criteria
  - Compute  $\tilde{P}_j = |\tilde{C}(\kappa)^*\tilde{C}(\kappa)|$ ,  $\tilde{C}(\kappa) = \mathsf{DFT}(c)$
  - Fit template  $P(\kappa) = P_0 \frac{(\kappa^*/\kappa)^{\alpha}}{(\kappa^*/\kappa)^{\alpha}+1}$  to  $\tilde{P}_j$ 
    - $\alpha$ , P(0) &  $\kappa^*$  parameters to be estimated
  - The sample mean variance  $\sigma_{\bar{x}}^2 \approx P(\kappa = 0)/N$
  - Convergence ratio  $r = \sigma_{\bar{x}}^2/\sigma_0^2$
  - The dimensionless efficiency  $E=\lim_{N \to \infty} \frac{\sigma_0^2/N}{\sigma_{\frac{N}{2}}^2(N)}$



#### Evaluation criteria – Geometric Illustration







- Background
  - Bayes Theorem
  - MCMC Algorithms
- Aim of Talk
- The Hamiltonian Monte Carlo (HMC) Algorithm
  - Practical Implementation
- Improving Performance of HMC Algorithm
  - Improving Phase—Space Sampling
  - Improvement Strategies
- Numerical Experiments & Results
  - The improved HMC algorithm





## Comparing OHMC vs HMC

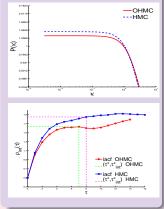
#### **Gaussian Target**

$$\pi(x) = \frac{1}{(2\pi)^{n/2} |\Sigma|^{1/2}} \exp\left(-\frac{1}{2}x^T \Sigma^{-1} x\right)$$
$$\Sigma = I$$

#### Results (n=64, N=2000)

|               | ОНМС     | HMC      | Ideal  |
|---------------|----------|----------|--------|
| Accept. rate  | 0.99     | 0.99     | 1      |
| P(0)          | 1.35     | 1.51     | 1      |
| $\kappa^*$    | 1.65     | 1.45     |        |
| CPU time[sec] | 561.22   | 557.38   |        |
| E             | 0.74     | 0.66     | 1      |
| r             | 6.7e - 4 | 7.6e - 4 | < 0.01 |
| $	au_{int}$   | 1.63     | 1.85     | 0.5    |
| $N_{e\!f\!f}$ | 614      | 542      | 2000   |

## Graphical Illustration





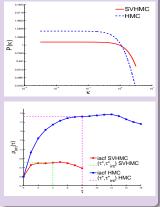
**Numerical Experiments & Results** 

## Comparing SVHMC vs HMC

#### Numerical Results (n=128 N=2000)

|                  | SVHMC    | HMC      | Ideal  |
|------------------|----------|----------|--------|
| Accept. rate     | 0.92     | 0.98     | 1      |
| P(0)             | 1.09     | 3.13     | 1      |
| $\kappa^*$       | 3.15     | 1.55     |        |
| CPU time[sec]    | 1568.01  | 1117.78  |        |
| $\boldsymbol{E}$ | 0.92     | 0.67     | 1      |
| r                | 5.6e - 4 | 7.4e - 4 | < 0.01 |
| $	au_{int}$      | 0.86     | 1.80     | 0.5    |
| $N_{e\!f\!f}$    | 1167     | 554      | 2000   |

#### Graphical Illustration



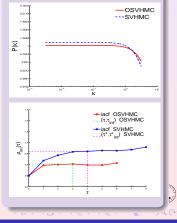


## Comparing OSVHMC vs SVHMC

#### Numerical Results (n=64, N=2000)

|                  | OSVHMC   | SVHMC    | Ideal  |
|------------------|----------|----------|--------|
| Accept. rate     | 0.92     | 0.94     | 1      |
| P(0)             | 1.02     | 1.11     | 1      |
| $\kappa^*$       | 4.15     | 3.19     |        |
| CPU time[sec]    | 639.58   | 669.40   |        |
| $\boldsymbol{E}$ | 0.98     | 0.90     | 1      |
| r                | 5.1e - 4 | 5.6e - 4 | < 0.01 |
| $	au_{int}$      | 0.71     | 0.94     | 0.5    |
| $N_{e\!f\!f}$    | 1400     | 1059     | 2000   |

#### **Graphical Illustration**



# **Summary and Conclusion**

① Over-relaxation in the Gibbs sampling improves dimensionless efficiency by a factor  $\sim$  12%.

$$\frac{E_{OHMC}}{E_{HMC}} \approx 1.2$$

Using Störmer–Verlet discretization outperforms the leapfrog HMC by having  $\sim 50\%$  more effective sample size

$$\frac{N_{eff}^{SV}}{N_{eff}^{leapfrog}} \approx 2.0$$

The hybrid– OSVHMC (over-relaxing the momentum & Adaptive €) outperform the SVHMC



