Rare-event Simulation of Brownian Motion Avoiding Hard Obstacles

Jose Blanchet (joint work with Paul Dupuis)

Columbia IEOR Department

Rubinstein's Celebration

Agenda

- Introduction: Rare-event Simulation
- Brownian Motion Avoiding Obstacles
- Explaining the Strategy
- Conclusions

Introduction

- Assumptions:

Introduction

- Assumptions:
- Let $(B(t): t \geq 0)$ be a Brownian motion in R^{d}

Introduction

- Assumptions:
- Let $(B(t): t \geq 0)$ be a Brownian motion in R^{d}
- Let $(N(t): t \geq 0)$ be a Poisson spatial process in R^{d} independent of $B(\cdot)$.

Introduction

- Assumptions:
- Let $(B(t): t \geq 0)$ be a Brownian motion in R^{d}
- Let $(N(t): t \geq 0)$ be a Poisson spatial process in R^{d} independent of $B(\cdot)$.
- To each point of $N(\cdot)$ attach a square of volume a corresponding to an obstacle (obstacles can have intersections, that's fine).

Introduction

- Assumptions:
- Let $(B(t): t \geq 0)$ be a Brownian motion in R^{d}
- Let $(N(t): t \geq 0)$ be a Poisson spatial process in R^{d} independent of $B(\cdot)$.
- To each point of $N(\cdot)$ attach a square of volume a corresponding to an obstacle (obstacles can have intersections, that's fine).
- Let $\mathcal{T}=1$ st time $B(\cdot)$ hits the boundary of an obstacle

Introduction

- Assumptions:
- Let $(B(t): t \geq 0)$ be a Brownian motion in R^{d}
- Let $(N(t): t \geq 0)$ be a Poisson spatial process in R^{d} independent of $B(\cdot)$.
- To each point of $N(\cdot)$ attach a square of volume a corresponding to an obstacle (obstacles can have intersections, that's fine).
- Let $\mathcal{T}=1$ st time $B(\cdot)$ hits the boundary of an obstacle
- Question:

Introduction

- Assumptions:
- Let $(B(t): t \geq 0)$ be a Brownian motion in R^{d}
- Let $(N(t): t \geq 0)$ be a Poisson spatial process in R^{d} independent of $B(\cdot)$.
- To each point of $N(\cdot)$ attach a square of volume a corresponding to an obstacle (obstacles can have intersections, that's fine).
- Let $\mathcal{T}=1$ st time $B(\cdot)$ hits the boundary of an obstacle
- Question:
- Design an efficient simulation algorithm to estimate $P(\mathcal{T}>t)$ for large t

Motivation

- Undetected objects for long period of time
- Motivation as a problem in random media (study of polymers in random environments)
- Materials properties (obstacles represent impurities)
- Introduced by Smoluchowsky (1918) in Chemistry and Physics / now proposed as model of molecules in motion in cells (http://jb.asm.org/cgi/content/full/187/1/23)
- It provides an interesting example of importance sampling that involves infinite dimensional simulation (control) problem... .

Basic Facts about Importance Sampling

- Suppose want to estimate $P(Z \in A)$

Basic Facts about Importance Sampling

- Suppose want to estimate $P(Z \in A)$
- Importance sampling estimation says: Find an appropriate change-of-measure $Q(d \omega)$ and produce the importance sampling (IS) estimator

$$
Y=\frac{d P}{d Q}(\omega) I(Z(\omega) \in A)
$$

Basic Facts about Importance Sampling

- Suppose want to estimate $P(Z \in A)$
- Importance sampling estimation says: Find an appropriate change-of-measure $Q(d \omega)$ and produce the importance sampling (IS) estimator

$$
Y=\frac{d P}{d Q}(\omega) I(Z(\omega) \in A)
$$

- Simulate iid replications of Y to estimate $P(Z \in A)=E^{Q} Y$.

Basic Facts about Importance Sampling

- Suppose want to estimate $P(Z \in A)$
- Importance sampling estimation says: Find an appropriate change-of-measure $Q(d \omega)$ and produce the importance sampling (IS) estimator

$$
Y=\frac{d P}{d Q}(\omega) I(Z(\omega) \in A)
$$

- Simulate iid replications of Y to estimate $P(Z \in A)=E^{Q} Y$.
- Want to reduce the variance of Y

An Obvious Observation and a Powerful Principle

- Select $Q(\cdot)$ as conditional distribution given $Z \in A$

$$
Q(d \omega)=\frac{I(Z(\omega) \in A) P(d \omega)}{P(Z \in A)},
$$

An Obvious Observation and a Powerful Principle

- Select $Q(\cdot)$ as conditional distribution given $Z \in A$

$$
Q(d \omega)=\frac{I(Z(\omega) \in A) P(d \omega)}{P(Z \in A)},
$$

- Then $Y=P(Z \in A)$ is unbiased with zero variance...

An Obvious Observation and a Powerful Principle

- Select $Q(\cdot)$ as conditional distribution given $Z \in A$

$$
Q(d \omega)=\frac{I(Z(\omega) \in A) P(d \omega)}{P(Z \in A)},
$$

- Then $Y=P(Z \in A)$ is unbiased with zero variance...
- Obviously useless to implement BUT yields a powerful principle: WE SHALL CALL IT GISP ("Good Importance Sampling Principle").

An Obvious Observation and a Powerful Principle

- Select $Q(\cdot)$ as conditional distribution given $Z \in A$

$$
Q(d \omega)=\frac{I(Z(\omega) \in A) P(d \omega)}{P(Z \in A)},
$$

- Then $Y=P(Z \in A)$ is unbiased with zero variance...
- Obviously useless to implement BUT yields a powerful principle: WE SHALL CALL IT GISP ("Good Importance Sampling Principle").
- GISP: "To design a good importance sampling try to mimic the conditional distribution of the process given the rare event" (Asmussen and Rubinstein '85)

Efficiency

- Goal of GISP: Finding an efficient or asymptotically optimal estimator

Efficiency

- Goal of GISP: Finding an efficient or asymptotically optimal estimator
- Definition: Given $\alpha_{n}=P\left(A_{n}\right) \longrightarrow 0$ as $n \nearrow \infty$ we say that Z_{n} is asymptotically optimal or (weakly) efficient if $\alpha_{n}=E Z_{n}$ and

$$
\lim _{n \rightarrow \infty} \frac{\log E Z_{n}^{2}}{\log \alpha_{n}}=2
$$

Efficiency

- Goal of GISP: Finding an efficient or asymptotically optimal estimator
- Definition: Given $\alpha_{n}=P\left(A_{n}\right) \longrightarrow 0$ as $n \nearrow \infty$ we say that Z_{n} is asymptotically optimal or (weakly) efficient if $\alpha_{n}=E Z_{n}$ and

$$
\lim _{n \rightarrow \infty} \frac{\log E Z_{n}^{2}}{\log \alpha_{n}}=2
$$

- Remark: Need to also consider the computer time to generate Z_{n} that is typically polynomial in $\left|\log \alpha_{n}\right|$ so doesn't contribute significantly to complexity.

Agenda

- Introduction: Rare-event Simulation
- Brownian Motion Avoiding Obstacles
- Explaining the Strategy
- Conclusions

Volume of the Wiener Sausage

- Recall $T=1$ st time $B(\cdot)$ hits a Poissonian obstacle

$$
\begin{aligned}
P(T>t) & =E(P(T>t \mid B(s): 0 \leq s \leq t)) \\
& =E(P(\text { No obstacle in trajectory } \mid B(\cdot))) \\
& =E \exp (-V(t, a))
\end{aligned}
$$

where

$$
V(t, a)=\operatorname{Vol}\left(\bigcup_{0 \leq s \leq t} \text { Square }(\text { center }=B(s), \text { vol }=a)\right)
$$

Brownian Scaling

- By the invariance principle, if $\tau=t^{d /(d+2)}$ then we have

$$
E \exp (-V(t, a))=E \exp \left(-\tau V\left(\tau, a \tau^{-1 / d}\right)\right)
$$

Brownian Scaling

- By the invariance principle, if $\tau=t^{d /(d+2)}$ then we have

$$
E \exp (-V(t, a))=E \exp \left(-\tau V\left(\tau, a \tau^{-1 / d}\right)\right)
$$

- We define and study estimation for

$$
\alpha(\tau, \delta)=E_{0} \exp (-\tau V(\tau, \delta))
$$

Brownian Scaling

- By the invariance principle, if $\tau=t^{d /(d+2)}$ then we have

$$
E \exp (-V(t, a))=E \exp \left(-\tau V\left(\tau, a \tau^{-1 / d}\right)\right)
$$

- We define and study estimation for

$$
\alpha(\tau, \delta)=E_{0} \exp (-\tau V(\tau, \delta))
$$

- How to obtain a "GISP" here? What does large deviations tell us?

Large Deviation Asymptotics

- Donsker and Varadhan ' 75 proved that when $\delta \downarrow 0 \geq a \tau^{-1 / d}$ as $\tau \searrow 0$ (also Bolthausen '90, Sznitman '89) then

$$
\begin{aligned}
& \frac{1}{\tau} \log \alpha(\tau, \delta) \\
& \longrightarrow \quad-\inf _{f: \int f=1}\left(\operatorname{vol}(\operatorname{supp}(f))+\frac{1}{8} \int \frac{\|\nabla f\|^{2}}{f}\right) \\
&=\quad-\inf _{G \text { open }}\left(\operatorname{vol}(G)+\lambda_{G}\right),
\end{aligned}
$$

where $\lambda_{G}=$ principal e-value of $\triangle / 2$ on $G->$ discuss optimal path

Asymptotic Conditional Distribution

- Conditional description (Schmock $d=1$, Sznitman $d=2$, Povel $d>2)$: B. Motion travels $O\left(\tau^{1 / d}\right)$ distance to find an optimal center (random even at $\tau^{1 / d}$ scales!) and it confines itself inside a ball with optimal radius at spatial scales of $O\left(\tau^{1 / d}\right) \ldots$

Brownian motion in 2 dimensions

Summary: What is the Problem?

- Question:

Summary: What is the Problem?

- Question:
- How to describe a change-of-measure that mimics the conditional distribution close enough to obtain an asymptotically optimal estimator - GISP?

Summary: What is the Problem?

- Question:
- How to describe a change-of-measure that mimics the conditional distribution close enough to obtain an asymptotically optimal estimator - GISP?
- Such change-of-measure must find an optimal ball with the right distribution and do it step-by-step from the Brownian path...

Agenda

- Introduction: Rare-event Simulation
- Brownian Motion Avoiding Obstacles
- Explaining the Strategy
- Conclusions

The Strategy

- $\alpha(\tau, \delta)=E_{0} \exp (-\tau V(\tau, \delta))$
- Divide the space in cubes of volume

Yellow spot is obstacle of area δ

The Strategy

- We generate a suitable process that keeps exploring regions as follows:

Initial "explored" region.

Explored regions are painted pink

The Strategy

- The distribution of the process adapts according to explored regions (we'll see how!)

The Strategy

The Strategy

- And one goes on sequentially \rightarrow now we'll explain the evolution

The Strategy

- Recall the goal: $\alpha(\tau, \delta)=E_{0} \exp (-\tau V(\tau, \delta))$

The Strategy

- Recall the goal: $\alpha(\tau, \delta)=E_{0} \exp (-\tau V(\tau, \delta))$
- Given total pink region \mathcal{R}_{M} (say $R_{0} \cup R_{1} \cup \ldots \cup R_{M}$), where M is the region JUST visited

The Strategy

- Recall the goal: $\alpha(\tau, \delta)=E_{0} \exp (-\tau V(\tau, \delta))$
- Given total pink region \mathcal{R}_{M} (say $R_{0} \cup R_{1} \cup \ldots \cup R_{M}$), where M is the region JUST visited
- Want to spend as much as possible in the explored region (which is free of obstacles!)

The Strategy

- Recall the goal: $\alpha(\tau, \delta)=E_{0} \exp (-\tau V(\tau, \delta))$
- Given total pink region \mathcal{R}_{M} (say $R_{0} \cup R_{1} \cup \ldots \cup R_{M}$), where M is the region JUST visited
- Want to spend as much as possible in the explored region (which is free of obstacles!)
- Let $T_{M}=\inf \left\{t \geq 0: B(t) \notin \mathcal{R}_{M}\right\} \ldots$

The Strategy

- Recall the goal: $\alpha(\tau, \delta)=E_{0} \exp (-\tau V(\tau, \delta))$
- Given total pink region \mathcal{R}_{M} (say $R_{0} \cup R_{1} \cup \ldots \cup R_{M}$), where M is the region JUST visited
- Want to spend as much as possible in the explored region (which is free of obstacles!)
- Let $T_{M}=\inf \left\{t \geq 0: B(t) \notin \mathcal{R}_{M}\right\} \ldots$
- Select θ_{M} such that

$$
E\left(\exp \left(\theta_{M} T_{M}\right) \mid \text { Visited region } \mathcal{R}_{M}\right)=\exp (\gamma \varepsilon \tau)
$$

AND γ which will be chosen...

The Strategy

- Implement the strategy sequentially: Given region \mathcal{R}_{M} sample according to the SDE

$$
d X(t)=\nabla \log v_{\mathcal{R}_{M}}\left(X(t), \theta_{M}\right) d t+d B(t)
$$

where $v_{\mathcal{R}_{M}}(x)=E_{x}\left(\exp \left(\theta_{M} T_{M}\right) \mid\right.$ Visited region $\left.\mathcal{R}_{M}\right)$ for $x \in \mathcal{R}_{M}$.

The Strategy

- Implement the strategy sequentially: Given region \mathcal{R}_{M} sample according to the SDE

$$
d X(t)=\nabla \log v_{\mathcal{R}_{M}}\left(X(t), \theta_{M}\right) d t+d B(t)
$$

where $v_{\mathcal{R}_{M}}(x)=E_{x}\left(\exp \left(\theta_{M} T_{M}\right) \mid\right.$ Visited region $\left.\mathcal{R}_{M}\right)$ for $x \in \mathcal{R}_{M}$.

- The likelihood ratio

$$
L_{\tau}=\frac{1}{v_{\mathcal{R}_{M(\tau)}}\left(B_{\tau}, \theta_{M(\tau)}\right)} \exp \left(\gamma \varepsilon \tau M_{\tau}-\int_{0}^{\tau} \theta_{M(s)} d s\right)
$$

The Strategy

- So, the I.S. estimator is

$$
L_{\tau} \exp (-\tau V(\tau, \delta))=\frac{\exp \left(-\tau\left(V(\tau, \delta)-\gamma \varepsilon M_{\tau}\right)-\int_{0}^{\tau} \theta_{M(s)} d s\right)}{v_{\mathcal{R}_{M(\tau)}}\left(B_{\tau}, \theta_{M(\tau)}\right)}
$$

The Strategy

- So, the I.S. estimator is

$$
L_{\tau} \exp (-\tau V(\tau, \delta))=\frac{\exp \left(-\tau\left(V(\tau, \delta)-\gamma \varepsilon M_{\tau}\right)-\int_{0}^{\tau} \theta_{M(s)} d s\right)}{v_{\mathcal{R}_{M(\tau)}}\left(B_{\tau}, \theta_{M(\tau)}\right)}
$$

(1) $v_{\mathcal{R}_{M}}\left(x, \theta_{M}\right)=E_{X}\left(\exp \left(\theta_{M} T_{M}\right) \mid \mathcal{R}_{M}\right) \geq 1$

The Strategy

- So, the I.S. estimator is

$$
L_{\tau} \exp (-\tau V(\tau, \delta)) \leq \exp \left(-\tau\left(V(\tau, \delta)-\gamma \varepsilon M_{\tau}\right)-\int_{0}^{\tau} \theta_{M(s)} d s\right)
$$

(1) $v_{\mathcal{R}_{M}}\left(x, \theta_{M}\right)=E_{X}\left(\exp \left(\theta_{M} T_{M}\right) \mid \mathcal{R}_{M}\right) \geq 1$

The Strategy

- So, the I.S. estimator is

$$
L_{\tau} \exp (-\tau V(\tau, \delta)) \leq \exp \left(-\tau\left(V(\tau, \delta)-\gamma \varepsilon M_{\tau}\right)-\int_{0}^{\tau} \theta_{M(s)} d s\right)
$$

(1) $v_{\mathcal{R}_{M}}\left(x, \theta_{M}\right)=E_{x}\left(\exp \left(\theta_{M} T_{M}\right) \mid \mathcal{R}_{M}\right) \geq 1$
(2) $\mathbf{P}\left(T_{M}>x \mid \mathcal{R}_{M}\right)=\exp \left(-\lambda_{\mathcal{R}_{M}} x+o(x)\right)$
(3) By the choice of θ_{M}, we have that $\theta_{M(s)}=\lambda_{\mathcal{R}_{M(s)}}+o(1 / \tau)$

The Strategy

- So, the I.S. estimator is

$$
L_{\tau} \exp (-\tau V(\tau, \delta)) \leq \exp \left(-\tau\left(V(\tau, \delta)-\gamma \varepsilon M_{\tau}\right)-\int_{0}^{\tau} \lambda_{\mathcal{R}_{M(s)}} d s\right)
$$

(1) $v_{\mathcal{R}_{M}}\left(x, \theta_{M}\right)=E_{X}\left(\exp \left(\theta_{M} T_{M}\right) \mid \mathcal{R}_{M}\right) \geq 1$
(2) $P\left(T_{M}>x \mid \mathcal{R}_{M}\right)=\exp \left(-\lambda_{\mathcal{R}_{M}} x+o(x)\right)$
(3) By the choice of θ_{M}, we have that $\theta_{M(s)}=\lambda_{\mathcal{R}_{M(s)}}+o(1 / \tau)$

The Strategy

- So, the I.S. estimator is

$$
L_{\tau} \exp (-\tau V(\tau, \delta)) \leq \exp \left(-\tau\left(V(\tau, \delta)-\gamma \varepsilon M_{\tau}\right)-\int_{0}^{\tau} \lambda_{\mathcal{R}_{M(s)}} d s\right)
$$

(1) $v_{\mathcal{R}_{M}}\left(x, \theta_{M}\right)=E_{X}\left(\exp \left(\theta_{M} T_{M}\right) \mid \mathcal{R}_{M}\right) \geq 1$
(2) $P\left(T_{M}>x \mid \mathcal{R}_{M}\right)=\exp \left(-\lambda_{\mathcal{R}_{M}} x+o(x)\right)$
(3) By the choice of θ_{M}, we have that $\theta_{M(s)}=\lambda_{\mathcal{R}_{M(s)}}+o(1 / \tau)$
(9) $\lambda_{\mathcal{R}_{M(s)}} \geq \lambda_{\mathcal{R}_{M(\tau)}} \geq 0$ for $r \geq s$

The Strategy

- So, the I.S. estimator is

$$
L_{\tau} \exp (-\tau V(\tau, \delta)) \leq \exp \left(-\tau\left(V(\tau, \delta)-\gamma \varepsilon M_{\tau}\right)-\tau \lambda_{\mathcal{R}_{M(\tau)}}\right)
$$

(1) $v_{\mathcal{R}_{M}}\left(x, \theta_{M}\right)=E_{x}\left(\exp \left(\theta_{M} T_{M}\right) \mid \mathcal{R}_{M}\right) \geq 1$
(2) $P\left(T_{M}>x \mid \mathcal{R}_{M}\right)=\exp \left(-\lambda_{\mathcal{R}_{M}} x+o(x)\right)$
(3) By the choice of θ_{M}, we have that $\theta_{M(s)}=\lambda_{\mathcal{R}_{M(s)}}+o(1 / \tau)$
(9) $\lambda_{\mathcal{R}_{M(s)}} \geq \lambda_{\mathcal{R}_{M(\tau)}} \geq 0$ for $r \geq s$

The Strategy

- So, the I.S. estimator is

$$
L_{\tau} \exp (-\tau V(\tau, \delta)) \leq \exp \left(-\tau\left(V(\tau, \delta)-\gamma \varepsilon M_{\tau}\right)-\tau \lambda_{\mathcal{R}_{M(\tau)}}\right)
$$

(1) $v_{\mathcal{R}_{M}}\left(x, \theta_{M}\right)=E_{x}\left(\exp \left(\theta_{M} T_{M}\right) \mid \mathcal{R}_{M}\right) \geq 1$
(2) $P\left(T_{M}>x \mid \mathcal{R}_{M}\right)=\exp \left(-\lambda_{\mathcal{R}_{M}} x+o(x)\right)$
(3) By the choice of θ_{M}, we have that $\theta_{M(s)}=\lambda_{\mathcal{R}_{M(s)}}+o(1 / \tau)$
(1) $\lambda_{\mathcal{R}_{M(s)}} \geq \lambda_{\mathcal{R}_{M(\tau)}} \geq 0$ for $r \geq s$
(0) $\varepsilon \mathbf{M}_{\tau}=\operatorname{Vol}\left(\mathcal{R}_{M(\tau)}\right) \leq \mathbf{V}(\tau, \delta)($ for $\varepsilon \leq \delta / 2)$

The Strategy

- So, the I.S. estimator is

$$
L_{\tau} \exp (-\tau V(\tau, \delta)) \leq \exp \left(-\tau\left((1-\gamma) \operatorname{Vol}\left(\mathcal{R}_{M(\tau)}\right)+\lambda_{\mathcal{R}_{M(\tau)}}\right)\right)
$$

(1) $v_{\mathcal{R}_{M}}\left(x, \theta_{M}\right)=E_{x}\left(\exp \left(\theta_{M} T_{M}\right) \mid \mathcal{R}_{M}\right) \geq 1$
(2) $P\left(T_{M}>x \mid \mathcal{R}_{M}\right)=\exp \left(-\lambda_{\mathcal{R}_{M}} x+o(x)\right)$
(3) By the choice of θ_{M}, we have that $\theta_{M(s)}=\lambda_{\mathcal{R}_{M(s)}}+o(1 / \tau)$
(1) $\lambda_{\mathcal{R}_{M(s)}} \geq \lambda_{\mathcal{R}_{M(\tau)}} \geq 0$ for $r \geq s$
(0) $\varepsilon M_{\tau}=\operatorname{Vol}\left(\mathcal{R}_{M(\tau)}\right) \leq V(\tau, \delta)$. For $\varepsilon \leq \delta / 2$

The Strategy

- Take $\varepsilon=\delta$ and this takes us to...

$$
\begin{aligned}
& \text { IS EST } \\
\leq & \exp \left(-\tau \min _{G: \text { open }}\left(\operatorname{Vol}(G)(1-\gamma)+\lambda_{G}\right)\right) \\
= & \exp (\tau O(\gamma)) \exp \left(-\tau \min _{G: \text { open }}\left(\operatorname{Vol}(G)+\lambda_{G}\right)\right)
\end{aligned}
$$

The Strategy

- Take $\varepsilon=\delta$ and this takes us to...

$$
\begin{aligned}
& \text { IS EST } \\
\leq & \exp \left(-\tau \min _{G: \text { open }}\left(\operatorname{Vol}(G)(1-\gamma)+\lambda_{G}\right)\right) \\
= & \exp (\tau O(\gamma)) \exp \left(-\tau \min _{G: \text { open }}\left(\operatorname{Vol}(G)+\lambda_{G}\right)\right)
\end{aligned}
$$

- Therefore

$$
E\left(\text { Estimator }^{2}\right)=\alpha(\tau, \delta)^{2} \exp (\tau O(\gamma)+o(\tau))
$$

and weak efficiency follows (for $\delta, \gamma \longrightarrow 0$ sufficiently slow as
$\tau \longrightarrow \infty)$

Pictures

A path for $\tau=1000$, using $\gamma=.1$

Pictures

- A path for $\tau=5000$, using $\gamma=.1$

Agenda

- Introduction: Rare-event Simulation
- Brownian Motion Avoiding Obstacles
- Explaining the Strategy
- Conclusions

Conclusions

- Brownian motion avoiding obstacles gives an example where history dependent importance sampling should be performed to achieve efficiency
- Strategy induces confinement -> particle tries to stay inside explored region, which is obstacle free
- Eventually, explored region is basically a ball with optimal radius and specific distribution center

