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Introduction

Assumptions:

Let (B (t):t > 0) be a Brownian motion in R9

Let (N (t):t > 0) be a Poisson spatial process in R? independent of
B(-).

To each point of N (-) attach a square of volume a corresponding to
an obstacle (obstacles can have intersections, that's fine).
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Introduction

@ Assumptions:

o Let (B(t):t>0) be a Brownian motion in R?

o Let (N (t):t>0) be a Poisson spatial process in R? independent of
B(-).

@ To each point of N (-) attach a square of volume a corresponding to
an obstacle (obstacles can have intersections, that's fine).

@ Let 7 = Ist time B (+) hits the boundary of an obstacle

o Question:

@ Design an efficient simulation algorithm to estimate P (7 > t) for

large t
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@ Undetected objects for long period of time

@ Motivation as a problem in random media (study of polymers in
random environments)
e Materials properties (obstacles represent impurities)

@ Introduced by Smoluchowsky (1918) in Chemistry and Physics / now
proposed as model of molecules in motion in cells
(http://jb.asm.org/cgi/content/full /187/1/23 )

o [t provides an interesting example of importance sampling that
involves infinite dimensional simulation (control) problem... .
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Basic Facts about Importance Sampling

e Suppose want to estimate P (Z € A)
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Basic Facts about Importance Sampling

e Suppose want to estimate P (Z € A)

@ Importance sampling estimation says: Find an appropriate
change-of-measure Q (dw) and produce the importance sampling
(IS) estimator

dP

=40

(W) 1(Z(w) € A)
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Basic Facts about Importance Sampling

e Suppose want to estimate P (Z € A)

@ Importance sampling estimation says: Find an appropriate
change-of-measure Q (dw) and produce the importance sampling
(IS) estimator

dP

= E
o Simulate iid replications of Y to estimate P (Z € A) = EQY.

% (W) 1 (Z (w) € A)
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Basic Facts about Importance Sampling

e Suppose want to estimate P (Z € A)

@ Importance sampling estimation says: Find an appropriate
change-of-measure Q (dw) and produce the importance sampling

(IS) estimator
dP

= E
o Simulate iid replications of Y to estimate P (Z € A) = EQY.

@ Want to reduce the variance of Y

% (W) 1 (Z (w) € A)
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An Obvious Observation and a Powerful Principle

@ Select Q (-) as conditional distribution given Z € A

I (Z(w) € A)P(dw)

Q (dw) = P(ZcA) !
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An Obvious Observation and a Powerful Principle

@ Select Q (-) as conditional distribution given Z € A

1(Z(w) € A)P(dw)
P(Z € A) !

Q (dw) =

e Then Y = P (Z € A) is unbiased with zero variance...

@ Obviously useless to implement BUT vyields a powerful principle: WE
SHALL CALL IT GISP ("Good Importance Sampling Principle").
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An Obvious Observation and a Powerful Principle

@ Select Q (-) as conditional distribution given Z € A

1(Z(w) € A)P(dw)
P(Z € A) !

Q (dw) =

e Then Y = P (Z € A) is unbiased with zero variance...

@ Obviously useless to implement BUT vyields a powerful principle: WE
SHALL CALL IT GISP ("Good Importance Sampling Principle").

o GISP: "To design a good importance sampling try to mimic the
conditional distribution of the process given the rare event”
(Asmussen and Rubinstein '85)
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@ Goal of GISP: Finding an efficient or asymptotically optimal
estimator
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@ Goal of GISP: Finding an efficient or asymptotically optimal
estimator

o Definition: Given a, = P (A,) — 0 as n /" oo we say that Z, is
asymptotically optimal or (weakly) efficient if x, = EZ, and

log EZ?
lim —2=%1 — 9
n—oo logap
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@ Goal of GISP: Finding an efficient or asymptotically optimal
estimator
o Definition: Given a, = P (A,) — 0 as n /" oo we say that Z, is
asymptotically optimal or (weakly) efficient if x, = EZ, and
log EZ2
lim —2=51 — 9
n—oo logap
@ Remark: Need to also consider the computer time to generate Z,
that is typically polynomial in |loga,| so doesn't contribute
significantly to complexity.
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Volume of the Wiener Sausage

@ Recall T = 1st time B (-) hits a Poissonian obstacle

P(T>t) = E(P(T>t|B(s):0<s<t))
= E (P (No obstacle in trajectory| B (+)))
— Eexp(—V(t, a)),

where

V (t,a) = Vol ( \J Square (center = B (s), vol = a)>

0<s<t
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Brownian Scaling

(d+2)

@ By the invariance principle, if T = t9/ then we have

Eexp(—V (t,a)) = Eexp (—TV (T, aT*Ud))
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Brownian Scaling

(d+2) then we have

@ By the invariance principle, if T = t9/
Eexp(—V (t,a)) = Eexp (_T\/ (T, aT—l/d))

o We define and study estimation for

a(7,0) = Egexp(—1V (T,9))
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Brownian Scaling

(d+2) then we have

@ By the invariance principle, if T = ¢d/
Eexp(—V (t,a)) = Eexp (—TV (T, aT’l/d»
o We define and study estimation for

a(7,0) = Egexp(—1V (T,9))

@ How to obtain a "GISP" here? What does large deviations tell us?
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Large Deviation Asymptotics

o Donsker and Varadhan '75 proved that when 6 | 0 > at /9 as
T\, 0 (also Bolthausen '90, Sznitman '89) then

1
—1 )
—loga(z,9)

, 1 [ || VF?
— — inf / 7/
f:}nle (VO (SUPP 8

= — inf (vol(G)+Ag),
G open

where A = principal e-value of A/2 on G —> discuss optimal path
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Asymptotic Conditional Distribution

e Conditional description (Schmock d = 1, Sznitman d = 2, Povel
d > 2): B. Motion travels O (Tl/d) distance to find an optimal

center (random even at TV/9 scales!) and it confines itself inside a
ball with optimal radius at spatial scales of O (Tl/d)...

Brownian motion in 2 dimensions

R,

=2 @U(ﬁ

Picturg at scale of order O(1'/)
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Summary: What is the Problem?

@ Question:
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@ How to describe a change-of-measure that mimics the conditional
distribution close enough to obtain an asymptotically optimal
estimator — GISP?
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Summary: What is the Problem?

@ Question:

@ How to describe a change-of-measure that mimics the conditional
distribution close enough to obtain an asymptotically optimal
estimator — GISP?

@ Such change-of-measure must find an optimal ball with the right
distribution and do it step-by-step from the Brownian path...
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The Strategy

o a(7,0) =Eyexp(—1V (7,9))

@ Divide the space in cubes of volume

Area=¢

—1» Yellow spot
E is obstacle
of area ®

[T
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The Strategy

@ We generate a suitable process that keeps exploring regions as follows:

Initial “explored”
region.

Explored regions are
painted pink

Ro

AEEEl
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The Strategy

@ The distribution of the process adapts according to explored regions
(we'll see how!)

7
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The Strategy
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The Strategy

@ And one goes on sequentially —> now we'll explain the evolution
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@ Recall the goal: a (7,9) = Egexp (—TV (7,9))
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The Strategy

@ Recall the goal: a (7,9) = Egexp (—TV (7,9))

e Given total pink region Ry (say Ro U Ry U ... U Ry ), where M is the
region JUST visited

e Want to spend as much as possible in the explored region (which is
free of obstacles!)

o Let Ty =inf{t>0:B(t) ¢ Rm}...
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The Strategy

@ Recall the goal: a (7,9) = Egexp (—TV (7,9))

e Given total pink region Ry (say Ro U Ry U ... U Ry ), where M is the
region JUST visited

e Want to spend as much as possible in the explored region (which is
free of obstacles!)

o Let Ty =inf{t>0:B(t) ¢ Rm}...
@ Select 0y such that

E (exp (0nm T )| Visited region Rp) = exp (yet),

AND 7 which will be chosen...
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The Strategy

@ Implement the strategy sequentially: Given region Ry, sample
according to the SDE

dX (t) = Vlog vg,, (X (t),0)dt + dB (t),

where vg,, (x) = Ex (exp (Op Ta)| Visited region Rp) for x € Ry.
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The Strategy

@ Implement the strategy sequentially: Given region Ry, sample
according to the SDE

dX (t) = Vg vg,, (X (t),0m) dt+dB (t),
where vg,, (x) = Ex (exp (Op Ta)| Visited region Rp) for x € Ry.
@ The likelihood ratio
1

T
L = exp <'y£TMT —/ GM(s)ds) ,
YRu(x) <BT'9M(T)> °
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The Strategy

@ So, the |.S. estimator is
exp (—T (V(t,6) — yeMy) — fOT GM(s)ds>

Ry (B O

Lrexp (—TV (7,0)) =
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The Strategy

@ So, the |.S. estimator is
exp (—T (V(t,6) — yeMy) — fOT GM(s)ds>

7 (Br, 9M(T)>

Lrexp(—tV (T,9)) =

o VRu (X, QM) = EX (exp (9/\/] TI\/I)lRM) Z 1
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The Strategy

@ So, the |.S. estimator is

T

Lrexp (—TV (1,9)) < exp (—T(V (1,0) — yeMy) — A GM(s)ds) :

(1) VRu (X, QM) =E, (exp (9/\/1 TM)|RM) >1
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The Strategy

@ So, the |.S. estimator is

Lrexp(—TV (1,6)) < exp (—T(V (1,0) —veMy) — /OT GM(S)ds) ,

o VRM (X, 9/\//) = EX (exp (9/\// TM)| RM) Z 1
Q@ P(Ty > x|Rum)=exp(—Ag,x+o(x))
© By the choice of 6y, we have that 0y,) = Az, +o0 (1/7)
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The Strategy

@ So, the |.S. estimator is
T
Leexp (—TV (7, 6)) < exp (—T(V(T, 5) — yeMy) —/ /\RM<S)ds> ,
0

o VRM (X, 9/\//) = EX (exp (9/\// TM)| RM) Z 1
Q@ P(Ty > x|Rm) =exp(—Ag,x+o0(x))
© By the choice of 0, we have that Oy (5) = Ag,,,, + o0 (1/7)
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The Strategy

@ So, the |.S. estimator is

Leexp (—TV (7,0)) < exp (—T (V (t,8) — yeMy) — /OT )\RM(S)ds) :

VRM (X, 9/\//) = EX (exp (QM TM)l RM) 2 1

P(Tm > x|Rum) =exp(—Ag,x+0(x))

By the choice of 6, we have that 0 (s) = Ag,,, + 0 (1/7)
ARM(S) Z /\RM(r) Z 0 for r Z S

Blanchet (Columbia) Brownian Motion Avoiding Hard Obstacles 07/08 26 / 34



The Strategy

@ So, the |.S. estimator is

Lrexp(—tV (1,9)) < exp <_T<V (1,6) = yeMy) — TARM(r)) ’

Q vg, (x.0m) = Ex(exp(OmTm)| Rm) > 1

Q@ P(Ty > x|Rm) =exp(—Ar,x+o0(x))

© By the choice of O, we have that Oy(5) = Ag,,, +0(1/7)
Qo )‘RM(S) > )\RM(T) >0forr>s
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The Strategy

@ So, the |.S. estimator is

Lrexp (—TV (1,0)) < exp (—T(V (1,6) —veMy) — T/\RM(T)> ,

Q vg, (x,0n) =Ec(exp(@mTm)| Rm) >1

Q P(Tm > x|Rm) =exp(—Ar,x+o0(x))

© By the choice of 6, we have that Oy (5) = Ag,,, + o0 (1/7)
O ARy = ARy 2 0forr>s

@ ¢M.— Vol (RM(T)) < V(1,8) (for ¢ < 5/2)
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The Strategy

@ So, the |.S. estimator is

Leep (—TV (.8)) < exp (7 (1= 1) Vol (Ruco)) + Ar,, )

Q vg, (x,0n) =Ec(exp(@mTm)| Rm) >1

Q P(Tm > x|Rm) =exp(—Ar,x+o0(x))

© By the choice of 6, we have that Oy (5) = Ag,,, + o0 (1/7)
O ARy = ARy 2 0forr>s

Q M, = Vol (RM(T)> < V(1,8). Fore <4/2
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The Strategy

@ Take € = ¢ and this takes us to...

IS EST

< exp (—T GET:)igen (VoI (G) (1 —) + /\G))

G: open

= exp(TtO(7))exp (—T min (Vo/(G)+/\G)>

Blanchet (Columbia) Brownian Motion Avoiding Hard Obstacles 07/08 30 / 34



The Strategy

@ Take € = ¢ and this takes us to...

IS EST

< exp (—T GET:)igen (VoI (G) (1 —) + /\G))

= exp (1O (7))exp (—T GT)i;]en (Vol (G) + /\G)>
@ Therefore
E (Estimator®) = u (T, ) exp (TO (7) + 0 (7))

and weak efficiency follows (for &,y — 0 sufficiently slow as
T — o)
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Pictures

A path for T = 1000, using ¥ = .1
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Pictures

@ A path for T = 5000, using v = .1
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Conclusions

@ Brownian motion avoiding obstacles gives an example where history
dependent importance sampling should be performed to achieve
efficiency

@ Strategy induces confinement —> particle tries to stay inside explored
region, which is obstacle free

o Eventually, explored region is basically a ball with optimal radius and
specific distribution center
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