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Introduction

Assumptions:

Let (B (t) : t � 0) be a Brownian motion in Rd

Let (N (t) : t � 0) be a Poisson spatial process in Rd independent of
B (�).
To each point of N (�) attach a square of volume a corresponding to
an obstacle (obstacles can have intersections, that�s �ne).

Let T = 1st time B (�) hits the boundary of an obstacle
Question:
Design an e¢ cient simulation algorithm to estimate P (T > t) for
large t
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Motivation

Undetected objects for long period of time

Motivation as a problem in random media (study of polymers in
random environments)

Materials properties (obstacles represent impurities)

Introduced by Smoluchowsky (1918) in Chemistry and Physics / now
proposed as model of molecules in motion in cells
(http://jb.asm.org/cgi/content/full/187/1/23 )

It provides an interesting example of importance sampling that
involves in�nite dimensional simulation (control) problem... .
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Basic Facts about Importance Sampling

Suppose want to estimate P (Z 2 A)

Importance sampling estimation says: Find an appropriate
change-of-measure Q (dω) and produce the importance sampling
(IS) estimator

Y =
dP
dQ

(ω) I (Z (ω) 2 A)

Simulate iid replications of Y to estimate P (Z 2 A) = EQY .
Want to reduce the variance of Y
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An Obvious Observation and a Powerful Principle

Select Q (�) as conditional distribution given Z 2 A

Q (dω) =
I (Z (ω) 2 A)P (dω)

P (Z 2 A) ,

Then Y = P (Z 2 A) is unbiased with zero variance...
Obviously useless to implement BUT yields a powerful principle: WE
SHALL CALL IT GISP ("Good Importance Sampling Principle").

GISP: "To design a good importance sampling try to mimic the
conditional distribution of the process given the rare event"
(Asmussen and Rubinstein �85)
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E¢ ciency

Goal of GISP: Finding an e¢ cient or asymptotically optimal
estimator

De�nition: Given αn = P (An) �! 0 as n% ∞ we say that Zn is
asymptotically optimal or (weakly) e¢ cient if αn = EZn and

lim
n!∞

log EZ 2n
log αn

= 2.

Remark: Need to also consider the computer time to generate Zn
that is typically polynomial in jlog αn j so doesn�t contribute
signi�cantly to complexity.
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Volume of the Wiener Sausage

Recall T = 1st time B (�) hits a Poissonian obstacle

P (T > t) = E (P (T > tjB (s) : 0 � s � t))
= E (P (No obstacle in trajectoryjB (�)))
= E exp (�V (t, a)) ,

where

V (t, a) = Vol

 [
0�s�t

Square (center = B (s) , vol = a)

!
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Brownian Scaling

By the invariance principle, if τ = td/(d+2) then we have

E exp (�V (t, a)) = E exp
�
�τV

�
τ, aτ�1/d

��

We de�ne and study estimation for

α (τ, δ) = E0 exp (�τV (τ, δ))

How to obtain a "GISP" here? What does large deviations tell us?
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Large Deviation Asymptotics

Donsker and Varadhan �75 proved that when δ # 0 � aτ�1/d as
τ & 0 (also Bolthausen �90, Sznitman �89) then

1
τ
log α (τ, δ)

�! � inf
f :
R
f =1

 
vol(supp(f )) +

1
8

Z krf k2

f

!
= � inf

G open
(vol(G ) + λG ) ,

where λG = principal e-value of 4/2 on G �> discuss optimal path

Blanchet (Columbia) Brownian Motion Avoiding Hard Obstacles 07/08 11 / 34



Asymptotic Conditional Distribution

Conditional description (Schmock d = 1, Sznitman d = 2, Povel
d > 2): B. Motion travels O

�
τ1/d � distance to �nd an optimal

center (random even at τ1/d scales!) and it con�nes itself inside a
ball with optimal radius at spatial scales of O

�
τ1/d �...
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Summary: What is the Problem?

Question:

How to describe a change-of-measure that mimics the conditional
distribution close enough to obtain an asymptotically optimal
estimator �GISP?

Such change-of-measure must �nd an optimal ball with the right
distribution and do it step-by-step from the Brownian path...
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The Strategy

α (τ, δ) = E0 exp (�τV (τ, δ))

Divide the space in cubes of volume

0

Area = ε

Yellow spot
is obstacle
of area δ

0

Area = ε

Yellow spot
is obstacle
of area δ

0

Area = ε

Yellow spot
is obstacle
of area δ

00

Area = ε

Yellow spot
is obstacle
of area δ

0

Area = ε

Yellow spot
is obstacle
of area δ
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The Strategy

We generate a suitable process that keeps exploring regions as follows:

0

R0

Initial “explored”
region.
Explored regions are
painted pink

0

R0

Initial “explored”
region.
Explored regions are
painted pink
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The Strategy

The distribution of the process adapts according to explored regions
(we�ll see how!)

R0R0

Blanchet (Columbia) Brownian Motion Avoiding Hard Obstacles 07/08 17 / 34



The Strategy

R0

R1
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The Strategy

And one goes on sequentially � > now we�ll explain the evolution

R0

R1

R2
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The Strategy

Recall the goal: α (τ, δ) = E0 exp (�τV (τ, δ))

Given total pink region RM (say R0 [ R1 [ ...[ RM ), where M is the
region JUST visited

Want to spend as much as possible in the explored region (which is
free of obstacles!)

Let TM = infft � 0 : B (t) /2 RMg...
Select θM such that

E (exp (θMTM )jVisited region RM ) = exp (γετ) ,

AND γ which will be chosen...
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The Strategy

Implement the strategy sequentially: Given region RM sample
according to the SDE

dX (t) = r log vRM (X (t) , θM ) dt + dB (t) ,

where vRM (x) = Ex (exp (θMTM )jVisited region RM ) for x 2 RM .

The likelihood ratio

Lτ =
1

vRM (τ)

�
Bτ, θM (τ)

� exp�γετMτ �
Z τ

0
θM (s)ds

�
,

Blanchet (Columbia) Brownian Motion Avoiding Hard Obstacles 07/08 21 / 34



The Strategy

Implement the strategy sequentially: Given region RM sample
according to the SDE

dX (t) = r log vRM (X (t) , θM ) dt + dB (t) ,

where vRM (x) = Ex (exp (θMTM )jVisited region RM ) for x 2 RM .

The likelihood ratio

Lτ =
1

vRM (τ)

�
Bτ, θM (τ)

� exp�γετMτ �
Z τ

0
θM (s)ds

�
,

Blanchet (Columbia) Brownian Motion Avoiding Hard Obstacles 07/08 21 / 34



The Strategy

So, the I.S. estimator is

Lτ exp (�τV (τ, δ)) =
exp

�
�τ (V (τ, δ)� γεMτ)�

R τ
0 θM (s)ds

�
vRM (τ)

�
Bτ, θM (τ)

� ,

1 vRM (x , θM ) = Ex (exp (θMTM )j RM ) � 1
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The Strategy

So, the I.S. estimator is

Lτ exp (�τV (τ, δ)) � exp
�
�τ (V (τ, δ)� γεMτ)�

Z τ

0
θM (s)ds

�
,

1 vRM (x , θM ) = Ex (exp (θMTM )j RM ) � 1
2 P (TM > x j RM ) = exp (�λRM x + o (x))
3 By the choice of θM , we have that θM (s) = λRM (s) + o (1/τ)
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The Strategy

So, the I.S. estimator is
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The Strategy

So, the I.S. estimator is

Lτ exp (�τV (τ, δ)) � exp
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�τ (V (τ, δ)� γεMτ)� τλRM (τ)

�
,

1 vRM (x , θM ) = Ex (exp (θMTM )j RM ) � 1
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3 By the choice of θM , we have that θM (s) = λRM (s) + o (1/τ)

4 λRM (s) � λRM (τ) � 0 for r � s

5 εMτ= Vol
�
RM (τ)

�
� V (τ, δ) (for ε � δ/2)
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The Strategy

So, the I.S. estimator is

Lτ exp (�τV (τ, δ)) � exp
�
�τ
�
(1� γ)Vol

�
RM (τ)

�
+ λRM (τ)

��
1 vRM (x , θM ) = Ex (exp (θMTM )j RM ) � 1
2 P (TM > x j RM ) = exp (�λRM x + o (x))
3 By the choice of θM , we have that θM (s) = λRM (s) + o (1/τ)

4 λRM (s) � λRM (τ) � 0 for r � s

5 εMτ = Vol
�
RM (τ)

�
� V (τ, δ) . For ε � δ/2
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The Strategy

Take ε = δ and this takes us to...

IS EST

� exp
�
�τ min

G : open
(Vol (G ) (1� γ) + λG )

�
= exp (τO (γ)) exp

�
�τ min

G : open
(Vol (G ) + λG )

�

Therefore

E
�
Estimator2

�
= α (τ, δ)2 exp (τO (γ) + o (τ))

and weak e¢ ciency follows (for δ,γ �! 0 su¢ ciently slow as
τ �! ∞)
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Pictures

A path for τ = 1000, using γ = .1
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Pictures

A path for τ = 5000, using γ = .1
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Conclusions

Brownian motion avoiding obstacles gives an example where history
dependent importance sampling should be performed to achieve
e¢ ciency

Strategy induces con�nement �> particle tries to stay inside explored
region, which is obstacle free

Eventually, explored region is basically a ball with optimal radius and
speci�c distribution center
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