On the design and analysis of branching schemes with killing for rare event Monte Carlo estimation

Paul Dupuis

(with Thomas Dean, Oxford University) Division of Applied Mathematics Brown University

Rubinstein Conference at Sandbjerg Estate

July 2008

4 1 1 1 4 1

Paul Dupuis (Brown University)

- Splitting-type schemes
- RESTART (REpetitive Simulation Trials After Reaching Thresholds) and DPR (Direct Probability Redistribution)

- Splitting-type schemes
- RESTART (REpetitive Simulation Trials After Reaching Thresholds) and DPR (Direct Probability Redistribution)
- Sepresentations and bounds for the second moment

.

- Splitting-type schemes
- RESTART (REpetitive Simulation Trials After Reaching Thresholds) and DPR (Direct Probability Redistribution)
- Sepresentations and bounds for the second moment
- Statement of main results

.

- Splitting-type schemes
- RESTART (REpetitive Simulation Trials After Reaching Thresholds) and DPR (Direct Probability Redistribution)
- Sepresentations and bounds for the second moment
- Statement of main results
- The F-V quasipotential and subsolutions

- Splitting-type schemes
- RESTART (REpetitive Simulation Trials After Reaching Thresholds) and DPR (Direct Probability Redistribution)
- Sepresentations and bounds for the second moment
- Statement of main results
- The F-V quasipotential and subsolutions
- 6 Remarks

We consider a discrete time process $\{X_i^n\}$, not necessarily Markov.

We consider a discrete time process $\{X_i^n\}$, not necessarily Markov. Let

 $X^{n}(i/n) = X_{i}^{n}$, piecewise linear interpolation for $t \neq i/n$.

イロト イ団ト イヨト イヨト 三日

We consider a discrete time process $\{X_i^n\}$, not necessarily Markov. Let

 $X^n(i/n) = X_i^n$, piecewise linear interpolation for $t \neq i/n$.

Assume $\{X^n(\cdot)\}$ satisfies a Large Deviation Principle with rate function

$$I_T(\phi) = \int_0^T L(\phi, \dot{\phi}) dt$$

if ϕ is AC and $I_T(\phi) = \infty$ else.

We consider a discrete time process $\{X_i^n\}$, not necessarily Markov. Let

 $X^n(i/n) = X_i^n$, piecewise linear interpolation for $t \neq i/n$.

Assume $\{X^n(\cdot)\}$ satisfies a Large Deviation Principle with rate function

$$I_T(\phi) = \int_0^T L(\phi, \dot{\phi}) dt$$

if ϕ is AC and $I_T(\phi) = \infty$ else. Heuristically, for $T < \infty$, given ϕ , small $\delta > 0, x_n \rightarrow x = \phi(0)$ and large n

$$P_{x_n}\left\{\sup_{0\leq t\leq T}\|X^n(t)-\phi(t)\|\leq \delta\right\}\approx e^{-nl_T(\phi)}.$$

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

To estimate:

$$E_{x_n}\left[\sum_{i=0}^{\tau^n} e^{-nF(X_i^n)}\right], \text{ where } \tau^n \doteq \inf\left\{i: X_i^n \in M\right\}.$$

Paul Dupuis (Brown University)

イロト イヨト イヨト イヨ

To estimate:

$$E_{x_n}\left[\sum_{i=0}^{\tau^n} e^{-nF(X_i^n)}\right], \text{ where } \tau^n \doteq \inf\left\{i: X_i^n \in M\right\}.$$

Example:

 $M = A \cup B$, B rare, A typical, and F(x) = 0, $x \in B$, $F(x) = \infty$ otherwise.

/□ ▶ 《 ⋽ ▶ 《 ⋽

Paul Dupuis (Brown University)

● 王 • ○ < ○
 July 2008 5 / 17

イロト イヨト イヨト イヨ

Under conditions of regularity on F and bounds on τ^n :

$$-\frac{1}{n}\log E_{x_n}\left[\sum_{i=0}^{\tau^n} e^{-nF(X_i^n)}\right] \quad \to \quad \inf \left\{I_T(\phi) + F(\phi(T)) : \phi(0) = x, T < \infty\right\}$$
$$= \quad \gamma.$$

< ∃ > <

• General approach: construct iid random variables $\theta_1^n, \ldots, \theta_K^n$ with $E\theta_1^n = E_{x_n} \left[\sum_{i=0}^{\tau^n} e^{-nF(X_i^n)} \right]$ and use the unbiased estimator

$$\hat{q}_{n,K}(x_n) \doteq \frac{\theta_1^n + \cdots + \theta_K^n}{K}$$

・ロト ・聞 と ・ 臣 と ・ 臣 と … 臣

• General approach: construct iid random variables $\theta_1^n, \ldots, \theta_K^n$ with $E\theta_1^n = E_{x_n} \left[\sum_{i=0}^{\tau^n} e^{-nF(X_i^n)} \right]$ and use the unbiased estimator $\hat{q}_{n,K}(x_n) \doteq \frac{\theta_1^n + \cdots + \theta_K^n}{K}.$

• Performance determined by variance of θ_1^n , and since unbiased by $E(\theta_1^n)^2$.

□ > < E > < E > _ E

• General approach: construct iid random variables $\theta_1^n, \ldots, \theta_K^n$ with $E\theta_1^n = E_{x_n} \left[\sum_{i=0}^{\tau^n} e^{-nF(X_i^n)} \right]$ and use the unbiased estimator $\hat{q}_{n,K}(x_n) \doteq \frac{\theta_1^n + \cdots + \theta_K^n}{K}.$

- Performance determined by variance of θⁿ₁, and since unbiased by E (θⁿ₁)².
- By Jensen's inequality

$$-\frac{1}{n}\log E\left(\theta_1^n\right)^2 \leq -\frac{2}{n}\log E\theta_1^n = -\frac{2}{n}\log E_{x_n}\left[\sum_{i=0}^{\tau^n} e^{-nF(X_i^n)}\right] \to 2\gamma.$$

□ > < E > < E > _ E

• General approach: construct iid random variables $\theta_1^n, \ldots, \theta_K^n$ with $E\theta_1^n = E_{x_n} \left[\sum_{i=0}^{\tau^n} e^{-nF(X_i^n)} \right]$ and use the unbiased estimator $\hat{q}_{n,K}(x_n) \doteq \frac{\theta_1^n + \cdots + \theta_K^n}{K}.$

- Performance determined by variance of θⁿ₁, and since unbiased by E (θⁿ₁)².
- By Jensen's inequality

$$-\frac{1}{n}\log E\left(\theta_1^n\right)^2 \leq -\frac{2}{n}\log E\theta_1^n = -\frac{2}{n}\log E_{x_n}\left[\sum_{i=0}^{\tau^n} e^{-nF(X_i^n)}\right] \to 2\gamma.$$

An estimator is called asymptotically efficient if

$$\liminf_{n\to\infty} -\frac{1}{n}\log E\left(\theta_1^n\right)^2 \geq 2\gamma.$$

・聞き ・ ほき・ ・ ほき・ … ほ

A certain number [proportional to n] of *splitting thresholds* C_r^n are defined which enhance migration, e.g., for hitting probabilities:

A certain number [proportional to n] of *splitting thresholds* C_r^n are defined which enhance migration, e.g., for hitting probabilities:

A single particle is started at x that follows the same law as X^n , but branches into a number of independent copies each time a new level is reached.

Paul Dupuis (Brown University)

● 王 • ○ < ○
 July 2008 8 / 17

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

The number of new particles S can be random (though independent of past data), and a multiplicative weight w_i is assigned to the *i*th descendent, where

$$E\sum_{i=1}^{S}w_i=1.$$

Evolution continues until every particle hits M. Let

- N_x^n = number of particles generated
- $X_i^n(j)$ = trajectory of *j*th particle,
- $W_i^n(j)$ = product of weights assigned to j along path up to time i
- $\tau^n(j)$ = hitting time of *j*th trajectory

御 と く き と く き と …

Evolution continues until every particle hits M. Let

- N_x^n = number of particles generated
- $X_i^n(j)$ = trajectory of *j*th particle,
- $W_i^n(j)$ = product of weights assigned to j along path up to time i
- $\tau^n(j)$ = hitting time of *j*th trajectory

Then

$$\theta^n = \sum_{j=1}^{N_x^n} \sum_{i=0}^{\tau^n(j)} e^{-nF(X_i^n(j))} W_i^n(j).$$

・ 同 ト ・ ヨ ト ・ ヨ ト …

Evolution continues until every particle hits M. Let

- N_x^n = number of particles generated
- $X_i^n(j)$ = trajectory of *j*th particle,
- $W_i^n(j)$ = product of weights assigned to j along path up to time i
- $\tau^n(j)$ = hitting time of *j*th trajectory

Then

$$\theta^{n} = \sum_{j=1}^{N_{x}^{n}} \sum_{i=0}^{\tau^{n}(j)} e^{-nF(X_{i}^{n}(j))} W_{i}^{n}(j).$$

Problems

• If splitting is too infrequent, do not explore state space (standard Monte Carlo).

伺下 イヨト イヨト

Evolution continues until every particle hits M. Let

- N_x^n = number of particles generated
- $X_i^n(j)$ = trajectory of *j*th particle,
- $W_i^n(j)$ = product of weights assigned to j along path up to time i
- $\tau^n(j)$ = hitting time of *j*th trajectory

Then

$$\theta^{n} = \sum_{j=1}^{N_{x}^{n}} \sum_{i=0}^{\tau^{n}(j)} e^{-nF(X_{i}^{n}(j))} W_{i}^{n}(j).$$

Problems

- If splitting is too infrequent, do not explore state space (standard Monte Carlo).
- If too frequent, we have exponential growth in number of surviving particles.

An obvious inefficiency-continuing trajectories far from the places of interest. When killing trajectories, care needed to avoid bias.

• RESTART (REpetitive Simulation Trials After Reaching Thresholds, due to Villen-Altamirano and Villen-Altamirano).

- RESTART (REpetitive Simulation Trials After Reaching Thresholds, due to Villen-Altamirano and Villen-Altamirano).
 - Particles can jump at most one threshold $(j \rightarrow j+1)$ at each time step.

- RESTART (REpetitive Simulation Trials After Reaching Thresholds, due to Villen-Altamirano and Villen-Altamirano).
 - Particles can jump at most one threshold $(j \rightarrow j+1)$ at each time step.
 - When branching there is one parent and remainder are offspring.

- RESTART (REpetitive Simulation Trials After Reaching Thresholds, due to Villen-Altamirano and Villen-Altamirano).
 - Particles can jump at most one threshold $(j \rightarrow j+1)$ at each time step.
 - When branching there is one parent and remainder are offspring.
 - Splitting occurs with *every* upcrossing, and particles are killed when they leave the threshold in which they were born.

- RESTART (REpetitive Simulation Trials After Reaching Thresholds, due to Villen-Altamirano and Villen-Altamirano).
 - Particles can jump at most one threshold $(j \rightarrow j+1)$ at each time step.
 - When branching there is one parent and remainder are offspring.
 - Splitting occurs with *every* upcrossing, and particles are killed when they leave the threshold in which they were born.
- DPR (Direct Probability Redistribution, due to Haraszti and Townsend). Same as RESTART but

An obvious inefficiency-continuing trajectories far from the places of interest. When killing trajectories, care needed to avoid bias.

- RESTART (REpetitive Simulation Trials After Reaching Thresholds, due to Villen-Altamirano and Villen-Altamirano).
 - Particles can jump at most one threshold $(j \rightarrow j+1)$ at each time step.
 - When branching there is one parent and remainder are offspring.
 - Splitting occurs with *every* upcrossing, and particles are killed when they leave the threshold in which they were born.
- DPR (Direct Probability Redistribution, due to Haraszti and Townsend). Same as RESTART but
 - Particles can jump multiple thresholds $(j \rightarrow k)$.

(本語)と (本語)と (本語)と

An obvious inefficiency-continuing trajectories far from the places of interest. When killing trajectories, care needed to avoid bias.

- RESTART (REpetitive Simulation Trials After Reaching Thresholds, due to Villen-Altamirano and Villen-Altamirano).
 - Particles can jump at most one threshold $(j \rightarrow j+1)$ at each time step.
 - When branching there is one parent and remainder are offspring.
 - Splitting occurs with *every* upcrossing, and particles are killed when they leave the threshold in which they were born.
- DPR (Direct Probability Redistribution, due to Haraszti and Townsend). Same as RESTART but
 - Particles can jump multiple thresholds $(j \rightarrow k)$.
 - Offspring are assigned a killing threshold from $\{j + 1, ..., k\}$ according to multinomial distribution, chosen to achieve unbiasedness.

<ロト <回ト < 回ト < 回ト < 回ト = 三日

An obvious inefficiency-continuing trajectories far from the places of interest. When killing trajectories, care needed to avoid bias.

- RESTART (REpetitive Simulation Trials After Reaching Thresholds, due to Villen-Altamirano and Villen-Altamirano).
 - Particles can jump at most one threshold $(j \rightarrow j+1)$ at each time step.
 - When branching there is one parent and remainder are offspring.
 - Splitting occurs with *every* upcrossing, and particles are killed when they leave the threshold in which they were born.
- DPR (Direct Probability Redistribution, due to Haraszti and Townsend). Same as RESTART but
 - Particles can jump multiple thresholds $(j \rightarrow k)$.
 - Offspring are assigned a killing threshold from {j + 1,..., k} according to multinomial distribution, chosen to achieve unbiasedness.
- Same problems as with ordinary splitting, but analysis much more difficult due to dependence on threshold of birth.

イロト 不得下 イヨト イヨト 二日

→ ∃ →

$$V^n(y) = \Delta\left(\left\lfloor \frac{nU(x_n) - nU(y)}{\Delta} \right\rfloor \lor 0\right)$$

→ ∃ →

$$V^n(y) = \Delta\left(\left\lfloor \frac{nU(x_n) - nU(y)}{\Delta} \right\rfloor \lor 0\right)$$

$$C_r^n = \{y : V^n(y) \ge r\Delta\}$$

→ ∃ →

$$V^n(y) = \Delta\left(\left\lfloor \frac{nU(x_n) - nU(y)}{\Delta} \right\rfloor \lor 0\right)$$

$$C_r^n = \{y : V^n(y) \ge r\Delta\}$$

and a mean increase in number of particles per threshold of

$$e^{n\Delta}$$
.

Representations and Bounds for the Second Moment

Exact representations for variance of estimator possible but opaque. Some useful bounds in terms of *original process*. Derived via dynamic programming type arguments:

Representations and Bounds for the Second Moment

Exact representations for variance of estimator possible but opaque. Some useful bounds in terms of *original process*. Derived via dynamic programming type arguments:

$$E\left[\left(\theta^{n}\right)^{2}\right] \geq E_{x_{n}}\left[\sum_{i=0}^{\tau^{n}}e^{-n\left(U(x_{n})-U(X_{i}^{n})\right)\vee0+o(n)}e^{-n2F(X_{i}^{n})}\right],$$

Representations and Bounds for the Second Moment

Exact representations for variance of estimator possible but opaque. Some useful bounds in terms of *original process*. Derived via dynamic programming type arguments:

$$E\left[\left(\theta^{n}\right)^{2}\right] \geq E_{x_{n}}\left[\sum_{i=0}^{\tau^{n}}e^{-n\left(U(x_{n})-U(X_{i}^{n})\right)\vee0+o(n)}e^{-n2F(X_{i}^{n})}\right],$$

$$E\left[(\theta^{n})^{2}\right] \leq E_{x_{n}}\left[\sum_{i=0}^{\tau^{n}} e^{-n\left(U(x_{n})-U(X_{i}^{n})\right)\vee0+o(n)} \times \left[\sum_{j=i}^{\tau^{1,i,n}} e^{-nF(X_{j}^{1,i,n})}\right]\left[\sum_{j=i}^{\tau^{2,i,n}} e^{-nF(X_{j}^{2,i,n})}\right]\right]$$

where $X_j^{k,i,n}$ are (conditionally) independent copies of X_j^n that start at X_i^n at j = i.

Paul Dupuis (Brown University)

Let

$$\mathcal{J}(y,z) = \inf \left\{ I_T(\phi) : \phi(0) = y, \phi(T) = z, T < \infty \right\}.$$

2

July 2008

13 / 17

* ロ > * 個 > * 注 > * 注 >

Paul Dupuis (Brown University)

Let

$$\mathcal{J}(y,z) = \inf \left\{ I_T(\phi) : \phi(0) = y, \phi(T) = z, T < \infty \right\}.$$

We say that U is a subsolution if for all y, z, $U(y) - U(z) \le \mathcal{J}(y, z)$.

- 4 ∃ ≻ 4

Let

$$\mathcal{J}(y,z) = \inf \left\{ I_T(\phi) : \phi(0) = y, \phi(T) = z, T < \infty \right\}.$$

We say that U is a subsolution if for all y, z, $U(y) - U(z) \leq \mathcal{J}(y, z)$. We assume some regularity of F, and that for any compact κ there is $\alpha > 0$ such that

$$\sup_{x\in\kappa,n\in\mathbb{N}}E_xe^{\alpha\tau^n/n}<\infty.$$

Let

$$\mathcal{J}(y,z) = \inf \{ I_T(\phi) : \phi(0) = y, \phi(T) = z, T < \infty \}$$

We say that U is a subsolution if for all y, z, $U(y) - U(z) \le \mathcal{J}(y, z)$. We assume some regularity of F, and that for any compact κ there is $\alpha > 0$ such that

$$\sup_{x\in\kappa,n\in\mathbb{N}}E_xe^{\alpha\tau^n/n}<\infty.$$

Then

• *U* being a subsolution is a *necessary* and *sufficient* condition for subexponential growth in number of particles and total computational effort.

Let

$$\mathcal{J}(y,z) = \inf \{ I_T(\phi) : \phi(0) = y, \phi(T) = z, T < \infty \}$$

We say that U is a subsolution if for all y, z, $U(y) - U(z) \le \mathcal{J}(y, z)$. We assume some regularity of F, and that for any compact κ there is $\alpha > 0$ such that

$$\sup_{x\in\kappa,n\in\mathbb{N}}E_xe^{\alpha\tau^n/n}<\infty.$$

Then

- *U* being a subsolution is a *necessary* and *sufficient* condition for subexponential growth in number of particles and total computational effort.
- If U is a subsolution

$$\lim_{n\to\infty} -\frac{1}{n}\log E\left[\left(\theta^n\right)^2\right] = \inf_{y} \left\{\mathcal{J}(x,y) + \left(U(x) - U(y)\right) \lor 0 + 2F(y)\right\}$$

Asymptotic rate of decay:

$$\inf_{y} \left\{ \mathcal{J}(x,y) + \left(U(x) - U(y) \right) \lor 0 + 2F(y) \right\}.$$

・ロト ・ 日 ・ ・ ヨ ・ ・

3

14 / 17

-

July 2008

Paul Dupuis (Brown University)

Asymptotic rate of decay:

$$\inf_{y} \{ \mathcal{J}(x,y) + (U(x) - U(y)) \lor 0 + 2F(y) \}.$$

Compare to best possible rate of decay:

$$\gamma(x) = 2 \inf_{y} \left\{ \mathcal{J}(x, y) + 2F(y) \right\}.$$

< ∃ > <

Asymptotic rate of decay:

$$\inf_{y} \left\{ \mathcal{J}(x,y) + (U(x) - U(y)) \lor 0 + 2F(y) \right\}.$$

Compare to best possible rate of decay:

$$\gamma(x) = 2 \inf_{y} \left\{ \mathcal{J}(x, y) + 2F(y) \right\}.$$

Achieved, and hence asymptotic optimality, if at minimizing y

$$U(x) - U(y) = \mathcal{J}(x, y).$$

The F-V Quasipotential and Subsolutions

An important example.

Paul Dupuis (Brown University)

< A

- 4 ∃ ≻ 4

An important example. In the context of hitting probabilities, let $A = \{x^*\}$ be stable point.

▲ @ ▶ ▲ ∃ ▶ ▲ ∃

$$Q(y) = \inf \{ I_T(\phi) : \phi(T) = y, T < \infty, \phi(0) = x^* \}.$$

□ ▶ ▲ □ ▶ ▲ □

$$Q(y) = \inf \{ I_T(\phi) : \phi(T) = y, T < \infty, \phi(0) = x^* \}.$$

Then U(y) = -Q(y) is always subsolution with optimal value.

・ 何 ト ・ ヨ ト ・ ヨ ト ・ ヨ

$$Q(y) = \inf \{ I_T(\phi) : \phi(T) = y, T < \infty, \phi(0) = x^* \}.$$

Then U(y) = -Q(y) is always subsolution with optimal value.

A special case.

・ 伺 ト ・ ヨ ト ・ ヨ ト … ヨ

$$Q(y) = \inf \{ I_T(\phi) : \phi(T) = y, T < \infty, \phi(0) = x^* \}.$$

Then U(y) = -Q(y) is always subsolution with optimal value.

A special case. Product form or asymptotically product form stochastic networks, $Q(y) = \langle a, y \rangle$.

<ロ> < ()</p>

Example, Tandem Queue

$$U(y) = -\left[\log\left(\frac{\mu_1}{\lambda}\right)\right]y_1 - \left[\log\left(\frac{\mu_2}{\lambda}\right)\right]y_2,$$

 $\lambda = 1, \mu_1 = \mu_2 = 4.5.$

Paul Dupuis (Brown University)

(日) (四) (三) (三) (三)

Example, Tandem Queue

$$U(y) = -\left[\log\left(\frac{\mu_1}{\lambda}\right)\right]y_1 - \left[\log\left(\frac{\mu_2}{\lambda}\right)\right]y_2,$$

 $\lambda = 1, \mu_1 = \mu_2 = 4.5.$ Shared buffer capacity *n*:

n	30	40	50
Theoretical Value	2.63×10^{-18}	1.03×10^{-24}	3.80×10^{-31}
Estimate	2.63×10^{-18}	1.06×10^{-24}	3.83×10^{-31}
Std. Err.	0.08×10^{-18}	0.04×10^{-24}	0.15×10^{-31}
95% C.I.	$[2.47, 2.79] \times 10^{-18}$	$[0.99, 1.14] \times 10^{-24}$	$[3.54, 4.13] \times 10^{-31}$
Time Taken (s)	3	6	8

< ロ > < 同 > < 三 > < 三

Example, Tandem Queue

$$U(y) = -\left[\log\left(\frac{\mu_1}{\lambda}\right)\right]y_1 - \left[\log\left(\frac{\mu_2}{\lambda}\right)\right]y_2,$$

 $\lambda = 1, \mu_1 = \mu_2 = 4.5.$ Shared buffer capacity *n*:

n	30	40	50
Theoretical Value	2.63×10^{-18}	1.03×10^{-24}	3.80×10^{-31}
Estimate	2.63×10^{-18}	1.06×10^{-24}	3.83×10^{-31}
Std. Err.	0.08×10^{-18}	0.04×10^{-24}	0.15×10^{-31}
95% C.I.	$[2.47, 2.79] \times 10^{-18}$	$[0.99, 1.14] \times 10^{-24}$	$[3.54, 4.13] \times 10^{-31}$
Time Taken (s)	3	6	8

Separate buffers each of capacity *n*:

n	10	20	30
Theoretical Value	9.64×10^{-8}	1.60×10^{-15}	2.64×10^{-23}
Estimate	9.70×10^{-8}	1.57×10^{-15}	2.64×10^{-23}
Std. Err.	0.16×10^{-8}	0.03×10^{-15}	0.06×10^{-23}
95% C.I.	$[9.39, 10.0] \times 10^{-8}$	$[1.51, 1.63] \times 10^{-15}$	$[2.53, 2.75] \times 10^{-23}$
Time Taken (s)	3	12	26

• There are ways to link the subsolution to *n*, improve efficiency while maintaining asymptotic optimality.

< ロ > < 同 > < 三 > < 三

- There are ways to link the subsolution to *n*, improve efficiency while maintaining asymptotic optimality.
- There is an analogous theory for importance sampling, but it imposes stronger conditions on the subsolution. Differences may be significant.