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Problem of Interest and LD Scaling

We consider a discrete time process fX ni g, not necessarily Markov.

Let

X n(i=n) = X ni ; piecewise linear interpolation for t 6= i=n:

Assume fX n(�)g satis�es a Large Deviation Principle with rate function

IT (�) =
Z T

0
L(�; _�)dt

if � is AC and IT (�) =1 else. Heuristically, for T <1, given �, small
� > 0, xn ! x = �(0) and large n

Pxn

(
sup

0�t�T
kX n(t)� �(t)k � �

)
� e�nIT (�):
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Problem of Interest and LD Scaling

To estimate:

Exn

"
�nX
i=0

e�nF (X
n
i )

#
; where �n := inf fi : X ni 2 Mg :

Example:

M = A[B; B rare, A typical, and F (x) = 0, x 2 B, F (x) =1 otherwise.
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Problem of Interest and LD Scaling

Under conditions of regularity on F and bounds on � n:

�1
n
log Exn

"
�nX
i=0

e�nF (X
n
i )

#
! inf fIT (�) + F (�(T )) : �(0) = x ;T <1g

= :
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Some Estimation Generalities

1 General approach: construct iid random variables �n1 ; : : : ; �
n
K with

E�n1 = Exn
hP�n

i=0 e
�nF (X ni )

i
and use the unbiased estimator

q̂n;K (xn)
:
=
�n1 + � � �+ �nK

K
:

2 Performance determined by variance of �n1 , and since unbiased by
E (�n1)

2.
3 By Jensen�s inequality

�1
n
log E (�n1)

2 � �2
n
log E�n1 = �

2
n
log Exn

"
�nX
i=0

e�nF (X
n
i )

#
! 2:

4 An estimator is called asymptotically e¢ cient if

lim inf
n!1

�1
n
log E (�n1)

2 � 2:
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Splitting-Type Schemes

A certain number [proportional to n] of splitting thresholds C nr are de�ned
which enhance migration, e.g., for hitting probabilities:

A single particle is started at x that follows the same law as X n, but
branches into a number of independent copies each time a new level is
reached.
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Splitting-type Schemes

The number of new particles S can be random (though independent of
past data), and a multiplicative weight wi is assigned to the ith
descendent, where

E
SX
i=1

wi = 1:
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Splitting-Type Schemes

Evolution continues until every particle hits M. Let

Nnx = number of particles generated
X ni (j) = trajectory of jth particle,
W n
i (j) = product of weights assigned to j along path up to time i
� n(j) = hitting time of jth trajectory

Then

�n =

N nxX
j=1

�n(j)X
i=0

e�nF (X
n
i (j))W n

i (j):

Problems

If splitting is too infrequent, do not explore state space (standard
Monte Carlo).

If too frequent, we have exponential growth in number of surviving
particles.
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RESTART and DPR

An obvious ine¢ ciency�continuing trajectories far from the places of
interest. When killing trajectories, care needed to avoid bias.

RESTART (REpetitive Simulation Trials After Reaching Thresholds,
due to Villen-Altamirano and Villen-Altamirano).

Particles can jump at most one threshold (j ! j + 1) at each time step.
When branching there is one parent and remainder are o¤spring.
Splitting occurs with every upcrossing, and particles are killed when
they leave the threshold in which they were born.

DPR (Direct Probability Redistribution, due to Haraszti and
Townsend). Same as RESTART but

Particles can jump multiple thresholds (j ! k).
O¤spring are assigned a killing threshold from fj + 1; : : : ; kg according
to multinomial distribution, chosen to achieve unbiasedness.

Same problems as with ordinary splitting, but analysis much more
di¢ cult due to dependence on threshold of birth.
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Implementation Via Importance Functions

Given a continuous function U and � > 0 de�ne thresholds by

V n(y) = �
��
nU(xn)� nU(y)

�

�
_ 0
�

C nr = fy : V n(y) � r�g

and a mean increase in number of particles per threshold of

en�:
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Representations and Bounds for the Second Moment

Exact representations for variance of estimator possible but opaque. Some
useful bounds in terms of original process. Derived via dynamic
programming type arguments:

E
h
(�n)2

i
� Exn

"
�nX
i=0

e�n(U(xn)�U(X
n
i ))_0+o(n)e�n2F (X

n
i )

#
;

E
h
(�n)2

i
� Exn

"
�nX
i=0

e�n(U(xn)�U(X
n
i ))_0+o(n)

�

24� 1;i;nX
j=i

e�nF (X
1;i;n
j )

3524� 2;i;nX
j=i

e�nF (X
2;i;n
j )

3535
where X k ;i ;nj are (conditionally) independent copies of X nj that start at X

n
i

at j = i .
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Statement of Main Results

Let
J (y ; z) = inf fIT (�) : �(0) = y ; �(T ) = z ;T <1g :

We say that U is a subsolution if for all y , z , U(y)� U(z) � J (y ; z): We
assume some regularity of F , and that for any compact � there is � > 0
such that

sup
x2�;n2N

Ex e��
n=n <1.

Then

U being a subsolution is a necessary and su¢ cient condition for
subexponential growth in number of particles and total computational
e¤ort.

If U is a subsolution

lim
n!1

�1
n
log E

h
(�n)2

i
= inf

y
fJ (x ; y) + (U(x)� U(y)) _ 0+ 2F (y)g
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Statement of Main Results

Asymptotic rate of decay:

inf
y
fJ (x ; y) + (U(x)� U(y)) _ 0+ 2F (y)g :

Compare to best possible rate of decay:

(x) = 2 inf
y
fJ (x ; y) + 2F (y)g :

Achieved, and hence asymptotic optimality, if at minimizing y

U(x)� U(y) = J (x ; y):
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The F-V Quasipotential and Subsolutions

An important example.

In the context of hitting probabilities, let
A = fx�g be stable point. De�ne the quasipotential

Q(y) = inf fIT (�) : �(T ) = y ;T <1; �(0) = x�g :

Then U(y) = �Q(y) is always subsolution with optimal value.

A special case. Product form or asymptotically product form stochastic
networks, Q(y) = ha; yi :
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Example, Tandem Queue

U(y) = �
h
log
��1
�

�i
y1 �

h
log
��2
�

�i
y2;

� = 1; �1 = �2 = 4:5:

Shared bu¤er capacity n:

n 30 40 50
Theoretical Value 2.63 × 10?18 1.03 × 10?24 3.80 × 10?31

Estimate 2.63 × 10?18 1.06 × 10?24 3.83 × 10?31

Std. Err. 0.08 × 10?18 0.04 × 10?24 0.15 × 10?31

95% C.I. ß2.47,2.79à × 10?18 ß0.99,1.14à × 10?24 ß3.54,4.13à × 10?31

Time Taken (s) 3 6 8

Separate bu¤ers each of capacity n:

n 10 20 30
Theoretical Value 9.64 × 10?8 1.60 × 10?15 2.64 × 10?23

Estimate 9.70 × 10?8 1.57 × 10?15 2.64 × 10?23

Std. Err. 0.16 × 10?8 0.03 × 10?15 0.06 × 10?23

95% C.I. ß9.39,10.0à × 10?8 ß1.51, 1.63à × 10?15 ß2.53,2.75à × 10?23

Time Taken (s) 3 12 26

Paul Dupuis (Brown University) July 2008 16 / 17



Example, Tandem Queue

U(y) = �
h
log
��1
�

�i
y1 �

h
log
��2
�

�i
y2;

� = 1; �1 = �2 = 4:5:
Shared bu¤er capacity n:

n 30 40 50
Theoretical Value 2.63 × 10?18 1.03 × 10?24 3.80 × 10?31

Estimate 2.63 × 10?18 1.06 × 10?24 3.83 × 10?31

Std. Err. 0.08 × 10?18 0.04 × 10?24 0.15 × 10?31

95% C.I. ß2.47,2.79à × 10?18 ß0.99, 1.14à × 10?24 ß3.54,4.13à × 10?31

Time Taken (s) 3 6 8

Separate bu¤ers each of capacity n:

n 10 20 30
Theoretical Value 9.64 × 10?8 1.60 × 10?15 2.64 × 10?23

Estimate 9.70 × 10?8 1.57 × 10?15 2.64 × 10?23

Std. Err. 0.16 × 10?8 0.03 × 10?15 0.06 × 10?23

95% C.I. ß9.39,10.0à × 10?8 ß1.51,1.63à × 10?15 ß2.53,2.75à × 10?23

Time Taken (s) 3 12 26

Paul Dupuis (Brown University) July 2008 16 / 17



Example, Tandem Queue

U(y) = �
h
log
��1
�

�i
y1 �

h
log
��2
�

�i
y2;

� = 1; �1 = �2 = 4:5:
Shared bu¤er capacity n:

n 30 40 50
Theoretical Value 2.63 × 10?18 1.03 × 10?24 3.80 × 10?31

Estimate 2.63 × 10?18 1.06 × 10?24 3.83 × 10?31

Std. Err. 0.08 × 10?18 0.04 × 10?24 0.15 × 10?31

95% C.I. ß2.47,2.79à × 10?18 ß0.99, 1.14à × 10?24 ß3.54,4.13à × 10?31

Time Taken (s) 3 6 8

Separate bu¤ers each of capacity n:

n 10 20 30
Theoretical Value 9.64 × 10?8 1.60 × 10?15 2.64 × 10?23

Estimate 9.70 × 10?8 1.57 × 10?15 2.64 × 10?23

Std. Err. 0.16 × 10?8 0.03 × 10?15 0.06 × 10?23

95% C.I. ß9.39,10.0à × 10?8 ß1.51,1.63à × 10?15 ß2.53,2.75à × 10?23

Time Taken (s) 3 12 26

Paul Dupuis (Brown University) July 2008 16 / 17



Remarks

There are ways to link the subsolution to n, improve e¢ ciency while
maintaining asymptotic optimality.

There is an analogous theory for importance sampling, but it imposes
stronger conditions on the subsolution. Di¤erences may be signi�cant.
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