Optimisation under probability constraints: an approach via quantiles

Felisa J. Vázquez-Abad

Joint work with Pierre Carpentier (ENSTA, France) and Guy Cohen (ENPC, France) Honours project Andrea Macrae (Melbourne)

Department of Mathematics and Statistics University of Melbourne, Australia

Conference in Honour of Reuven's Birthday, 14-18 July 2008

Problem Formulation

Probability Constraints
Example
Constrained Optimisation
The Arrow-Hurwicz Algorithm: Lagrange Duality

Probability Constraints

- Model qualitative risk: fatal failure or death (if we eat a bad cheese, it does not matter how much we ate beyond the fatal dose)

Problem Formulation

Probability Constraints

- Model qualitative risk: fatal failure or death (if we eat a bad cheese, it does not matter how much we ate beyond the fatal dose)
- Chemical processes control pressure, temperature, etc

Probability Constraints

- Model qualitative risk: fatal failure or death (if we eat a bad cheese, it does not matter how much we ate beyond the fatal dose)
- Chemical processes control pressure, temperature, etc
- Financial investments to control risk of ruin, shortage of funds, etc

Probability Constraints

- Model qualitative risk: fatal failure or death (if we eat a bad cheese, it does not matter how much we ate beyond the fatal dose)
- Chemical processes control pressure, temperature, etc
- Financial investments to control risk of ruin, shortage of funds, etc
- Telecommunication networks to control loss of information, loss probability, error rates, etc

Probability Constraints

- Model qualitative risk: fatal failure or death (if we eat a bad cheese, it does not matter how much we ate beyond the fatal dose)
- Chemical processes control pressure, temperature, etc
- Financial investments to control risk of ruin, shortage of funds, etc
- Telecommunication networks to control loss of information, loss probability, error rates, etc
- Service industry to control measures of client satisfaction

Problem Formulation

Probability Constraints
Example
Constrained Optimisation
The Arrow-Hurwicz Algorithm: Lagrange Duality

Probability Constraints

- Problem: $g(\cdot, u): \mathbb{R} \rightarrow \mathbb{R}, \xi$ a continuous rv $\min J(u) \quad$ s.t. $\mathbb{P}(g(\xi, u) \leq \alpha) \geq p$.

Problem Formulation

Probability Constraints

- Problem: $g(\cdot, u): \mathbb{R} \rightarrow \mathbb{R}, \xi$ a continuous rv

$$
\min J(u) \quad \text { s.t. } \mathbb{P}(g(\xi, u) \leq \alpha) \geq p
$$

- Let $\zeta(u)=g(\xi, u)$, then

$$
\mathbb{P}\{g(\xi, u) \leq \alpha\} \geq p \quad \Rightarrow \quad \mathbb{P}\{\zeta(u) \leq \alpha\} \geq p,
$$

Probability Constraints

- Problem: $g(\cdot, u): \mathbb{R} \rightarrow \mathbb{R}, \xi$ a continuous rv

$$
\min J(u) \quad \text { s.t. } \mathbb{P}(g(\xi, u) \leq \alpha) \geq p .
$$

- Let $\zeta(u)=g(\xi, u)$, then

$$
\mathbb{P}\{g(\xi, u) \leq \alpha\} \geq p \quad \Rightarrow \quad \mathbb{P}\{\zeta(u) \leq \alpha\} \geq p
$$

- Constraint $B(u)=p-F_{\zeta(u)}(\alpha)=p-F\left[g^{-1}(\alpha, u)\right]$

Probability Constraints

Probability Constraints

- Problem: $g(\cdot, u): \mathbb{R} \rightarrow \mathbb{R}, \xi$ a continuous rv

$$
\min J(u) \quad \text { s.t. } \mathbb{P}(g(\xi, u) \leq \alpha) \geq p
$$

- Let $\zeta(u)=g(\xi, u)$, then

$$
\mathbb{P}\{g(\xi, u) \leq \alpha\} \geq p \quad \Rightarrow \quad \mathbb{P}\{\zeta(u) \leq \alpha\} \geq p
$$

- Constraint $B(u)=p-F_{\zeta(u)}(\alpha)=p-F\left[g^{-1}(\alpha, u)\right]$

Distribution Formulation

$$
\min _{u} J(u)
$$

subject to: $B(u) \leq 0$

Problem Formulation

Example

- We borrow one unit $\$ \$$ at interest rate I, pay at end of period
- Decision: fraction u_{1} to invest at fixed rate $b<1$
- Decision: fraction u_{2} to invest at risky rate $\xi, \mathbb{E}[\xi]>/$
- Consumption is $1-u_{1}-u_{2}$, "utility" or satisfaction from consumption is $U(\cdot)$ concave non decreasing.

Example

- We borrow one unit $\$ \$$ at interest rate I, pay at end of period
- Decision: fraction u_{1} to invest at fixed rate $b<1$
- Decision: fraction u_{2} to invest at risky rate $\xi, \mathbb{E}[\xi]>/$
- Consumption is $1-u_{1}-u_{2}$, "utility" or satisfaction from consumption is $U(\cdot)$ concave non decreasing.

$$
\begin{array}{r}
\max _{u_{1}, u_{2}} \mathbb{E}\left(U\left(1-u_{1}-u_{2}\right)+(1+b) u_{1}+(1+\xi) u_{2}\right) \\
u \geq 0, \quad u_{1}+u_{2} \leq 1 \\
\mathbb{P}\left((1+b) u_{1}+(1+\xi) u_{2} \geq 1+\prime\right) \geq p
\end{array}
$$

s.t.

Problem Formulation

Example: the challenges

Challenges with the problem include:

- Non-linear optimisation problem of the form $\min _{u} J(u), \quad$ s.t. $\quad B(u) \leq 0$.

Example: the challenges

Challenges with the problem include:

- Non-linear optimisation problem of the form $\min _{u} J(u), \quad$ s.t. $\quad B(u) \leq 0$.
- Black or Grey box models: input (u, ξ) and output $g(\xi, u), J(u), J^{\prime}(u)$, but distribution of ξ unknown: how to use statistical estimation for simulation-based optimisation?

Example: the challenges

Challenges with the problem include:

- Non-linear optimisation problem of the form $\min _{u} J(u), \quad$ s.t. $\quad B(u) \leq 0$.
- Black or Grey box models: input (u, ξ) and output $g(\xi, u), J(u), J^{\prime}(u)$, but distribution of ξ unknown: how to use statistical estimation for simulation-based optimisation?
- Gradient-based algorithms (stochastic) require

Example: the challenges

Challenges with the problem include:

- Non-linear optimisation problem of the form
$\min _{u} J(u), \quad$ s.t. $\quad B(u) \leq 0$.
- Black or Grey box models: input (u, ξ) and output $g(\xi, u), J(u), J^{\prime}(u)$, but distribution of ξ unknown: how to use statistical estimation for simulation-based optimisation?
- Gradient-based algorithms (stochastic) require
- convexity of $B(u)=p-\mathbb{P}(g(\xi, u) \leq \alpha)$

Example: the challenges

Challenges with the problem include:

- Non-linear optimisation problem of the form $\min _{u} J(u), \quad$ s.t. $\quad B(u) \leq 0$.
- Black or Grey box models: input (u, ξ) and output $g(\xi, u), J(u), J^{\prime}(u)$, but distribution of ξ unknown: how to use statistical estimation for simulation-based optimisation?
- Gradient-based algorithms (stochastic) require
- convexity of $B(u)=p-\mathbb{P}(g(\xi, u) \leq \alpha)$
- estimation of gradient of a probability

Example: the challenges

Challenges with the problem include:

- Non-linear optimisation problem of the form $\min _{u} J(u), \quad$ s.t. $\quad B(u) \leq 0$.
- Black or Grey box models: input (u, ξ) and output $g(\xi, u), J(u), J^{\prime}(u)$, but distribution of ξ unknown: how to use statistical estimation for simulation-based optimisation?
- Gradient-based algorithms (stochastic) require
- convexity of $B(u)=p-\mathbb{P}(g(\xi, u) \leq \alpha)$!!!!
- estimation of gradient of a probability

Example: the challenges

Challenges with the problem include:

- Non-linear optimisation problem of the form $\min _{u} J(u), \quad$ s.t. $\quad B(u) \leq 0$.
- Black or Grey box models: input (u, ξ) and output $g(\xi, u), J(u), J^{\prime}(u)$, but distribution of ξ unknown: how to use statistical estimation for simulation-based optimisation?
- Gradient-based algorithms (stochastic) require
- convexity of $B(u)=p-\mathbb{P}(g(\xi, u) \leq \alpha)$!!!!
- estimation of gradient of a probability (discontinuities, lack of model for distribution)

Problem Formulation
Research Question
Contributions
Example
Concluding Remarks

Example: Optimal Cost

Figure: Optimal cost as a function of "confidence" level p.

Non-convexity and non saturated but active constraints.

Constrained Optimisation

Theorem

For a convex problem (strictly convex $J(u)$ and $B(u)$) the optimal (u^{*}, λ^{*}) is a saddle point and solves:

$$
\min _{u \in \mathbb{R}^{d}} \max _{\lambda \geq 0} L(u, \lambda)=\max _{\lambda \geq 0} \min _{u \in \mathbb{R}^{d}} L(u, \lambda)
$$

The Arrow Hurwicz Algorithm is:

$$
\begin{aligned}
u_{n+1} & =u_{n}-\epsilon_{n}\left(\nabla_{u} J\left(u_{n}\right)+\lambda_{n}^{T} \nabla_{u} B\left(u_{n}\right)\right) \\
\lambda_{n+1} & =\max \left(0, \lambda_{n}+\epsilon_{n} B\left(u_{n+1}\right)\right)
\end{aligned}
$$

Constrained Optimisation

Theorem

For a convex problem (strictly convex $J(u)$ and $B(u)$) the optimal (u^{*}, λ^{*}) is a saddle point and solves:

$$
\min _{u \in \mathbb{R}^{d}} \max _{\lambda \geq 0} L(u, \lambda)=\max _{\lambda \geq 0} \min _{u \in \mathbb{R}^{d}} L(u, \lambda)
$$

The Arrow Hurwicz Algorithm is:

$$
\begin{aligned}
& u_{n+1}=u_{n}-\epsilon_{n}\left(\nabla_{u} J\left(u_{n}\right)+\lambda_{n}^{T} \nabla_{u} B\left(u_{n}\right)\right) \text { grad } \min \\
& \lambda_{n+1}=\max \left(0, \lambda_{n}+\epsilon_{n} B\left(u_{n+1}\right)\right)
\end{aligned}
$$

Constrained Optimisation

Theorem

For a convex problem (strictly convex $J(u)$ and $B(u)$) the optimal (u^{*}, λ^{*}) is a saddle point and solves:

$$
\min _{u \in \mathbb{R}^{d}} \max _{\lambda \geq 0} L(u, \lambda)=\max _{\lambda \geq 0} \min _{u \in \mathbb{R}^{d}} L(u, \lambda)
$$

The Arrow Hurwicz Algorithm is:

$$
\begin{aligned}
& u_{n+1}=u_{n}-\epsilon_{n}\left(\nabla_{u} J\left(u_{n}\right)+\lambda_{n}^{T} \nabla_{u} B\left(u_{n}\right)\right) \text { grad min } \\
& \lambda_{n+1}=\max \left(0, \lambda_{n}+\epsilon_{n} B\left(u_{n+1}\right)\right) \text { grad max }
\end{aligned}
$$

The Arrow-Hurwicz Algorithm: Lagrange Duality

The Arrow-Hurwicz Algorithm: Convergence

Theorem

Let $x_{n+1}=x_{n}+\epsilon V\left(x_{n}\right)$ and let $x_{\epsilon}(t)=x_{n}, t \in[n \epsilon,(n+1) \epsilon)$. If V is a Lipschitz continuous and bounded function, then as $\epsilon \rightarrow 0$, $x_{\epsilon}(\cdot)$ converges (in the sup norm) to the solution of the ODE:

$$
\frac{d x(t)}{d t}=V[x(t)]
$$

The Arrow-Hurwicz Algorithm: Convergence

Theorem

Let $x_{n+1}=x_{n}+\epsilon V\left(x_{n}\right)$ and let $x_{\epsilon}(t)=x_{n}, t \in[n \epsilon,(n+1) \epsilon)$. If V is a Lipschitz continuous and bounded function, then as $\epsilon \rightarrow 0$, $x_{\epsilon}(\cdot)$ converges (in the sup norm) to the solution of the ODE:

$$
\frac{d x(t)}{d t}=V[x(t)]
$$

- Convexity is not required for this property to hold.

The Arrow-Hurwicz Algorithm: Convergence

Theorem

Let $x_{n+1}=x_{n}+\epsilon V\left(x_{n}\right)$ and let $x_{\epsilon}(t)=x_{n}, t \in[n \epsilon,(n+1) \epsilon)$. If V is a Lipschitz continuous and bounded function, then as $\epsilon \rightarrow 0$, $x_{\epsilon}(\cdot)$ converges (in the sup norm) to the solution of the ODE:

$$
\frac{d x(t)}{d t}=V[x(t)]
$$

- Convexity is not required for this property to hold.
- Local convergence around stable points: study only the behaviour of active constraints: $\lambda>0$ (continuity).

The Arrow-Hurwicz Algorithm: Convergence

Theorem

Let $x_{n+1}=x_{n}+\epsilon V\left(x_{n}\right)$ and let $x_{\epsilon}(t)=x_{n}, t \in[n \epsilon,(n+1) \epsilon)$. If V is a Lipschitz continuous and bounded function, then as $\epsilon \rightarrow 0$, $x_{\epsilon}(\cdot)$ converges (in the sup norm) to the solution of the ODE:

$$
\frac{d x(t)}{d t}=V[x(t)]
$$

- Convexity is not required for this property to hold.
- Local convergence around stable points: study only the behaviour of active constraints: $\lambda>0$ (continuity).
- Allows to characterise behaviour around stationary points.

The A-H Algorithm: Convergence and Optimality.

- The vector field of A-H has stable points that are saddlepoints of the Lagrangian (convex problems).
- Linearise around a stable point x^{*} using Taylor expansion

$$
\begin{aligned}
& V(x)=V\left(x^{*}\right)+\mathbb{A}\left(x-x^{*}\right)+(O)\left(\left\|x-x^{*}\right\|^{2}\right) \\
& x(t)-x^{*} \approx e^{\mathbb{A} t}, \quad \mathbb{A}=\nabla V\left(x^{*}\right)^{T}
\end{aligned}
$$

- \mathbb{A} Hurwitz: $\Re(\operatorname{eigenv}(\mathbb{A}))<0$ then x^{*} attractor (limit).

The A-H Algorithm: Convergence and Optimality.

- The vector field of A-H has stable points that are saddlepoints of the Lagrangian (convex problems).
- Linearise around a stable point x^{*} using Taylor expansion

$$
\begin{aligned}
& V(x)=V\left(x^{*}\right)+\mathbb{A}\left(x-x^{*}\right)+(O)\left(\left\|x-x^{*}\right\|^{2}\right) \\
& x(t)-x^{*} \approx e^{\mathbb{A} t}, \quad \mathbb{A}=\nabla V\left(x^{*}\right)^{T}
\end{aligned}
$$

- \mathbb{A} Hurwitz: $\Re(\operatorname{eigenv}(\mathbb{A}))<0$ then x^{*} attractor (limit).

Result

Convex problem, $x^{*}=\left(u^{*}, \lambda^{*}\right)$ optimal, constraint qualification $\nabla B\left(x^{*}\right)$ l.i. vector. Then \mathbb{A} is Hurwitz, implying that the optimal solution and multiplier are attractors of the ODE.

The A-H Algorithm: Convergence and Optimality.

- The vector field of A-H has stable points that are saddlepoints of the Lagrangian (convex problems).
- Linearise around a stable point x^{*} using Taylor expansion

$$
\begin{aligned}
& V(x)=V\left(x^{*}\right)+\mathbb{A}\left(x-x^{*}\right)+(O)\left(\left\|x-x^{*}\right\|^{2}\right) \\
& x(t)-x^{*} \approx e^{\mathbb{A} t}, \quad \mathbb{A}=\nabla V\left(x^{*}\right)^{T}
\end{aligned}
$$

- \mathbb{A} Hurwitz: $\Re(\operatorname{eigenv}(\mathbb{A}))<0$ then x^{*} attractor (limit).

Result

Convex problem, $x^{*}=\left(u^{*}, \lambda^{*}\right)$ optimal, constraint qualification $\nabla B\left(x^{*}\right)$ l.i. vector. Then \mathbb{A} is Hurwitz, implying that the optimal solution and multiplier are attractors of the ODE.

Non-convex problems: $V(x)$ for insight into algorithm behaviour ${ }^{\text {En }}$

Vector Fields: examples

Example

$$
\min \frac{1}{2} u^{2}, \quad \text { s.t. } \quad \mathbb{P}(\xi-u \leq \alpha) \geq p \quad\left(u^{0}=0\right)
$$

$$
B(u)=p-F(u+\alpha) .
$$

Case 1: uniform distribution

$$
F(\xi)=0.5+0.5(\xi-0.5) \mathbf{1}_{\{-0.5<\xi \leq 0.5\}}
$$

Case 2: "beta"-like distribution

$$
F(\xi)=0.5+0.5(2 \xi)^{3} \mathbf{1}_{\{-0.5<\xi \leq 0.5\}}
$$

Vector Fields: examples

- Depicted: Case 2.
picture aside

Vector Fields: examples

- Depicted: Case 2.
- Unconstrained optimum at $u^{0}=0$.

Vector Fields: examples

- Depicted: Case 2.
- Unconstrained optimum at $u^{0}=0$.
- Feasible region is $F(u+1) \geq 0.7$
picture aside

Vector Fields: examples

- Depicted: Case 2.
- Unconstrained optimum at $u^{0}=0$.
- Feasible region is $F(u+1) \geq 0.7$
- Solution is

$$
u^{*} \approx 1.36 \neq u^{0}
$$

picture aside

Vector Fields: examples

- Depicted: Case 2.
- Unconstrained optimum at $u^{0}=0$.
- Feasible region is $F(u+1) \geq 0.7$
- Solution is $u^{*} \approx 1.36 \neq u^{0}$.
- Probability constraint is active at optimum. picture aside

Vector Fields: examples

Figure: Left: Case 1: convex. Right: Case 2: non convex.

Vector Fields: examples

Figure: Left: Case 1: convex. Right: Case 2: non convex.

Contribution

Conjecture: lack of convexity is the problem.

Contribution

Conjecture: lack of convexity is the problem. ... or is it?

Problem Formulation

Contribution

Conjecture: lack of convexity is the problem. ... or is it?

Figure: Case 1: convex.

Problem Formulation

Example
Concluding Remarks

Contribution

Figure: Convex distribution: zoom out

Contribution

- Conjecture: lack of convexity is the problem.

Contribution

- Conjecture: lack of convexity is the problem.
- Identification of problem: distributions with bounded support (potential numerical problem for any distribution)

Contribution

- Conjecture: lack of convexity is the problem.
- Identification of problem: distributions with bounded support (potential numerical problem for any distribution)
- Re statement of problem using a Quantile Formulation.

Pathology from bounded support

- For each $u, g(\cdot, u)$ is monotone increasing, $h(u, \xi)=g_{u}^{-1}(x)$.
- $g(\cdot, u)$ is continuously differentiable in u.
- Bounded support $F(\xi)=0$, for all $\xi \leq \underline{\xi}$ and assume that $\mathcal{U}=\{u: h(u, a) \leq \underline{\xi}\} \neq \emptyset$

Theorem

Assume a unique optimal solution $\left(u^{*}, \lambda^{*}\right)$ to the constrained problem

$$
\min J(u) \quad \text { s.t. } B(u)=p-\mathbb{P}(g(\xi, u) \leq \alpha) \leq 0
$$

and that the unconstrained minimum $u^{0}=\arg \min _{u} J(u) \in \mathcal{U}$. Then the A-H algorithm diverges when initialising "close" to u^{0}; specifically, $u_{n} \rightarrow u^{0} \neq u^{*}$ and $\lambda_{n} \rightarrow+\infty$.

Pathology from bounded support

Proof.

- A-H algorithm has a vector field:

$$
\begin{aligned}
& u^{\prime}=-J^{\prime}(u)+\lambda f\left(g^{-1}(\alpha, u)\right)\left(g^{-1}(\alpha, u)\right)^{\prime} \\
& \lambda^{\prime}=\left(p-F\left(g^{-1}(\alpha, u)\right) \mathbf{1}_{\{\lambda \geq 0\}}\right.
\end{aligned}
$$

- When initialising inside $\mathcal{U}, F(u)=f(u)=0$ so the algorithm behaves:

$$
\begin{array}{lll}
u^{\prime}=-J^{\prime}(u) & \Rightarrow & u \rightarrow u^{0} \\
\lambda^{\prime}=p & \Rightarrow & \lambda \rightarrow+\infty
\end{array}
$$

Quantile Formulation

Remark

Common methods to deal with no convexity can be used (penalties, augmented Lagrangian, A-H "beta" method for convexification, etc), but they will also suffer from the pathology of bounded support.

Quantile Formulation

Remark

Common methods to deal with no convexity can be used (penalties, augmented Lagrangian, A-H "beta" method for convexification, etc), but they will also suffer from the pathology of bounded support.

- Fact: if distribution function is convex (concave) then its inverse the quantile function is concave (convex)
- Conjecture: use one or another to deal with regions of non convexity
- But our results show that Quantile formulation always works! (under convexity of $g(\xi, \cdot)$).

Quantile Formulation

Lemma

Suppose that for every $u, g(\cdot, u)$ is monotone increasing. Then

$$
\mathbb{P}(g(\xi, u) \leq \alpha) \geq p \Leftrightarrow g(Q(p), u) \leq \alpha .
$$

Problem Formulation

Quantile Formulation

Lemma

Suppose that for every $u, g(\cdot, u)$ is monotone increasing. Then

$$
\mathbb{P}(g(\xi, u) \leq \alpha) \geq p \Leftrightarrow g(Q(p), u) \leq \alpha
$$

- Suppose u is such that $g(Q(p), u) \leq \alpha$
- By monotonicity. for all $\xi \leq Q(p), g(\xi, u) \leq \alpha)$
- Thus $\mathbb{P}(g(\xi, u) \leq \alpha)=\mathbb{P}(\xi \leq Q(p)) \geq p$

Quantile Formulation

Lemma

Suppose that for every $u, g(\cdot, u)$ is monotone increasing. Then

$$
\mathbb{P}(g(\xi, u) \leq \alpha) \geq p \Leftrightarrow g(Q(p), u) \leq \alpha
$$

- Suppose u is such that $g(Q(p), u) \leq \alpha$
- By monotonicity. for all $\xi \leq Q(p), g(\xi, u) \leq \alpha)$
- Thus $\mathbb{P}(g(\xi, u) \leq \alpha)=\mathbb{P}(\xi \leq Q(p)) \geq p$

Quantile Formulation

$$
\min J(u) \text { s.t. } g(Q(p), u) \leq \alpha
$$

Problem Formulation

Quantile Formulation

$$
\begin{gathered}
\min J(u) \text { s.t. } g(Q(p), u) \leq \alpha \\
L(u, \lambda)=J(u)+\lambda(g(Q(p), u)-\alpha) .
\end{gathered}
$$

Theorem

If $J(\cdot)$ and $g(x, \cdot)$ are convex for every x, where x is a continuous random variable, then independently of the distribution function, AH has a unique attractor at the optimum.

Problem Formulation

Quantile Formulation

$$
\begin{gathered}
\min J(u) \text { s.t. } g(Q(p), u) \leq \alpha \\
L(u, \lambda)=J(u)+\lambda(g(Q(p), u)-\alpha) .
\end{gathered}
$$

Theorem

If $J(\cdot)$ and $g(x, \cdot)$ are convex for every x, where x is a continuous random variable, then independently of the distribution function, AH has a unique attractor at the optimum.

$$
\begin{aligned}
& \dot{u}_{t}=-\nabla J\left(u_{t}\right)-\nabla_{u} g\left(Q(p), u_{t}\right) \\
& \dot{\lambda_{t}}=(g(Q(p), u)-\alpha) 1_{\left\{\lambda_{t} \geq 0\right\}}
\end{aligned}
$$

Problem Formulation

Quantile Formulation

$$
\begin{gathered}
\min J(u) \text { s.t. } g(Q(p), u) \leq \alpha \\
L(u, \lambda)=J(u)+\lambda(g(Q(p), u)-\alpha) .
\end{gathered}
$$

Theorem

If $J(\cdot)$ and $g(x, \cdot)$ are convex for every x, where x is a continuous random variable, then independently of the distribution function, AH has a unique attractor at the optimum.

$$
\begin{aligned}
& \dot{\dot{t}_{t}}=-\nabla J\left(u_{t}\right)-\nabla_{u} g\left(Q(p), u_{t}\right) \\
& \dot{\lambda_{t}}=(g(Q(p), u)-\alpha) 1_{\left\{\lambda_{t} \geq 0\right\}}
\end{aligned}
$$

If decreasing then use $g(Q(1-p), u)$

Quantile Formulation

Figure: Quantile formulation

Example

- We borrow one unit $\$ \$$ at interest rate I, pay at end of period
- Decision: fraction u_{1} to invest at fixed rate $b<1$
- Decision: fraction u_{2} to invest at risky rate $\xi, \mathbb{E}[\xi]>/$
- Consumption is $1-u_{1}-u_{2}$, "utility" or satisfaction from consumption is $U(\cdot)$ concave non decreasing.

Example

- We borrow one unit $\$ \$$ at interest rate I, pay at end of period
- Decision: fraction u_{1} to invest at fixed rate $b<1$
- Decision: fraction u_{2} to invest at risky rate $\xi, \mathbb{E}[\xi]>/$
- Consumption is $1-u_{1}-u_{2}$, "utility" or satisfaction from consumption is $U(\cdot)$ concave non decreasing.

$$
\begin{array}{r}
\max _{u_{1}, u_{2}} \mathbb{E}\left(U\left(1-u_{1}-u_{2}\right)+(1+b) u_{1}+(1+\xi) u_{2}\right) \\
u \geq 0, \quad u_{1}+u_{2} \leq 1 \\
\mathbb{P}\left((1+b) u_{1}+(1+\xi) u_{2} \geq 1+\prime\right) \geq p
\end{array}
$$

s.t.

Example: Quantile Formulation

Here the constraint function is decreasing:

$$
\begin{aligned}
& g\left(u_{1}, u-2, \xi\right)=-(1+b) u_{1}-(1+\xi) u_{2}, a=I+1, \text { so we use: } \\
& B\left(u_{1}, u_{2}\right)=(I+1)-(1+b) u_{1}-(1+Q(1-p)) u_{2} .
\end{aligned}
$$

Example: Quantile Formulation

Here the constraint function is decreasing:

$$
\begin{aligned}
g\left(u_{1}, u-2, \xi\right) & =-(1+b) u_{1}-(1+\xi) u_{2}, a=I+1, \text { so we use: } \\
B\left(u_{1}, u_{2}\right)= & (I+1)-(1+b) u_{1}-(1+Q(1-p)) u_{2} . \\
\dot{u_{1}} & =-U^{\prime}\left(1-u_{1}-u_{2}\right)-\lambda_{1} b-\lambda_{2} \\
\dot{u_{2}} & =-U^{\prime}\left(1-u_{1}-u_{2}\right)-\lambda_{1} Q(1-p)-\lambda_{2} \\
\dot{\lambda_{1}} & =(I+1)-(1+b) u_{1}-(1+\xi) u_{2} \\
\dot{\lambda_{2}} & =u_{1}+u_{2}-1,
\end{aligned}
$$

Fast convergence to optimal point, no problem for the algorithm. Note that now the multiplier gives sensitivity w.r.t. the level of constraint $a(-I+1)$ rather than to p.

On-going work

- Quantile formulation promises better algorithmic behaviour.
- Can the formulation be extended to piecewise monotonic functions?
- How to use the approach for simulation: open question.
- How to generalise to several variables: open question.
- Current research with France: aerospace control, needs a dynamical system and $g(\cdot, u)$ depends on whole trajectory.

The End

- Thank you for your attention
- Questions?

