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Probability Constraints

Model qualitative risk: fatal failure or death (if we eat a bad
cheese, it does not matter how much we ate beyond the fatal
dose)

Chemical processes control pressure, temperature, etc

Financial investments to control risk of ruin, shortage of
funds, etc

Telecommunication networks to control loss of information,
loss probability, error rates, etc

Service industry to control measures of client satisfaction
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Probability Constraints

Problem: g(·, u) : R→ R, ξ a continuous rv
min J(u) s.t. P(g(ξ, u) ≤ α) ≥ p.

Let ζ(u) = g(ξ, u), then

P{g(ξ, u) ≤ α} ≥ p ⇒ P{ζ(u) ≤ α} ≥ p,

Constraint B(u) = p − Fζ(u)(α) = p − F [g−1(α, u)]

Distribution Formulation

min
u

J(u)

subject to: B(u) ≤ 0
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Example

We borrow one unit $$ at interest rate l , pay at end of period

Decision: fraction u1 to invest at fixed rate b < l

Decision: fraction u2 to invest at risky rate ξ,E[ξ] > l

Consumption is 1− u1 − u2, “utility” or satisfaction from
consumption is U(·) concave non decreasing.

max
u1,u2

E
(
U(1− u1 − u2) + (1 + b)u1 + (1 + ξ)u2

)
s.t. u ≥ 0 , u1 + u2 ≤ 1 ,

P
(
(1 + b)u1 + (1 + ξ)u2 ≥ 1 + l

)
≥ p .
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Example: the challenges

Challenges with the problem include:

Non-linear optimisation problem of the form
minu J(u), s.t. B(u) ≤ 0.

Black or Grey box models: input (u, ξ) and output
g(ξ, u), J(u), J ′(u), but distribution of ξ unknown: how to use
statistical estimation for simulation-based optimisation?

Gradient-based algorithms (stochastic) require

convexity of B(u) = p − P(g(ξ, u) ≤ α)

!!!!

estimation of gradient of a probability

(discontinuities, lack of
model for distribution)
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Example: Optimal Cost
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-1.35

-1.3

-1.25

Figure: Optimal cost as a function of “confidence” level p.

Non-convexity and non saturated but active constraints.
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Constrained Optimisation

Theorem

For a convex problem (strictly convex J(u) and B(u)) the optimal
(u∗, λ∗) is a saddle point and solves:

min
u∈Rd

max
λ≥0

L(u, λ) = max
λ≥0

min
u∈Rd

L(u, λ)

The Arrow Hurwicz Algorithm is:

un+1 = un − εn
(
∇uJ(un) + λT

n ∇uB(un)
)

grad min

λn+1 = max(0, λn + εnB(un+1))

grad max

Felisa J. Vázquez-Abad Probability Constraints



Problem Formulation
Research Question

Contributions
Example

Concluding Remarks

Probability Constraints
Example
Constrained Optimisation
The Arrow-Hurwicz Algorithm: Lagrange Duality

Constrained Optimisation

Theorem

For a convex problem (strictly convex J(u) and B(u)) the optimal
(u∗, λ∗) is a saddle point and solves:

min
u∈Rd

max
λ≥0

L(u, λ) = max
λ≥0

min
u∈Rd

L(u, λ)

The Arrow Hurwicz Algorithm is:

un+1 = un − εn
(
∇uJ(un) + λT

n ∇uB(un)
)

grad min

λn+1 = max(0, λn + εnB(un+1))

grad max

Felisa J. Vázquez-Abad Probability Constraints



Problem Formulation
Research Question

Contributions
Example

Concluding Remarks

Probability Constraints
Example
Constrained Optimisation
The Arrow-Hurwicz Algorithm: Lagrange Duality

Constrained Optimisation

Theorem

For a convex problem (strictly convex J(u) and B(u)) the optimal
(u∗, λ∗) is a saddle point and solves:

min
u∈Rd

max
λ≥0

L(u, λ) = max
λ≥0

min
u∈Rd

L(u, λ)

The Arrow Hurwicz Algorithm is:

un+1 = un − εn
(
∇uJ(un) + λT

n ∇uB(un)
)

grad min

λn+1 = max(0, λn + εnB(un+1)) grad max

Felisa J. Vázquez-Abad Probability Constraints



Problem Formulation
Research Question

Contributions
Example

Concluding Remarks

Probability Constraints
Example
Constrained Optimisation
The Arrow-Hurwicz Algorithm: Lagrange Duality

The Arrow-Hurwicz Algorithm: Convergence

Theorem

Let xn+1 = xn + εV (xn) and let xε(t) = xn, t ∈ [nε, (n + 1)ε). If V
is a Lipschitz continuous and bounded function, then as ε→ 0,
xε(·) converges (in the sup norm) to the solution of the ODE:

dx(t)

dt
= V [x(t)]

Convexity is not required for this property to hold.

Local convergence around stable points: study only the
behaviour of active constraints: λ > 0 (continuity).

Allows to characterise behaviour around stationary points.

Felisa J. Vázquez-Abad Probability Constraints



Problem Formulation
Research Question

Contributions
Example

Concluding Remarks

Probability Constraints
Example
Constrained Optimisation
The Arrow-Hurwicz Algorithm: Lagrange Duality

The Arrow-Hurwicz Algorithm: Convergence

Theorem

Let xn+1 = xn + εV (xn) and let xε(t) = xn, t ∈ [nε, (n + 1)ε). If V
is a Lipschitz continuous and bounded function, then as ε→ 0,
xε(·) converges (in the sup norm) to the solution of the ODE:

dx(t)

dt
= V [x(t)]

Convexity is not required for this property to hold.

Local convergence around stable points: study only the
behaviour of active constraints: λ > 0 (continuity).

Allows to characterise behaviour around stationary points.

Felisa J. Vázquez-Abad Probability Constraints



Problem Formulation
Research Question

Contributions
Example

Concluding Remarks

Probability Constraints
Example
Constrained Optimisation
The Arrow-Hurwicz Algorithm: Lagrange Duality

The Arrow-Hurwicz Algorithm: Convergence

Theorem

Let xn+1 = xn + εV (xn) and let xε(t) = xn, t ∈ [nε, (n + 1)ε). If V
is a Lipschitz continuous and bounded function, then as ε→ 0,
xε(·) converges (in the sup norm) to the solution of the ODE:

dx(t)

dt
= V [x(t)]

Convexity is not required for this property to hold.

Local convergence around stable points: study only the
behaviour of active constraints: λ > 0 (continuity).

Allows to characterise behaviour around stationary points.

Felisa J. Vázquez-Abad Probability Constraints



Problem Formulation
Research Question

Contributions
Example

Concluding Remarks

Probability Constraints
Example
Constrained Optimisation
The Arrow-Hurwicz Algorithm: Lagrange Duality

The Arrow-Hurwicz Algorithm: Convergence

Theorem

Let xn+1 = xn + εV (xn) and let xε(t) = xn, t ∈ [nε, (n + 1)ε). If V
is a Lipschitz continuous and bounded function, then as ε→ 0,
xε(·) converges (in the sup norm) to the solution of the ODE:

dx(t)

dt
= V [x(t)]

Convexity is not required for this property to hold.

Local convergence around stable points: study only the
behaviour of active constraints: λ > 0 (continuity).

Allows to characterise behaviour around stationary points.

Felisa J. Vázquez-Abad Probability Constraints



Problem Formulation
Research Question

Contributions
Example

Concluding Remarks

Probability Constraints
Example
Constrained Optimisation
The Arrow-Hurwicz Algorithm: Lagrange Duality

The A-H Algorithm: Convergence and Optimality.

The vector field of A-H has stable points that are saddlepoints
of the Lagrangian (convex problems).

Linearise around a stable point x∗ using Taylor expansion

V (x) = V (x∗) + A(x − x∗) + (O)(‖x − x∗‖2),

x(t)− x∗ ≈ eAt , A = ∇V (x∗)T

A Hurwitz: <(eigenv(A)) < 0 then x∗ attractor (limit).

Result

Convex problem, x∗ = (u∗, λ∗) optimal, constraint qualification
∇B(x∗) l.i. vector. Then A is Hurwitz, implying that the optimal
solution and multiplier are attractors of the ODE.

Non-convex problems: V (x) for insight into algorithm behaviour.
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Vector Fields: examples

Example

min 1
2 u2, s.t. P(ξ − u ≤ α) ≥ p (u0 = 0)

B(u) = p − F (u + α).

Case 1: uniform distribution

F (ξ) = 0.5 + 0.5(ξ − 0.5)1{−0.5<ξ≤0.5}

Case 2: “beta”-like distribution

F (ξ) = 0.5 + 0.5(2ξ)31{−0.5<ξ≤0.5}
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Vector Fields: examples

Depicted: Case 2.

Unconstrained
optimum at u0 = 0.

Feasible region is
F (u + 1) ≥ 0.7

Solution is
u∗ ≈ 1.36 6= u0.

Probability constraint
is active at optimum.

picture aside
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Vector Fields: examples

Figure: Left: Case 1: convex. Right: Case 2: non convex.
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Contribution

Conjecture: lack of convexity is the problem.

. . . or is it?

Figure: Case 1: convex.
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Figure: Convex distribution: zoom out

Felisa J. Vázquez-Abad Probability Constraints



Problem Formulation
Research Question

Contributions
Example

Concluding Remarks

Overview of Contributions
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Quantile formulation

Contribution

Conjecture: lack of convexity is the problem.

Identification of problem: distributions with bounded support
(potential numerical problem for any distribution)

Re statement of problem using a Quantile Formulation.
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Pathology from bounded support

For each u, g(·, u) is monotone increasing, h(u, ξ) = g−1
u (x).

g(·, u) is continuously differentiable in u.

Bounded support F (ξ) = 0, for all ξ ≤ ξ and assume that
U = {u : h(u, a) ≤ ξ} 6= ∅

Theorem

Assume a unique optimal solution (u∗, λ∗) to the constrained
problem

min J(u) s.t. B(u) = p − P(g(ξ, u) ≤ α) ≤ 0.

and that the unconstrained minimum u0 = arg minu J(u) ∈ U .
Then the A-H algorithm diverges when initialising “close” to u0;
specifically, un → u0 6= u∗ and λn → +∞.
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Pathology from bounded support

Proof.

A-H algorithm has a vector field:

u′ = −J ′(u) + λf (g−1(α, u))(g−1(α, u))′

λ′ = (p − F (g−1(α, u))1{λ≥0}

When initialising inside U , F (u) = f (u) = 0 so the algorithm
behaves:

u′ = −J ′(u) ⇒ u → u0

λ′ = p ⇒ λ→ +∞
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Quantile Formulation

Remark

Common methods to deal with no convexity can be used
(penalties, augmented Lagrangian, A-H “beta” method for
convexification, etc), but they will also suffer from the pathology
of bounded support.

Fact: if distribution function is convex (concave) then its
inverse the quantile function is concave (convex)

Conjecture: use one or another to deal with regions of non
convexity

But our results show that Quantile formulation always works!
(under convexity of g(ξ, ·)).
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Quantile Formulation

Lemma

Suppose that for every u, g(·, u) is monotone increasing. Then

P(g(ξ, u) ≤ α) ≥ p ⇔ g(Q(p), u) ≤ α.

Suppose u is such that g(Q(p), u) ≤ α
By monotonicity. for all ξ ≤ Q(p), g(ξ, u) ≤ α)

Thus P(g(ξ, u) ≤ α) = P(ξ ≤ Q(p)) ≥ p

Quantile Formulation

min J(u) s.t. g(Q(p), u) ≤ α
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Quantile Formulation

min J(u) s.t. g(Q(p), u) ≤ α
L(u, λ) = J(u) + λ(g(Q(p), u)− α).

Theorem

If J(·) and g(x , ·) are convex for every x, where x is a continuous
random variable, then independently of the distribution function,
AH has a unique attractor at the optimum.

u̇t = −∇J(ut)−∇u g(Q(p), ut)

λ̇t = (g(Q(p), u)− α)1{λt≥0}

If decreasing then use g(Q(1− p), u)
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Figure: Quantile formulation
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Example

We borrow one unit $$ at interest rate l , pay at end of period

Decision: fraction u1 to invest at fixed rate b < l

Decision: fraction u2 to invest at risky rate ξ,E[ξ] > l

Consumption is 1− u1 − u2, “utility” or satisfaction from
consumption is U(·) concave non decreasing.

max
u1,u2

E
(
U(1− u1 − u2) + (1 + b)u1 + (1 + ξ)u2

)
s.t. u ≥ 0 , u1 + u2 ≤ 1 ,

P
(
(1 + b)u1 + (1 + ξ)u2 ≥ 1 + l

)
≥ p .
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Example: Quantile Formulation

Here the constraint function is decreasing:
g(u1, u − 2, ξ) = −(1 + b)u1 − (1 + ξ)u2, a = l + 1, so we use:
B(u1, u2) = (l + 1)− (1 + b)u1 − (1 + Q(1− p))u2.

u̇1 = −U ′(1− u1 − u2)− λ1b − λ2

u̇2 = −U ′(1− u1 − u2)− λ1Q(1− p) − λ2

λ̇1 = (l + 1)− (1 + b)u1 − (1 + ξ)u2

λ̇2 = u1 + u2 − 1,

Fast convergence to optimal point, no problem for the algorithm.
Note that now the multiplier gives sensitivity w.r.t. the level of
constraint a(−l + 1) rather than to p.
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On-going work

Quantile formulation promises better algorithmic behaviour.

Can the formulation be extended to piecewise monotonic
functions?

How to use the approach for simulation: open question.

How to generalise to several variables: open question.

Current research with France: aerospace control, needs a
dynamical system and g(·, u) depends on whole trajectory.
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The End

Thank you for your attention

Questions?

Felisa J. Vázquez-Abad Probability Constraints


	Problem Formulation
	Probability Constraints
	Example
	Constrained Optimisation
	The Arrow-Hurwicz Algorithm: Lagrange Duality

	Research Question
	Distribution Formulation
	Vector Fields Arrow-Hurwitz

	Contributions
	Overview of Contributions
	Pathology from bounded support
	Quantile formulation

	Example
	Concluding Remarks
	Concluding Remarks


