Optimisation under probability constraints: an approach via quantiles

Felisa J. Vázquez-Abad

Joint work with Pierre Carpentier (ENSTA, France) and Guy Cohen (ENPC, France) Honours project Andrea Macrae (Melbourne)

> Department of Mathematics and Statistics University of Melbourne, Australia

Conference in Honour of Reuven's Birthday, 14-18 July 2008

Probability Constraints Example Constrained Optimisation The Arrow-Hurwicz Algorithm: Lagrange Duality

▲ 同 ▶ → 三 ▶

Probability Constraints

• Model qualitative risk: fatal failure or death (if we eat a bad cheese, it does not matter how much we ate beyond the fatal dose)

Probability Constraints Example Constrained Optimisation The Arrow-Hurwicz Algorithm: Lagrange Duality

- Model qualitative risk: fatal failure or death (if we eat a bad cheese, it does not matter how much we ate beyond the fatal dose)
- Chemical processes control pressure, temperature, etc

Probability Constraints Example Constrained Optimisation The Arrow-Hurwicz Algorithm: Lagrange Duality

- Model qualitative risk: fatal failure or death (if we eat a bad cheese, it does not matter how much we ate beyond the fatal dose)
- Chemical processes control pressure, temperature, etc
- Financial investments to control risk of ruin, shortage of funds, etc

Probability Constraints Example Constrained Optimisation The Arrow-Hurwicz Algorithm: Lagrange Duality

- Model qualitative risk: fatal failure or death (if we eat a bad cheese, it does not matter how much we ate beyond the fatal dose)
- Chemical processes control pressure, temperature, etc
- Financial investments to control risk of ruin, shortage of funds, etc
- Telecommunication networks to control loss of information, loss probability, error rates, etc

Probability Constraints Example Constrained Optimisation The Arrow-Hurwicz Algorithm: Lagrange Duality

- Model qualitative risk: fatal failure or death (if we eat a bad cheese, it does not matter how much we ate beyond the fatal dose)
- Chemical processes control pressure, temperature, etc
- Financial investments to control risk of ruin, shortage of funds, etc
- Telecommunication networks to control loss of information, loss probability, error rates, etc
- Service industry to control measures of client satisfaction

Probability Constraints Example Constrained Optimisation The Arrow-Hurwicz Algorithm: Lagrange Duality

- 4 同 2 4 日 2 4 日 2

Probability Constraints

• Problem: $g(\cdot, u) \colon \mathbb{R} \to \mathbb{R}$, ξ a continuous rv min J(u) s.t. $\mathbb{P}(g(\xi, u) \le \alpha) \ge p$.

Probability Constraints Example Constrained Optimisation The Arrow-Hurwicz Algorithm: Lagrange Duality

- 4 同 2 4 日 2 4 日 2

Probability Constraints

• Problem: $g(\cdot, u) \colon \mathbb{R} \to \mathbb{R}$, ξ a continuous rv min J(u) s.t. $\mathbb{P}(g(\xi, u) \le \alpha) \ge p$.

• Let
$$\zeta(u) = g(\xi, u)$$
, then

$$\mathbb{P}\{g(\xi, u) \leq lpha\} \geq p \quad \Rightarrow \quad \mathbb{P}\{\zeta(u) \leq lpha\} \geq p,$$

Probability Constraints Example Constrained Optimisation The Arrow-Hurwicz Algorithm: Lagrange Duality

- 4 同 2 4 日 2 4 日 2

Probability Constraints

• Problem: $g(\cdot, u) \colon \mathbb{R} \to \mathbb{R}$, ξ a continuous rv min J(u) s.t. $\mathbb{P}(g(\xi, u) \le \alpha) \ge p$.

• Let
$$\zeta(u) = g(\xi, u)$$
, then

$$\mathbb{P}\{ m{g}(\xi, m{u}) \leq lpha \} \geq m{p} \quad \Rightarrow \quad \mathbb{P}\{\zeta(m{u}) \leq lpha \} \geq m{p},$$

• Constraint
$$B(u) = p - F_{\zeta(u)}(\alpha) = p - F[g^{-1}(\alpha, u)]$$

Probability Constraints Example Constrained Optimisation The Arrow-Hurwicz Algorithm: Lagrange Duality

< 白⇒ < (

-

Probability Constraints

• Problem: $g(\cdot, u) \colon \mathbb{R} \to \mathbb{R}$, ξ a continuous rv min J(u) s.t. $\mathbb{P}(g(\xi, u) \le \alpha) \ge p$.

• Let
$$\zeta(u) = g(\xi, u)$$
, then

$$\mathbb{P}\{m{g}(\xi,m{u})\leqlpha\}\geqm{p} \quad \Rightarrow \quad \mathbb{P}\{\zeta(m{u})\leqlpha\}\geqm{p},$$

• Constraint
$$B(u) = p - F_{\zeta(u)}(\alpha) = p - F[g^{-1}(\alpha, u)]$$

Distribution Formulation

$$\min_{u} J(u)$$

subject to: $B(u) \leq 0$

Felisa J. Vázquez-Abad Probability Constraints

Probability Constraints Example Constrained Optimisation The Arrow-Hurwicz Algorithm: Lagrange Duality

・ 同・ ・ ヨ・

Example

- We borrow one unit \$\$ at interest rate I, pay at end of period
- Decision: fraction u_1 to invest at fixed rate b < l
- Decision: fraction u₂ to invest at risky rate ξ, E[ξ] > I
- Consumption is $1 u_1 u_2$, "utility" or satisfaction from consumption is $U(\cdot)$ concave non decreasing.

Probability Constraints Example Constrained Optimisation The Arrow-Hurwicz Algorithm: Lagrange Duality

<ロト < 同ト < 三ト

Example

- We borrow one unit \$\$ at interest rate I, pay at end of period
- Decision: fraction u_1 to invest at fixed rate b < l
- Decision: fraction u_2 to invest at risky rate $\xi, \mathbb{E}[\xi] > I$
- Consumption is $1 u_1 u_2$, "utility" or satisfaction from consumption is $U(\cdot)$ concave non decreasing.

s.t.
$$\begin{split} \max_{u_1,u_2} \mathbb{E} \big(U(1-u_1-u_2) + (1+b)u_1 + (1+\xi)u_2 \big) \\ & u \geq 0 \,, \quad u_1+u_2 \leq 1 \,, \\ \mathbb{P} \big((1+b)u_1 + (1+\xi)u_2 \geq 1 + l \big) \geq p \,. \end{split}$$

Probability Constraints Example Constrained Optimisation The Arrow-Hurwicz Algorithm: Lagrange Duality

イロト イポト イヨト イヨト

Example: the challenges

Challenges with the problem include:

 Non-linear optimisation problem of the form min_u J(u), s.t. B(u) ≤ 0.

Probability Constraints Example Constrained Optimisation The Arrow-Hurwicz Algorithm: Lagrange Duality

(4 同) (1 日) (1 日)

Example: the challenges

- Non-linear optimisation problem of the form $\min_u J(u)$, s.t. $B(u) \le 0$.
- Black or Grey box models: input (u, ξ) and output g(ξ, u), J(u), J'(u), but distribution of ξ unknown: how to use statistical estimation for simulation-based optimisation?

Probability Constraints Example Constrained Optimisation The Arrow-Hurwicz Algorithm: Lagrange Duality

(4 同) (4 回) (4 回)

Example: the challenges

- Non-linear optimisation problem of the form $\min_u J(u)$, s.t. $B(u) \le 0$.
- Black or Grey box models: input (u, ξ) and output
 g(ξ, u), J(u), J'(u), but distribution of ξ unknown: how to use
 statistical estimation for simulation-based optimisation?
- Gradient-based algorithms (stochastic) require

Probability Constraints Example Constrained Optimisation The Arrow-Hurwicz Algorithm: Lagrange Duality

Example: the challenges

- Non-linear optimisation problem of the form $\min_u J(u)$, s.t. $B(u) \le 0$.
- Black or Grey box models: input (u, ξ) and output
 g(ξ, u), J(u), J'(u), but distribution of ξ unknown: how to use
 statistical estimation for simulation-based optimisation?
- Gradient-based algorithms (stochastic) require
 - convexity of $B(u) = p \mathbb{P}(g(\xi, u) \le \alpha)$

Probability Constraints Example Constrained Optimisation The Arrow-Hurwicz Algorithm: Lagrange Duality

- 4 同 2 4 日 2 4 日 2

Example: the challenges

- Non-linear optimisation problem of the form $\min_u J(u)$, s.t. $B(u) \le 0$.
- Black or Grey box models: input (u, ξ) and output g(ξ, u), J(u), J'(u), but distribution of ξ unknown: how to use statistical estimation for simulation-based optimisation?
- Gradient-based algorithms (stochastic) require
 - convexity of $B(u) = p \mathbb{P}(g(\xi, u) \le \alpha)$
 - estimation of gradient of a probability

Probability Constraints Example Constrained Optimisation The Arrow-Hurwicz Algorithm: Lagrange Duality

Example: the challenges

- Non-linear optimisation problem of the form $\min_u J(u)$, s.t. $B(u) \le 0$.
- Black or Grey box models: input (u, ξ) and output
 g(ξ, u), J(u), J'(u), but distribution of ξ unknown: how to use
 statistical estimation for simulation-based optimisation?
- Gradient-based algorithms (stochastic) require
 - convexity of $B(u) = p \mathbb{P}(g(\xi, u) \le \alpha)$!!!!
 - estimation of gradient of a probability

Probability Constraints Example Constrained Optimisation The Arrow-Hurwicz Algorithm: Lagrange Duality

イロト イポト イヨト イヨト

Example: the challenges

- Non-linear optimisation problem of the form $\min_u J(u)$, s.t. $B(u) \leq 0$.
- Black or Grey box models: input (u, ξ) and output g(ξ, u), J(u), J'(u), but distribution of ξ unknown: how to use statistical estimation for simulation-based optimisation?
- Gradient-based algorithms (stochastic) require
 - convexity of $B(u) = p \mathbb{P}(g(\xi, u) \le \alpha)$!!!!
 - estimation of gradient of a probability (discontinuities, lack of model for distribution)

Problem Formulation

Research Question Contributions Example Concluding Remarks Probability Constraints Example Constrained Optimisation The Arrow-Hurwicz Algorithm: Lagrange Duality

Example: Optimal Cost

Figure: Optimal cost as a function of "confidence" level p.

Non-convexity and non saturated but active constraints.

Probability Constraints Example Constrained Optimisation The Arrow-Hurwicz Algorithm: Lagrange Duality

< A > <

Constrained Optimisation

Theorem

For a convex problem (strictly convex J(u) and B(u)) the optimal (u^*, λ^*) is a saddle point and solves:

$$\min_{u\in\mathbb{R}^d}\max_{\lambda\geq 0}L(u,\lambda)=\max_{\lambda\geq 0}\min_{u\in\mathbb{R}^d}L(u,\lambda)$$

The Arrow Hurwicz Algorithm is:

$$u_{n+1} = u_n - \epsilon_n \left(\nabla_u J(u_n) + \lambda_n^T \nabla_u B(u_n) \right)$$
$$\lambda_{n+1} = \max(0, \lambda_n + \epsilon_n B(u_{n+1}))$$

Probability Constraints Example Constrained Optimisation The Arrow-Hurwicz Algorithm: Lagrange Duality

< A > <

Constrained Optimisation

Theorem

For a convex problem (strictly convex J(u) and B(u)) the optimal (u^*, λ^*) is a saddle point and solves:

$$\min_{u\in\mathbb{R}^d}\max_{\lambda\geq 0}L(u,\lambda)=\max_{\lambda\geq 0}\min_{u\in\mathbb{R}^d}L(u,\lambda)$$

The Arrow Hurwicz Algorithm is:

$$u_{n+1} = u_n - \epsilon_n \left(\nabla_u J(u_n) + \lambda_n^T \nabla_u B(u_n) \right) \text{grad min}$$

$$\lambda_{n+1} = \max(0, \lambda_n + \epsilon_n B(u_{n+1}))$$

Probability Constraints Example Constrained Optimisation The Arrow-Hurwicz Algorithm: Lagrange Duality

< A > <

Constrained Optimisation

Theorem

For a convex problem (strictly convex J(u) and B(u)) the optimal (u^*, λ^*) is a saddle point and solves:

$$\min_{u\in\mathbb{R}^d}\max_{\lambda\geq 0}L(u,\lambda)=\max_{\lambda\geq 0}\min_{u\in\mathbb{R}^d}L(u,\lambda)$$

The Arrow Hurwicz Algorithm is:

$$u_{n+1} = u_n - \epsilon_n \left(\nabla_u J(u_n) + \lambda_n^T \nabla_u B(u_n) \right) \text{grad min}$$

$$\lambda_{n+1} = \max(0, \lambda_n + \epsilon_n B(u_{n+1})) \text{ grad max}$$

Probability Constraints Example Constrained Optimisation The Arrow-Hurwicz Algorithm: Lagrange Duality

The Arrow-Hurwicz Algorithm: Convergence

Theorem

Let $x_{n+1} = x_n + \epsilon V(x_n)$ and let $x_{\epsilon}(t) = x_n$, $t \in [n\epsilon, (n+1)\epsilon)$. If V is a Lipschitz continuous and bounded function, then as $\epsilon \to 0$, $x_{\epsilon}(\cdot)$ converges (in the sup norm) to the solution of the ODE:

$$\frac{dx(t)}{dt} = V[x(t)]$$

Probability Constraints Example Constrained Optimisation The Arrow-Hurwicz Algorithm: Lagrange Duality

The Arrow-Hurwicz Algorithm: Convergence

Theorem

Let $x_{n+1} = x_n + \epsilon V(x_n)$ and let $x_{\epsilon}(t) = x_n$, $t \in [n\epsilon, (n+1)\epsilon)$. If V is a Lipschitz continuous and bounded function, then as $\epsilon \to 0$, $x_{\epsilon}(\cdot)$ converges (in the sup norm) to the solution of the ODE:

$$\frac{dx(t)}{dt} = V[x(t)]$$

• Convexity is not required for this property to hold.

Probability Constraints Example Constrained Optimisation The Arrow-Hurwicz Algorithm: Lagrange Duality

The Arrow-Hurwicz Algorithm: Convergence

Theorem

Let $x_{n+1} = x_n + \epsilon V(x_n)$ and let $x_{\epsilon}(t) = x_n$, $t \in [n\epsilon, (n+1)\epsilon)$. If V is a Lipschitz continuous and bounded function, then as $\epsilon \to 0$, $x_{\epsilon}(\cdot)$ converges (in the sup norm) to the solution of the ODE:

$$\frac{dx(t)}{dt} = V[x(t)]$$

- Convexity is not required for this property to hold.
- Local convergence around stable points: study only the behaviour of active constraints: λ > 0 (continuity).

Probability Constraints Example Constrained Optimisation The Arrow-Hurwicz Algorithm: Lagrange Duality

The Arrow-Hurwicz Algorithm: Convergence

Theorem

Let $x_{n+1} = x_n + \epsilon V(x_n)$ and let $x_{\epsilon}(t) = x_n$, $t \in [n\epsilon, (n+1)\epsilon)$. If V is a Lipschitz continuous and bounded function, then as $\epsilon \to 0$, $x_{\epsilon}(\cdot)$ converges (in the sup norm) to the solution of the ODE:

$$\frac{dx(t)}{dt} = V[x(t)]$$

- Convexity is not required for this property to hold.
- Local convergence around stable points: study only the behaviour of active constraints: $\lambda > 0$ (continuity).
- Allows to characterise behaviour around stationary points.

Probability Constraints Example Constrained Optimisation The Arrow-Hurwicz Algorithm: Lagrange Duality

The A-H Algorithm: Convergence and Optimality.

- The vector field of A-H has stable points that are saddlepoints of the Lagrangian (convex problems).
- Linearise around a stable point x^* using Taylor expansion

$$V(x) = V(x^*) + \mathbb{A}(x - x^*) + (O)(||x - x^*||^2),$$

 $x(t) - x^* \approx e^{\mathbb{A}t}, \quad \mathbb{A} = \nabla V(x^*)^T$

A Hurwitz: ℜ(eigenv(A)) < 0 then x^{*} attractor (limit).

Probability Constraints Example Constrained Optimisation The Arrow-Hurwicz Algorithm: Lagrange Duality

< ロ > < 同 > < 回 > <

The A-H Algorithm: Convergence and Optimality.

- The vector field of A-H has stable points that are saddlepoints of the Lagrangian (convex problems).
- Linearise around a stable point x^* using Taylor expansion

$$V(x) = V(x^*) + \mathbb{A}(x - x^*) + (O)(||x - x^*||^2),$$

$$x(t) - x^* \approx e^{\mathbb{A}t}, \quad \mathbb{A} = \nabla V(x^*)^T$$

• A Hurwitz: $\Re(eigenv(\mathbb{A})) < 0$ then x^* attractor (limit).

Result

Convex problem, $x^* = (u^*, \lambda^*)$ optimal, constraint qualification $\nabla B(x^*)$ l.i. vector. Then A is Hurwitz, implying that the optimal solution and multiplier are attractors of the ODE.

Probability Constraints Example Constrained Optimisation The Arrow-Hurwicz Algorithm: Lagrange Duality

The A-H Algorithm: Convergence and Optimality.

- The vector field of A-H has stable points that are saddlepoints of the Lagrangian (convex problems).
- Linearise around a stable point x^* using Taylor expansion

$$V(x) = V(x^*) + \mathbb{A}(x - x^*) + (O)(||x - x^*||^2),$$

$$x(t) - x^* \approx e^{\mathbb{A}t}, \quad \mathbb{A} = \nabla V(x^*)^T$$

• A Hurwitz: $\Re(eigenv(\mathbb{A})) < 0$ then x^* attractor (limit).

Result

Convex problem, $x^* = (u^*, \lambda^*)$ optimal, constraint qualification $\nabla B(x^*)$ l.i. vector. Then A is Hurwitz, implying that the optimal solution and multiplier are attractors of the ODE.

Non-convex problems: V(x) for insight into algorithm behaviour.

Vector Fields Arrow-Hurwitz

(4月) (4日) (4日)

Vector Fields: examples

Example $\min \frac{1}{2}u^2$, s.t. $\mathbb{P}(\xi - u \le \alpha) \ge p$ $(u^0 = 0)$

$$B(u) = p - F(u + \alpha).$$

Case 1: uniform distribution

$$F(\xi) = 0.5 + 0.5(\xi - 0.5) \mathbf{1}_{\{-0.5 < \xi \le 0.5\}}$$

Case 2: "beta"-like distribution

$$F(\xi) = 0.5 + 0.5(2\xi)^3 \mathbf{1}_{\{-0.5 < \xi \le 0.5\}}$$

Vector Fields Arrow-Hurwitz

Vector Fields: examples

Felisa J. Vázquez-Abad

Vector Fields Arrow-Hurwitz

Vector Fields: examples

Felisa J. Vázquez-Abad

Vector Fields Arrow-Hurwitz

Vector Fields: examples

- Depicted: Case 2.
- Unconstrained optimum at $u^0 = 0$.
- Feasible region is $F(u+1) \ge 0.7$

- ▲ 🖓 🕨 - ▲ 🖻

picture aside

Felisa J. Vázquez-Abad

Vector Fields Arrow-Hurwitz

Vector Fields: examples

- Depicted: Case 2.
- Unconstrained optimum at $u^0 = 0$.
- Feasible region is $F(u+1) \ge 0.7$
- Solution is $u^* \approx 1.36 \neq u^0$.

picture aside

Felisa J. Vázquez-Abad

Vector Fields Arrow-Hurwitz

Vector Fields: examples

- Depicted: Case 2.
- Unconstrained optimum at $u^0 = 0$.
- Feasible region is $F(u+1) \ge 0.7$
- Solution is $u^* \approx 1.36 \neq u^0$.

< 17 ▶

• Probability constraint is active at optimum.

picture aside

Vector Fields Arrow-Hurwitz

Image: A image: A

Vector Fields: examples

Figure: Left: Case 1: convex. Right: Case 2: non convex.

Vector Fields Arrow-Hurwitz

Vector Fields: examples

Figure: Left: Case 1: convex. Right: Case 2: non convex.

Contribution

Conjecture: lack of convexity is the problem.

Overview of Contributions Pathology from bounded suppor Quantile formulation

<ロト < 同ト < 三ト

B> B

Contribution

Overview of Contributions Pathology from bounded support Quantile formulation

э

Conjecture: lack of convexity is the problem. ... or is it?

Overview of Contributions Pathology from bounded support Quantile formulation

- ▲ 🖓 🕨 - ▲ 🖻

Contribution

Conjecture: lack of convexity is the problem. ... or is it?

Figure: Case 1: convex.

Overview of Contributions Pathology from bounded support Quantile formulation

Contribution

Figure: Convex distribution: zoom out

Overview of Contributions Pathology from bounded support Quantile formulation

э

• Conjecture: lack of convexity is the problem.

Overview of Contributions Pathology from bounded support Quantile formulation

・ 同・ ・ ヨ・

- Conjecture: lack of convexity is the problem.
- Identification of problem: distributions with bounded support (potential numerical problem for any distribution)

Overview of Contributions Pathology from bounded support Quantile formulation

< A >

- Conjecture: lack of convexity is the problem.
- Identification of problem: distributions with bounded support (potential numerical problem for any distribution)
- Re statement of problem using a Quantile Formulation.

Overview of Contributions Pathology from bounded support Quantile formulation

Pathology from bounded support

- For each u, $g(\cdot, u)$ is monotone increasing, $h(u, \xi) = g_u^{-1}(x)$.
- $g(\cdot, u)$ is continuously differentiable in u.
- Bounded support $F(\xi) = 0$, for all $\xi \leq \underline{\xi}$ and assume that $\mathcal{U} = \{u \colon h(u, a) \leq \underline{\xi}\} \neq \emptyset$

Theorem

Assume a unique optimal solution (u^*, λ^*) to the constrained problem

min
$$J(u)$$
 s.t. $B(u) = p - \mathbb{P}(g(\xi, u) \le \alpha) \le 0$.

and that the unconstrained minimum $u^0 = \arg \min_u J(u) \in \mathcal{U}$. Then the A-H algorithm diverges when initialising "close" to u^0 ; specifically, $u_n \to u^0 \neq u^*$ and $\lambda_n \to +\infty$.

Overview of Contributions Pathology from bounded support Quantile formulation

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Pathology from bounded support

Proof.

• A-H algorithm has a vector field:

$$u' = -J'(u) + \lambda f(g^{-1}(\alpha, u))(g^{-1}(\alpha, u))$$
$$\lambda' = (p - F(g^{-1}(\alpha, u))\mathbf{1}_{\{\lambda \ge 0\}}$$

When initialising inside U, F(u) = f(u) = 0 so the algorithm behaves:

$$u' = -J'(u) \qquad \Rightarrow \qquad u \to u^0$$

 $\lambda' = p \qquad \Rightarrow \qquad \lambda \to +\infty$

Overview of Contributions Pathology from bounded support Quantile formulation

< fi ▶ <

Quantile Formulation

Remark

Common methods to deal with no convexity can be used (penalties, augmented Lagrangian, A-H "beta" method for convexification, etc), but they will also suffer from the pathology of bounded support.

Overview of Contributions Pathology from bounded support Quantile formulation

Quantile Formulation

Remark

Common methods to deal with no convexity can be used (penalties, augmented Lagrangian, A-H "beta" method for convexification, etc), but they will also suffer from the pathology of bounded support.

- Fact: if distribution function is convex (concave) then its inverse the quantile function is concave (convex)
- Conjecture: use one or another to deal with regions of non convexity
- But our results show that Quantile formulation always works! (under convexity of $g(\xi, \cdot)$).

Overview of Contributions Pathology from bounded support Quantile formulation

イロト イポト イヨト イヨト

Quantile Formulation

Lemma

Suppose that for every u, $g(\cdot, u)$ is monotone increasing. Then

 $\mathbb{P}(g(\xi, u) \leq \alpha) \geq p \Leftrightarrow g(Q(p), u) \leq \alpha.$

Overview of Contributions Pathology from bounded support Quantile formulation

▲□ ► < □ ► </p>

Quantile Formulation

Lemma

Suppose that for every u, $g(\cdot, u)$ is monotone increasing. Then

 $\mathbb{P}(g(\xi, u) \leq \alpha) \geq p \Leftrightarrow g(Q(p), u) \leq \alpha.$

- Suppose u is such that $g(Q(p), u) \leq \alpha$
- By monotonicity. for all $\xi \leq Q(p), g(\xi, u) \leq \alpha$)
- Thus $\mathbb{P}(g(\xi, u) \leq \alpha) = \mathbb{P}(\xi \leq Q(p)) \geq p$

Overview of Contributions Pathology from bounded support Quantile formulation

< (T) >

Quantile Formulation

Lemma

Suppose that for every u, $g(\cdot, u)$ is monotone increasing. Then

 $\mathbb{P}(g(\xi, u) \leq \alpha) \geq p \Leftrightarrow g(Q(p), u) \leq \alpha.$

- Suppose u is such that $g(Q(p), u) \leq \alpha$
- By monotonicity. for all $\xi \leq Q(p), g(\xi, u) \leq \alpha$)
- Thus $\mathbb{P}(g(\xi, u) \leq \alpha) = \mathbb{P}(\xi \leq Q(p)) \geq p$

Quantile Formulation

min J(u) s.t. $g(Q(p), u) \leq \alpha$

Overview of Contributions Pathology from bounded support Quantile formulation

< A > <

Quantile Formulation

min
$$J(u)$$
 s.t. $g(Q(p), u) \le \alpha$
 $L(u, \lambda) = J(u) + \lambda(g(Q(p), u) - \alpha).$

Theorem

If $J(\cdot)$ and $g(x, \cdot)$ are convex for every x, where x is a continuous random variable, then independently of the distribution function, AH has a unique attractor at the optimum.

Overview of Contributions Pathology from bounded support Quantile formulation

< A > <

Quantile Formulation

min
$$J(u)$$
 s.t. $g(Q(p), u) \le \alpha$
 $L(u, \lambda) = J(u) + \lambda(g(Q(p), u) - \alpha).$

Theorem

If $J(\cdot)$ and $g(x, \cdot)$ are convex for every x, where x is a continuous random variable, then independently of the distribution function, AH has a unique attractor at the optimum.

$$\dot{u_t} = -\nabla J(u_t) - \nabla_u g(Q(p), u_t)$$

 $\dot{\lambda_t} = (g(Q(p), u) - \alpha) \mathbb{1}_{\{\lambda_t \ge 0\}}$

Overview of Contributions Pathology from bounded support Quantile formulation

Image: A mathematic states and a mathematic states

Quantile Formulation

min
$$J(u)$$
 s.t. $g(Q(p), u) \le \alpha$
 $L(u, \lambda) = J(u) + \lambda(g(Q(p), u) - \alpha).$

Theorem

If $J(\cdot)$ and $g(x, \cdot)$ are convex for every x, where x is a continuous random variable, then independently of the distribution function, AH has a unique attractor at the optimum.

$$\dot{u_t} = -
abla J(u_t) -
abla_u g(Q(p), u_t)$$

 $\dot{\lambda_t} = (g(Q(p), u) - lpha) \mathbf{1}_{\{\lambda_t \ge 0\}}$

If decreasing then use g(Q(1-p), u)

Overview of Contributions Pathology from bounded support Quantile formulation

Quantile Formulation

Figure: Quantile formulation

Example

- We borrow one unit \$\$ at interest rate I, pay at end of period
- Decision: fraction u_1 to invest at fixed rate b < l
- Decision: fraction u₂ to invest at risky rate ξ, E[ξ] > I
- Consumption is $1 u_1 u_2$, "utility" or satisfaction from consumption is $U(\cdot)$ concave non decreasing.

Example

- We borrow one unit \$\$ at interest rate I, pay at end of period
- Decision: fraction u_1 to invest at fixed rate b < l
- Decision: fraction u_2 to invest at risky rate $\xi, \mathbb{E}[\xi] > I$
- Consumption is 1 − u₁ − u₂, "utility" or satisfaction from consumption is U(·) concave non decreasing.

s.t.
$$\begin{split} \max_{u_1,u_2} \mathbb{E} \big(U(1-u_1-u_2) + (1+b)u_1 + (1+\xi)u_2 \big) \\ & u \geq 0 \,, \quad u_1+u_2 \leq 1 \,, \\ \mathbb{P} \big((1+b)u_1 + (1+\xi)u_2 \geq 1 + l \big) \geq p \,. \end{split}$$

< A >

Example: Quantile Formulation

Here the constraint function is decreasing: $g(u_1, u - 2, \xi) = -(1 + b)u_1 - (1 + \xi)u_2, a = l + 1$, so we use: $B(u_1, u_2) = (l + 1) - (1 + b)u_1 - (1 + Q(1 - p))u_2$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Example: Quantile Formulation

Here the constraint function is decreasing: $g(u_1, u - 2, \xi) = -(1 + b)u_1 - (1 + \xi)u_2, a = l + 1, \text{ so we use:}$ $B(u_1, u_2) = (l + 1) - (1 + b)u_1 - (1 + Q(1 - p))u_2.$ $\dot{u_1} = -U'(1 - u_1 - u_2) - \lambda_1 b - \lambda_2$ $\dot{u_2} = -U'(1 - u_1 - u_2) - \lambda_1 Q(1 - p) - \lambda_2$ $\dot{\lambda_1} = (l + 1) - (1 + b)u_1 - (1 + \xi)u_2$ $\dot{\lambda_2} = u_1 + u_2 - 1.$

Fast convergence to optimal point, no problem for the algorithm. Note that now the multiplier gives sensitivity w.r.t. the level of constraint a(-l+1) rather than to p.

- 4 同 2 4 日 2 4 日 2 4

Concluding Remarks

On-going work

- Quantile formulation promises better algorithmic behaviour.
- Can the formulation be extended to piecewise monotonic functions?
- How to use the approach for simulation: open question.
- How to generalise to several variables: open question.
- Current research with France: aerospace control, needs a dynamical system and g(·, u) depends on whole trajectory.

Concluding Remarks

The End

- Thank you for your attention
- Questions?

3 x 3