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Key Insight:
On regenerative time-scale, iid cycles

Apparently solves the problem of the “initial transient”.
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What is the Initial Transient Problem?

X = (X (t) : t ≥ 0) S-valued Markov process

X (t) ⇒ X (∞) as t →∞
Because X (0) has a distribution atypical of equilibrium
behavior,

P(X (t) ∈ ·) 6= P(X (∞) ∈ ·).

How large must t be in order that

P(X (t) ∈ ·) ≈ P(X (∞) ∈ ·)?
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Three different methodologies

Perfect Simulation:
Sample X (0) from equilibrium distribution

Initial transient detection:
Find t∗ so that

P((X (t∗ + u) : u ≥ 0) ∈ ·) ≈ P((X ∗(u) : u ≥ 0) ∈ ·)
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(continued)

Low-bias estimators: Modify estimator α̂(t) of Ef (X (∞)) so
that

Eα̂(t) ≈ Ef (X (∞))

i.e.

|Eα̂2(t)− Ef (X (∞))| � |Eα̂1(t)− Ef (X (∞))|

This is the approach that was introduced in the regenerative
setting in the late 70s/early 80s.
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Two different user communities

Discrete-event simulation / performance engineering
community
• User input: Transition kernel of Markov chain
• Equilibrium distribution unknown

Markov chain Monte Carlo community:
• User input: Equilibrium distribution of Markov chain (known
up to a normalization constant)
• Have freedom to simulate any chain with prescribed
equilibrium distribution.
• Can enforce reversibility (if one wishes)
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Time to Equilibrium

Let

9B9w , sup
x

∫
S

|B(x , dy)|w(y)

w(x)

Set

Pt = (Px(X (t) ∈ dy) : x , y ∈ S)

Π = (Px(X (∞) ∈ dy) : x , y ∈ S)

Then,
9Pt+s − Π9w ≤ 9Pt − Π 9w 9Ps − Π9w

so (
log 9Pt − Π9w : t ≥ 0

)
is subadditive.
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(Continued)

Hence, if 9Pt − Π9w → 0,

1

t
log 9Pt − Π9w → −λ ≤ 0

as t →∞.
Roughly speaking,

9Pt − Π9w ≈ exp(−λt)

1

λ
≈ “time to equilibrium”
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De-correlation Time

1

t
sup
|f |=w

log |cov(f (X ∗(0)), f (X ∗(t)))| → −γ

as t →∞, suggesting that

|cov(f (X ∗(0)), f (X ∗(t)))| = O(e−γt)

as t →∞.
1

γ
= “de-correlation time”
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Note that

lim
n→∞

var (
∑n

i=1 f (X ∗(ih)))

n · varf (X ∗(0))
= O

(
1

γ

)
so γ is the rate at which “fresh independent samples” are
produced.

Proposition:
γ = λ
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Upper Bounds on Time to Equilibrium

In MCMC setting, theoretical bounds are sometimes possible
(e.g. Cheeger, etc).

Much harder in performance engineering setting

Can be deceptive:
For queue fed by fBM,

9Pt − Π9 = O (exp(−λtα)) , 0 < α < 1

cov (W ∗(0),W ∗(t)) ≈ t−p, 0 < p < 1
(conjecture)
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Our Approach

We observe (X (s) : 0 ≤ s ≤ t)

Construct a rv Tt from (X (s) : 0 ≤ s ≤ t)

The goal is that

(X (Tt + u) : u ≥ 0) ≈ (X ∗(u) : u ≥ 0).

Note: One possibility is Tt = log t.

Would like
(Tt : t ≥ 0)

to be stochastically bounded.
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We do not demand that (Tt : t ≥ 0) work uniformly well over
all problem instances.

Even the CLT does not work uniformly well over all P’s under
which the Xi ’s are iid with finite variance.

For any given P, we minimally would like:

dist (P((X (Tt + u) : u ≥ 0) ∈ ·),P((X ∗(u) : u ≥ 0) ∈ ·)) → 0

and
(Tt : t ≥ 0)

to be stochastically bounded.
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Proposal 1

Glynn and Iglehart (1987)

Analyzed by Awad and Glynn (2007, 2008)

Sample Z from πt(·) =
1

t

∫ t

0
I (X (s) ∈ ·) ds,

Tt = inf{0 ≤ s ≤ t : X (s) = Z}.



On Initial Transient Detection in the Setting of Steady-State Simulation

Figure: Single-server queue with unusual initialization
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Theorem (Awad and Glynn)

E
1

t − Tt

∫ t−Tt

0
I (X (s) ∈ ·) ds = P(X ∗(0) ∈ ·) + O

(
1

t2

)
Note: Compare with

E
1

t

∫ t

0
I (X (s) ∈ ·) ds = P(X ∗(0) ∈ ·) +

b

t
+ o

(
1

t

)
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Example: Steady-state mean of M/M/1 model

x0 t # of trials avg over [0, t] avg over [Tt , t] ETt/t

0 100 400 8.7431 9.0771 4.10%

50 100 400 20.5136 14.5742 22.59%

50 400 400 11.8578 9.2529 9.38%

50 400 100 13.1981 10.7683 8.28%

100 400 100 22.5237 11.2899 20.75%

100 600 100 16.6735 9.2193 13.52%

Table: Arrival rate λ = 9, service rate µ = 10 and initial state x0. We
take time t of the order (1− ρ)−2, where ρ = λ/µ = 0.9 is the traffic
intensity. The steady-state mean is ρ/(1− ρ) = 9.
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x0 t # of trials avg over [0, t] avg over [Tt , t] ETt/t

0 400 100 17.4229 19.1983 8.41%

0 800 100 17.4416 18.0553 6.15%

50 800 100 21.6572 19.7996 11.04%

50 1200 100 20.7071 19.7541 7.55%

100 800 100 29.5073 20.6968 15.84%

100 1200 100 27.5538 19.5757 12.66%

Table: Arrival rate λ = 9.5, service rate µ = 10, ρ = 0.95 We take time t
of the order (1− ρ)−2 = 400. The steady-state mean is ρ/(1− ρ) = 19.
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x0 t # of trials avg over [0, t] avg over [Tt , t] ETt/t

0 1111 100 27.9184 30.8362 8.52%
0 2222 100 30.6561 31.7969 10.26%
50 1111 100 32.5568 32.0916 11.99%
50 2222 100 34.0016 33.7515 6.74%
100 1111 100 44.1968 35.8125 14.81%
100 2222 100 36.8861 32.5032 8.00%

Table: Arrival rate λ = 9.7, service rate µ = 10, ρ = 0.97. We take time
t of the order (1− ρ)−2 = 1111. The steady-state mean is
ρ/(1− ρ) = 32.33.
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Generalizing to Continuous State Space

In continuous state space, Tt will often be uniform on [0, t].
So, partition the state space into a finite or countably infinite
number of subsets, and apply the method to the “discretized
process”.

Philosophy: We are attempting to build a methodology that
reliably mitigates most of the impact of the initial transient for
those models where the problem is potentially serious. We want to
know whether the initial transient has contaminated 1% or 50% of
the simulation.

Pragmatically, we can tolerate some approximation error here.
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Proposal 2 (joint work with Jose Blanchet)

Let X = (Xn : n ≥ 0) be an irreducible finite state Markov chain.
How might we estimate the rate of convergence to equilibrium for
X , based on observing X0, . . . ,Xt?

Non-parametric Maximum Likelihood
• Compute the second eigenvalue of empirical transition
matrix P̂t .
• This converges a.s. to true second eigenvalue.
• How might one apply such ideas in the setting of a more
general Markov process?
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Resampling:

Assume X = X (t) : t ≥ 0 regenerative with regeneration
times 0 = T (0) < T (1) < · · ·
Simulate (X (s) : 0 ≤ s ≤ t).
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a(t) , Ef (X (t)) satisfies

a(t) = b(t) + (F ∗ a)(t)

b(t) = Ef (X (t))I (τ1 > t) (τ1 = T (1)− T (0))

F (dt) = P(τ1 ∈ dt)



On Initial Transient Detection in the Setting of Steady-State Simulation

Compute

b̂t(·) =
1

N(t)

N(t)∑
i=1

f (X (T (i − 1) + ·))I (τi > ·)

F̂t(·) =
1

N(t)

N(t)∑
i=1

I (τi ≤ ·)

ât(s)
a.s.−→ ât(∞) =

∑N(t)
i=1

∫ T (i)
T (i−1) f (X (s)) ds∑N(t)

i=1 τi

as s →∞.



On Initial Transient Detection in the Setting of Steady-State Simulation

Given ε > 0, choose Tt so that

|ât(u)− ât(∞)| < ε

for u ≥ Tt .

How to compute Tt?

Fourier / Laplace methods:

∫
[0,∞)

esu ât(u) du =

∫
[0,∞) esub̂t(u) du

1−
∫
[0,∞) esuF̂ (du)

Simulate the cycle-quantities (not the full chain) to compute
Tt .
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Uniform Convergence of Empirical Estimator

Theorem Assume that τ1 is discrete, aperiodic, and has finite p’th
moment, p > 1. If f is bounded, then

sup
s∈(0,∞)

|ât(s)− a(s)| a.s.−→ 0

as t →∞.
Corollary Tt → t(ε) as t →∞, where t(ε) is such that

|a(u)− a(∞)| < ε

for u ≥ t(ε).
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But more can be said...

t1/2 (ât(·)− a(·)) ⇒ Z (·)

where Z = (Z (s) : s ≥ 0) is a Gaussian process. This suggests that

t1/2 (ât(s)− â(∞))

is of order t−1/2. However:

The error ât(s)− ât(∞) tracks the true error a(s)− a(∞) much
more closely than this analysis suggests.
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Theorem Suppose that τ1 is discrete, aperiodic, and satisfies
E exp(η∗τ1) < ∞ for some η > 0. If f is bounded, then there
exists c > 0 such that

sup
s∈(0,∞)

exp(cs) |(ât(s)− ât(∞))− (a(s)− a(∞))| a.s.−→ 0

as t →∞.

Proof: Apply a uniform version of renewal theorem path-by-path.
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In view of the previous result, one can reliably compute t(ε) for
quite small values of epsilon given a sample of size t:

If (log(1/ε))2 = o(t), then Tt − t(ε) converges in probability to 0.
As in previous methodology, one can consider applying this to
“approximate regenerations”.
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Conclusions

The use of sampling-based methods for determining the
duration of the initial transient seems both pragmatically
useful, and can sometimes be supported at a theoretical level.

Particularly appealing for performance engineering
applications where it will often be hopeless to compute useful
theoretical estimates of rates of convergence.
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Thank you to Reuven for your many years of inspiring
contributions to our field and with the hope of many more
such years to come!


