## Comparing Two Systems Using Gaussian Copulae ${ }^{1}$

Samuel M. T. Ehrlichman and Shane G. Henderson

School of Operations Research and Information Engineering
Cornell University
July 13, 2008
${ }^{1}$ Thanks to NSF Grants DMI 0400287 and CMMI 0800688

## Common Random Numbers and Copulas

- Is $E X>E Y$, i.e., $E(X-Y)>0$ ?


## Common Random Numbers and Copulas

- Is $E X>E Y$, i.e., $E(X-Y)>0$ ?
- Let $X=f_{U}\left(\mathbf{U}_{X}\right), Y=g_{U}\left(\mathbf{U}_{Y}\right)$ where $\mathbf{U}_{X}, \mathbf{U}_{Y} \sim \mathcal{U}\left([0,1]^{d}\right)$
- Standard sampling: $\mathbf{U}_{X}$ is independent of $\mathbf{U}_{Y}$
- CRN sampling: $\mathbf{U}_{X}=\mathbf{U}_{Y}$
- $\operatorname{var}(X-Y)=\operatorname{var} X+\operatorname{var} Y-2 \operatorname{cov}(X, Y)$


## Common Random Numbers and Copulas

- Is $E X>E Y$, i.e., $E(X-Y)>0$ ?
- Let $X=f_{U}\left(\mathbf{U}_{X}\right), Y=g_{U}\left(\mathbf{U}_{Y}\right)$ where $\mathbf{U}_{X}, \mathbf{U}_{Y} \sim \mathcal{U}\left([0,1]^{d}\right)$
- Standard sampling: $\mathbf{U}_{X}$ is independent of $\mathbf{U}_{Y}$
- CRN sampling: $\mathbf{U}_{X}=\mathbf{U}_{Y}$
- $\operatorname{var}(X-Y)=\operatorname{var} X+\operatorname{var} Y-2 \operatorname{cov}(X, Y)$

What is essential?
Let $\mathbf{U}=\left(\mathbf{U}_{X}, \mathbf{U}_{Y}\right)$

$$
\mathbf{U}=(\underbrace{U_{1}, U_{2}, \ldots, U_{d}}_{I I D}, \underbrace{U_{d+1}, U_{d+2}, \ldots, U_{2 d}}_{I I D})
$$

## Coupling

- We want a copula that minimizes $\operatorname{var}(X-Y)$, i.e., maximizes $\operatorname{cov}(X, Y)$ subject to the marginal constraints


## Coupling

- We want a copula that minimizes $\operatorname{var}(X-Y)$, i.e., maximizes $\operatorname{cov}(X, Y)$ subject to the marginal constraints
- Not a new idea...
(1) Wright and Ramsay (1979)
(2) Schmeiser and Kachitvichyanukul (1986)
(3) Devroye (1990)
(9) Glasserman and Yao (1992)
(5) Glasserman and Yao (2004)


## Coupling

- We want a copula that minimizes $\operatorname{var}(X-Y)$, i.e., maximizes $\operatorname{cov}(X, Y)$ subject to the marginal constraints
- Not a new idea...
(1) Wright and Ramsay (1979)
(2) Schmeiser and Kachitvichyanukul (1986)
(3) Devroye (1990)
(O) Glasserman and Yao (1992)
(5) Glasserman and Yao (2004)


## What is new ...

... is that we use a new class of copulas and have a computational method for searching over it

## Gaussian Copulae

Let $\mathbf{Z}=\left(\mathbf{Z}_{X}, \mathbf{Z}_{Y}\right)$ be jointly Gaussian, standard normal marginals, covariance matrix

$$
\boldsymbol{\Sigma}=\left[\begin{array}{cc}
I_{d} & \boldsymbol{\Sigma}_{X Y} \\
\boldsymbol{\Sigma}_{X Y}^{T} & l_{d}
\end{array}\right]
$$

## Gaussian Copulae

Let $\mathbf{Z}=\left(\mathbf{Z}_{X}, \mathbf{Z}_{Y}\right)$ be jointly Gaussian, standard normal marginals, covariance matrix

$$
\boldsymbol{\Sigma}=\left[\begin{array}{cc}
I_{d} & \boldsymbol{\Sigma}_{X Y} \\
\boldsymbol{\Sigma}_{X Y}^{T} & I_{d}
\end{array}\right]
$$

Set

$$
\mathbf{U}_{X}[i]=\Phi\left(\mathbf{Z}_{X}[i]\right), \mathbf{U}_{Y}[i]=\Phi\left(\mathbf{Z}_{Y}[i]\right)
$$

for $i=1,2, \ldots, d$ and

## Gaussian Copulae

Let $\mathbf{Z}=\left(\mathbf{Z}_{X}, \mathbf{Z}_{Y}\right)$ be jointly Gaussian, standard normal marginals, covariance matrix

$$
\boldsymbol{\Sigma}=\left[\begin{array}{cc}
I_{d} & \boldsymbol{\Sigma}_{X Y} \\
\boldsymbol{\Sigma}_{X Y}^{T} & I_{d}
\end{array}\right]
$$

Set

$$
\mathbf{U}_{X}[i]=\Phi\left(\mathbf{Z}_{X}[i]\right), \mathbf{U}_{Y}[i]=\Phi\left(\mathbf{Z}_{Y}[i]\right)
$$

for $i=1,2, \ldots, d$ and

$$
\begin{aligned}
& X=f_{U}\left(\mathbf{U}_{X}\right)=f\left(\mathbf{Z}_{X}\right) \\
& Y=g_{U}\left(\mathbf{U}_{Y}\right)=g\left(\mathbf{Z}_{Y}\right)
\end{aligned}
$$

## Example 1

Take $d=2$

$$
\begin{aligned}
& X=f\left(\mathbf{Z}_{X}\right)=\frac{Z_{X}[1]+Z_{X}[2]}{\sqrt{2}} \\
& Y=g\left(\mathbf{Z}_{Y}\right)=Z_{Y}[1]
\end{aligned}
$$

## Example 1

Take $d=2$

$$
\begin{aligned}
& X=f\left(\mathbf{Z}_{X}\right)=\frac{Z_{X}[1]+Z_{X}[2]}{\sqrt{2}} \\
& Y=g\left(\mathbf{Z}_{Y}\right)=Z_{Y}[1]
\end{aligned}
$$

## Independence copula <br> $$
\operatorname{var}(X-Y)=2
$$

## Example 1

Take $d=2$

$$
\begin{aligned}
& X=f\left(\mathbf{Z}_{X}\right)=\frac{Z_{X}[1]+Z_{X}[2]}{\sqrt{2}} \\
& Y=g\left(\mathbf{Z}_{Y}\right)=Z_{Y}[1]
\end{aligned}
$$

## Independence copula <br> $$
\operatorname{var}(X-Y)=2
$$

## CRN copula

$$
\begin{aligned}
\operatorname{var}(X-Y) & =1+1-2 / \sqrt{2} \\
& =2-\sqrt{2}
\end{aligned}
$$

## Example 1

Take $d=2$

$$
\begin{aligned}
& X=f\left(\mathbf{Z}_{X}\right)=\frac{Z_{X}[1]+Z_{X}[2]}{\sqrt{2}} \\
& Y=g\left(\mathbf{Z}_{Y}\right)=Z_{Y}[1]
\end{aligned}
$$

## Independence copula

$$
\operatorname{var}(X-Y)=2
$$

## CRN copula

$$
\begin{aligned}
\operatorname{var}(X-Y) & =1+1-2 / \sqrt{2} \\
& =2-\sqrt{2}
\end{aligned}
$$

## An optimal Gaussian copula:

$$
\begin{aligned}
& \mathbf{Z}_{Y}[1]=\frac{Z_{X}[1]+Z_{X}[2]}{\sqrt{2}} \\
& \mathbf{Z}_{Y}[2]=\frac{Z_{X}[1]-Z_{X}[2]}{\sqrt{2}}
\end{aligned}
$$

so that $X=Y$ or, equivalently,

$$
\boldsymbol{\Sigma}_{X Y}=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right]
$$

## Example 2

Take $d=1$

$$
\begin{aligned}
& X=f_{U}\left(\mathbf{U}_{X}\right)=I\left(\mathbf{U}_{X} \in[0.5,0.6]\right) \\
& Y=g_{U}\left(\mathbf{U}_{Y}\right)=I\left(\mathbf{U}_{Y} \in[0.7,0.8]\right)
\end{aligned}
$$

## Example 2

Take $d=1$

$$
\begin{aligned}
X=f_{U}\left(\mathbf{U}_{X}\right) & =I\left(\mathbf{U}_{X} \in[0.5,0.6]\right) \\
Y=g_{U}\left(\mathbf{U}_{Y}\right) & =I\left(\mathbf{U}_{Y} \in[0.7,0.8]\right)
\end{aligned}
$$

## Independence copula <br> $\operatorname{var}(X-Y)=2 \times 0.1 \times 0.9$ <br> $=0.18$

## Example 2

Take $d=1$

$$
\begin{aligned}
& X=f_{U}\left(\mathbf{U}_{X}\right)=I\left(\mathbf{U}_{X} \in[0.5,0.6]\right) \\
& Y=g_{U}\left(\mathbf{U}_{Y}\right)=I\left(\mathbf{U}_{Y} \in[0.7,0.8]\right)
\end{aligned}
$$

## Independence copula

$$
\begin{aligned}
\operatorname{var}(X-Y) & =2 \times 0.1 \times 0.9 \\
& =0.18
\end{aligned}
$$

## CRN copula

$$
X-Y=\left\{\begin{array}{rll}
1 & \text { w.p. } 0.1 \\
-1 & \text { w.p. } 0.1 \\
0 & \text { w.p. } 0.8
\end{array}\right.
$$

$$
\operatorname{var}(X-Y)=0.2
$$

## Example 2

Take $d=1$

$$
\begin{aligned}
& X=f_{U}\left(\mathbf{U}_{X}\right)=I\left(\mathbf{U}_{X} \in[0.5,0.6]\right) \\
& Y=g_{U}\left(\mathbf{U}_{Y}\right)=I\left(\mathbf{U}_{Y} \in[0.7,0.8]\right)
\end{aligned}
$$

## Independence copula

$$
\begin{aligned}
\operatorname{var}(X-Y) & =2 \times 0.1 \times 0.9 \\
& =0.18
\end{aligned}
$$

## CRN copula

$X-Y=\left\{\begin{array}{rll}1 & \text { w.p. } & 0.1 \\ -1 & \text { w.p. } & 0.1 \\ 0 & \text { w.p. } & 0.8\end{array}\right.$

$$
\operatorname{var}(X-Y)=0.2
$$

## Optimal Gaussian copula:

$$
\begin{aligned}
\operatorname{var}(X-Y) & =0.15 \\
\boldsymbol{\Sigma} & =\left[\begin{array}{ll}
1 & \rho \\
\rho & 1
\end{array}\right]
\end{aligned}
$$



## Optimizing the Copula

- min $\operatorname{var}(X-Y) \Leftrightarrow \max \operatorname{cov}(X, Y) \Leftrightarrow \max E f\left(\mathbf{Z}_{X}\right) g\left(\mathbf{Z}_{Y}\right)$


## Optimizing the Copula

- min $\operatorname{var}(X-Y) \Leftrightarrow \max \operatorname{cov}(X, Y) \Leftrightarrow \max E f\left(\mathbf{Z}_{X}\right) g\left(\mathbf{Z}_{Y}\right)$
- $\max \operatorname{Ef}\left(\left(\boldsymbol{\Sigma}^{1 / 2} \mathbf{N}\right)[1, \ldots, d]\right) g\left(\left(\boldsymbol{\Sigma}^{1 / 2} \mathbf{N}\right)[d+1, \ldots, 2 d]\right)$ subject to

$$
\boldsymbol{\Sigma}=\left[\begin{array}{cc}
I_{d} & \boldsymbol{\Sigma}_{X Y} \\
\boldsymbol{\Sigma}_{X Y}^{T} & I_{d}
\end{array}\right] \succeq 0
$$

## Optimizing the Copula

- min $\operatorname{var}(X-Y) \Leftrightarrow \max \operatorname{cov}(X, Y) \Leftrightarrow \max E f\left(\mathbf{Z}_{X}\right) g\left(\mathbf{Z}_{Y}\right)$
- $\max \operatorname{Ef}\left(\left(\boldsymbol{\Sigma}^{1 / 2} \mathbf{N}\right)[1, \ldots, d]\right) g\left(\left(\boldsymbol{\Sigma}^{1 / 2} \mathbf{N}\right)[d+1, \ldots, 2 d]\right)$ subject to

$$
\boldsymbol{\Sigma}=\left[\begin{array}{cc}
I_{d} & \boldsymbol{\Sigma}_{X Y} \\
\boldsymbol{\Sigma}_{X Y}^{T} & I_{d}
\end{array}\right] \succeq 0
$$

- Nonlinear semidefinite program
- Can be tackled, but gradients of objective are tricky
- Reformulate using Cholesky factors directly by observing that $\boldsymbol{\Sigma}_{X Y}$ is "sub-orthogonal" ...


## An Alternative Formulation

## Proposition

$$
\boldsymbol{\Sigma}=\left[\begin{array}{cc}
I_{d} & \boldsymbol{\Sigma}_{X Y} \\
\boldsymbol{\Sigma}_{X Y}^{T} & I_{d}
\end{array}\right] \succeq 0 \Leftrightarrow \exists \mathbf{M}_{2}: \mathbf{M}^{T} \mathbf{M}=I \text { where } \mathbf{M}:=\left[\begin{array}{c}
\boldsymbol{\Sigma}_{X Y} \\
\mathbf{M}_{2}
\end{array}\right]
$$

Furthermore, $\boldsymbol{\Sigma}$ is covariance matrix of

$$
\left[\begin{array}{l}
\mathbf{Z}_{X} \\
\mathbf{Z}_{Y}
\end{array}\right]:=\left[\begin{array}{c}
\mathbf{N}[1, \ldots, d] \\
\mathbf{M}^{T} \mathbf{N}
\end{array}\right]
$$

## An Alternative Formulation

## Proposition

$$
\boldsymbol{\Sigma}=\left[\begin{array}{cc}
I_{d} & \boldsymbol{\Sigma}_{X Y} \\
\boldsymbol{\Sigma}_{X Y}^{T} & I_{d}
\end{array}\right] \succeq 0 \Leftrightarrow \exists \mathbf{M}_{2}: \mathbf{M}^{T} \mathbf{M}=I \text { where } \mathbf{M}:=\left[\begin{array}{c}
\boldsymbol{\Sigma}_{X Y} \\
\mathbf{M}_{2}
\end{array}\right]
$$

Furthermore, $\boldsymbol{\Sigma}$ is covariance matrix of

$$
\left[\begin{array}{l}
\mathbf{Z}_{X} \\
\mathbf{Z}_{Y}
\end{array}\right]:=\left[\begin{array}{c}
\mathbf{N}[1, \ldots, d] \\
\mathbf{M}^{T} \mathbf{N}
\end{array}\right]
$$

Notice that

$$
\left[\begin{array}{cc}
I_{d} & 0_{d} \\
\boldsymbol{\Sigma}_{X Y}^{T} & M_{2}^{T}
\end{array}\right]\left[\begin{array}{cc}
I_{d} & \boldsymbol{\Sigma}_{X Y} \\
0_{d} & M_{2}
\end{array}\right]=\boldsymbol{\Sigma}
$$

## Solving the Alternative Formulation

- max $E f\left(\mathbf{Z}_{X}\right) g\left(\mathbf{M}^{T} \mathbf{N}\right)$ subject to $\mathbf{M}^{T} \mathbf{M}=I$
- Nonlinear optimization over a Stiefel manifold
- Gradients w.r.t. M easily obtained


## Solving the Alternative Formulation

- max $\operatorname{Ef}\left(\mathbf{Z}_{X}\right) g\left(\mathbf{M}^{T} \mathbf{N}\right)$ subject to $\mathbf{M}^{T} \mathbf{M}=\boldsymbol{I}$
- Nonlinear optimization over a Stiefel manifold
- Gradients w.r.t. M easily obtained
- Use, e.g., sample-average approximation
- Sample and fix $\mathbf{N}_{1}, \ldots, \mathbf{N}_{m}$, and

$$
\max \frac{1}{m} \sum_{i=1}^{m} f\left(\mathbf{N}_{i}[1, \ldots, d]\right) g\left(\mathbf{M}^{T} \mathbf{N}_{i}\right)
$$

subject to $\mathbf{M}^{T} \mathbf{M}=\boldsymbol{I}$

- Freely available sgmin in MATLAB
- Use solution to above in subsequent conditionally independent simulation


## Example 3


$X: V_{1}, V_{2}, V_{3}, V_{4} \sim$ IID $\exp (1)$
$Y: V_{1}, V_{2} \sim$ IID $\exp (1)$
$V_{3} \sim \exp \left(\left(1+V_{2}\right) / 2\right)$
$V_{4} \sim \exp \left(\left(1+V_{1}\right) / 2\right)$

## Example 3



| Sampling Strategy | Variance |
| :---: | :---: |
| IID | 5.3 |
| CRN | 0.57 |
| OPT | 0.28 |

$$
\begin{aligned}
& X: V_{1}, V_{2}, V_{3}, V_{4} \sim \text { IID } \exp (1) \\
& Y: V_{1}, V_{2} \sim \text { IID } \exp (1) \\
& \quad V_{3} \sim \exp \left(\left(1+V_{2}\right) / 2\right) \\
& \quad V_{4} \sim \exp \left(\left(1+V_{1}\right) / 2\right)
\end{aligned}
$$

## Example 3


$X: V_{1}, V_{2}, V_{3}, V_{4} \sim$ IID $\exp (1)$
$Y: V_{1}, V_{2} \sim$ IID $\exp (1)$
$V_{3} \sim \exp \left(\left(1+V_{2}\right) / 2\right)$
$\left[\begin{array}{rrrr}.958 & -.038 & .160 & .237 \\ -.037 & .960 & .239 & .141 \\ -.158 & -.238 & .957 & -.048 \\ -.239 & -.143 & -.026 & .960\end{array}\right]$
$V_{4} \sim \exp \left(\left(1+V_{1}\right) / 2\right)$

## An Observation for Linear Functions

- The optimal $\Sigma_{X Y}$ in Example 1 was orthogonal
- When is this true in general?


## An Observation for Linear Functions

- The optimal $\Sigma_{X Y}$ in Example 1 was orthogonal
- When is this true in general?


## Proposition

If $f$ and $g$ are linear, then an optimal $\Sigma_{X Y}$ is orthogonal and corresponds to a Householder transformation that "aligns" the two linear functions.

## Conclusions and Future Research

- One might use more general joint distributions than CRN for comparisons
- Gaussian copula is particularly convenient
- Could use other copulas, e.g., chessboards, but computation needs to be feasible
- Simple examples demonstrate that large gains are possible


## Conclusions and Future Research

- One might use more general joint distributions than CRN for comparisons
- Gaussian copula is particularly convenient
- Could use other copulas, e.g., chessboards, but computation needs to be feasible
- Simple examples demonstrate that large gains are possible
- When is optimization problem unimodal?
- Clarify connection to existing optimality results for CRN?
- More complicated (interesting?) examples?

