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The Problem

We consider the optimization problem

min
x∈X
{g(x) := E[G (x , ξ)]}

where:

� X is a subset of Rn

� ξ is a random vector in Rs

� G : Rn × Rs 7→ R is a real-valued function

Suppose that E[G (x , ξ)] cannot be easily calculated.
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Sample Average Approximation

Basic idea:

� Let ξ1, . . . , ξN be a random sample drawn from F .
We assume momentarily that ξ1, . . . , ξN are i.i.d.

� Estimate g(x) = EG (x , ξ) by

ĝN(x) =
1

N

N∑
i=1

G (x , ξi ).

� Solve min
x∈Θ

ĝN(x)

using a deterministic optimization algorithm, and take its optimal solution x̂N

and optimal value v̂N as estimates of true optimal solution and true optimal
value.
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Sample Average Approximation (II)

Rubinstein and Shapiro (1993) call this approach stochastic counterpart method.

� They show that x̂N and v̂N converge to the “right values” as N →∞.

Another class of results deals with rates of convergence, i.e., how fast the
estimation error (e.g., |v̂N − v∗|) goes to zero.

I Such rates are usually Op(N−1/2), as a consequence of the Central Limit
Theorem.

� Results of this type have been well studied in the literature.
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Rates of Convergence

The convergence rate of Op(N−1/2) can be slow, especially if large sample sizes
are needed.

This problem arises even in context of pointwise estimation.

� That is, let U be an s-dimensional (0, 1) uniform random vector and suppose
we want to estimate I := E[f (U)].

� Let ξ1, . . . , ξN be numbers distributed on the box (0, 1)s , and estimate I with
Î := 1

N

∑
f (ξi ).

� If ξ1, . . . , ξN are standard (Monte Carlo) samples, then the error |̂I − I | is
Op(N−1/2).

QUESTION: Are there other sampling techniques that yield better rates?
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Latin Hypercube Sampling

Latin hypercube sampling (LHS) is a stratified sampling technique aimed at
reducing the variance of estimators (McKay et al. 1979)
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Comments about LHS

� LHS is very simple to implement, and often very effective.

� Asymptotically, variance of estimators constructed with LHS is no worse than
that obtained with Monte Carlo (Stein 1987).

I However, rate of convergence is still the same as Monte Carlo (Owen 1992)

� Impact of LHS is higher if the underlying function is close to being additive.

� In the context of stochastic optimization, sampling with LHS preserves
convergence properties (HM 2006).

I In particular, pathwise convergence is guaranteed; however, rate of
convergence is the same as Monte Carlo (at least for a certain class of
problems), even though estimators may have smaller variance.

I An exception occurs in case the function is additive — rate is much faster
then.
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Quasi-Monte Carlo Sampling

� Sample points are chosen deterministically.

� Goal is for the point set to resemble a uniform distribution.

� Deviation from the uniform distribution is measured by the discrepancy. One
such measure is the star-discrepancy D∗N(ξ1, . . . , ξN) on [0, 1)s .

� Low-discrepancy point sets are desirable; the two main classes of
low-discrepancy points are (t,m, s)-nets and lattice rules.
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Example: (t, m, s)-net
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(0,3,2)−net in base b=3
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Error rates for QMC

� Estimation error is typically O
(

(log N)s

N

)
(Niederreiter 1992).

� For a particular type of randomized QMC, estimation error is

Op

([
(log N)(s−1)

N3

]1/2
)

(Owen 1997).

� By applying these results in the optimization context, it is possible to show
that, under some (restrictive) assumptions, error rate |v̂N − v∗| is also

Op

([
(log N)(s−1)

N3

]1/2
)

(HM 2006).

I Even when assumptions are not satisfied, error rate is often still better than
O(N−1/2).
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Example 1
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Example 2

3 4 5 6 7 8 9
−10

−8

−6

−4

−2

0

2

4

log base 3 of sample size

lo
g 

ba
se

 3
 o

f s
ta

nd
ar

d 
de

vi
at

io
n

Monte Carlo
Quasi−Monte Carlo
Latin Hypercube
Predicted slope

Tito Homem-de-Mello (Northwestern Univ.) QMC for Stochastic Optimization Rubinstein Conference 2008 12 / 28



Comments about QMC

� It is clear that, asymptotically, the above error rates are better than the error
with Monte Carlo (O(N−1/2)).

� However, this happens because these problems are low-dimensional.

� To see why, notice that for
[

(log N)(s−1)

N3

]1/2

to beat N−1/2 when s is large, N

must be very large.

� What matters is the effective dimension of the problem — roughly speaking,
this is the number of variables that make up for most of the variance.
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Employing QMC in Lower Dimensions

One way to approach the dimensionality problem in QMC is the following:

� Use QMC on the most “important” random variables

� Use some other method (Midpoint, Monte Carlo, LHS) on the remaining
variables to “pad” the sample (e.g., Owen 1998).

ISSUES:

� How to select the important random variables?

I General methods exist, but we want to exploit the structure of underlying
problem.

I A number of papers exist in the context of finance problems.

� What kind of properties do the padded estimators have?

I In particular, we are interested in checking if these estimators satisfy a Central
Limit Theorem.
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A CLT for Padded Estimators

Ökten, Tuffin and Burago (2006) show that estimators constructed with QMC
padded with Monte Carlo satisfy a Central Limit Theorem.

� Proof relies heavily on the independence of the padding components.

Drew and HM (2007) show the following result:

Theorem
Estimators constructed with QMC padded with LHS satisfy a Central Limit
Theorem.

Moreover, the asymptotic variance is no larger than the variance from pure Monte
Carlo sampling or from QMC sampling padded with Monte Carlo.
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General Methods to Determine Important Variables

From the literature on sensitivity analysis, there are a number of different methods
to determine important variables, such as:

� Screening methods

� Regression/Correlation coefficients

� Variance based methods

� Principal component analysis

� Etc.
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Two-stage stochastic program with fixed recourse

Recall the two-stage problems of the form

min
x∈X
{g(x) := cT x + E[Q(x , ξ)]}

where

Q(x , ξ) := inf{qT y : Wy ≥ h − Tx , y ≥ 0}.

Random variables: ξ = (h,T )

Once samples ξ1, . . . , ξN are obtained, the sampled problem can be solved using
standard techniques.

� Thus, our focus is on estimating E[Q(x , ξ)].
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The second-stage dual problem

Dual Problem:

sup{πT (h − Tx) : πTW ≤ qT , π ≥ 0}

Thus,

Q(x , ξ) =
∑

k

π∗k (hk −
∑

j

Tkjxj)

where π∗ are the optimal dual multipliers.

� The multiplier πk measures, in a sense, the importance of the term
hk −

∑
j Tkj .

� Goal is to combine use of π with variance information of individual random
variables.
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Determining the set of important variables

We use some heuristics to estimate Vk , the overall contribution to the variance
from random variable k.

� Let us decompose Q(x , ξ) as
∑m

i=1 Zi where each Zi contains either 0 or 1
random components of ξ.

Then: Var(Q(x , ξ)) =
∑

i,j Cov(Zi ,Zj) =
∑s

k=1 Vk .

� Now we just need heuristics to decide which covariance terms should be
assigned to which Vk
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PCA heuristics

Let S := Cov(Z ). Then, we can write S = UλUT , where Λ is a diagonal matrix
with the eigenvalues of S and U is an orthonormal matrix with the eigenvectors of
S .

Then,

� By sorting the eigenvalues such that λ1 ≥ . . . ≥ λm, we can find the number
of important variables k such that∑k

i=1 λi

trace(S)
≥ ρ,

where ρ is some pre-specified threshold (say, 0.9).

� To determine which ones are the important variables, we can look at the
largest elements of the eigenvectors corresponding to the largest eigenvalues.
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A stochastic programming algorithm with padded sampling

An External Sampling Algorithm using QMC with Padding (ES-QMCP)

� An iterative algorithm

� Number of samples increases at each iteration

� At each iteration:

I Use current first stage solution to estimate the covariance matrix for the
second stage problem and determine the important subset at that point;

I Then use QMC with Padding to obtain new estimates of optimal value and
optimal first-stage solution.

� Test of stopping criteria is based on statistical properties of gap estimators.
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Stopping Criteria

We implement the stopping criteria developed by Bayraksan and Morton (2006),
adapted to our padded sampling context.

� Let x̃ be a candidate solution, and let x∗N be the optimal solution of the
sample-average stochastic program obtained with padded QMC+LHS
samples.

� Calculate

GapN(x̃ , x∗N) :=
1

N

N∑
i=1

(G (x̃ , ξi )− G (x∗N , ξ
i )) = ḡ(x̃)− ḡ(x∗N).

and

s2
N(x̃ , x∗N) :=

1

N − 1

N∑
i=1

((G (x̃ , ξi )− G (x∗N , ξ
i ))− (ḡ(x̃)− ḡ(x∗N)))2

Tito Homem-de-Mello (Northwestern Univ.) QMC for Stochastic Optimization Rubinstein Conference 2008 22 / 28



Stopping Criteria

Theorem

Suppose that x̃ ∈ X, and that ξ1, . . . , ξN are from a padded QMC+LHS sample
of ξ. Then, under mild assumptions on G, given 0 < α < 1 we have

lim inf
N→∞

P

(
g(x̃)− ν∗ ≤ GapN(x̃ , x∗N) +

zαsN(x̃ , x∗N)√
N

)
≥ 1− α,

where ν∗ is the optimal value of the problem.

� This result yields a stopping criterion: stop the algorithm when the estimated
gap is “small enough.”

� Bayraksan and Morton (2006) prove this result for the i.i.d. case.

� The above extension to padded QMC+LHS uses the Central Limit Theorem
for that type of sampling we showed earlier.

I Since padded QMC+LHS has a smaller asymptotic variance, we expect the
coverage given by the above theorem to be better than with Monte Carlo.
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Testing the Algorithm

� We tested our algorithm using four different sampling methods: pure Monte
Carlo (MC), pure Latin Hypercube Sampling (LHS), pure Quasi-Monte Carlo
(QMC) and padded QMC with LHS (QMC+LHS).

� The first three methods do not care about important variables, so they use
fewer samples per iteration.

� For methods involving QMC, we use scrambled (t,m, s)-nets in base b = 2.

� Performance Measures:

I Optimal value at end of algorithm

I Number of iterations until convergence
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Test Problems

� We tested

I Three small (≤ 5 random variables) problems: gbd, LandS, apl1p

I One medium-sized (40 random variables) problem: 20term

� In all problems, we used the SRP stopping criteria from Bayraksan and
Morton (2006), adapted to our padded sampling context when necessary.

� For the padded sampling method, we used the PCA heuristics to select the
important random variables.

� Sampled problems were solved using ATR code of Linderoth and Wright
(2005), which in turn uses a modification of Linderoth’s SUTL library to
handle QMC sampling.
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Results

apl1p Optimal Value Iterations
Mean 95% CI Mean 95% CI

MC 24,720 232 4.9 1.4
LHS 24,593 182 2.8 1.2
QMC 24,659 206 3.2 0.8
QMC+LHS 24,664 136 2.6 1.1

True Optimal Value = 24,642

LandS Optimal Value Iterations
Mean 95% CI Mean 95% CI

MC 128.27 1.69 4.6 1.2
LHS 128.09 0.44 1.6 0.5
QMC 128.19 0.15 2.3 0.7
QMC+LHS 128.26 0.13 1.5 0.5

True Optimal Value = 128.20

gbd Optimal Value Iterations
Mean 95% CI Mean 95% CI

MC 1,666 39 5.1 0.7
LHS 1,663 24 2.0 0.0
QMC 1,653 35 2.1 0.7
QMC+LHS 1,666 29 1.5 0.5

True Optimal Value = 1,656

20term Optimal Value Iterations
Mean 95% CI Mean 95% CI

MC 533,251 5,012 2.4 1.2
LHS 531,052 1,601 2.0 1.1
QMC 529,489 1,537 5.1 1.0
QMC+LHS 531,610 1,265 1.9 0.9

True Optimal Value = 531,000 ± 1,000
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Comments

� All methods yield confidence intervals for the optimal value that cover the
true optimum.

� Run time is proportional to number of iterations; padded QMC+LHS is the
fastest, even though it uses some extra samples just to estimate covariance
terms.

� Confidence intervals with padded QMC+LHS are the tightest except for gbd.

I One possible explanation is that this problem is completely separable, so pure
LHS is the best strategy.
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Summary

� Quasi-Monte Carlo techniques can be effective when solving stochastic
optimization problems via sampling-based methods.

� However, care must be taken when applied such methods — in particular, it
is suggested to apply QMC on the “most important” variables and “pad” the
remaining ones with either Monte Carlo or, even better, Latin Hypercube
Sampling.

� It is important to incorporate the selection of the variables on which QMC is
applied into an optimization algorithm.

I Such selection procedures should use structure of the problem (e.g., dual
variables) as much as possible.

� Other sampling approaches are, of course, possible; however, one needs to
show that the sampling technique possesses some statistical properties (e.g.,
Central Limit Theorem) in order to have performance guarantees.
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