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Introduction
What is asymptotic?

This talk is concerned with asymptotic properties for the
EM and the Gibbs.

The meaning of asymptotic is that not only the number of
iterations, but also the number of observations goes to
infinity.
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Introduction
Summary of the talk

We address some asymptotic properties of the EM and the
Gibbs.

Using this asymptotic properties, we validate some well
known facts.

This type of arguments may be useful for constructing new
Monte Carlo algorithms.
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Example: Haplotype Estimation Problem
Description

We explain the motivation for the EM through an
Example.

Let Yi ,j : Ω → {0, 1}2 (i = 1, . . . , n, j = 1, 2) be IID rv’s
such that

Pθ(Yi ,j = (0, 0)) = θ0,0,Pθ(Yi ,j = (1, 0)) = θ1,0,

Pθ(Yi ,j = (0, 1)) = θ0,1,Pθ(Yi ,j = (1, 1)) = θ1,1.

Assume that we do not observe (Yi ,j), but
(Xi = Yi ,1 + Yi ,2).
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Example: Haplotype Estimation Problem
Description

Let Yi = {Yi ,1,Yi ,2}. Consider four observations.

Y1 = {(0, 0), (0, 0)}, Y2 = {(1, 1), (0, 0)}
Y3 = {(1, 1), (1, 0)}, Y4 = {(0, 1), (1, 0)}

Then,

X1 = (0, 0), X2 = (1, 1)

X3 = (2, 1), X4 = (1, 1)

Let Ta,b denote
∑

i ,j 1{Yi,j=(a,b)} (a, b = 0, 1). That is
T0,0 = 3,T0,1 = 1,T1,0 = 2,T1,1 = 2.
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Example: Haplotype Estimation Problem

The EM algorithm

E-Step: Calculate
Q(θi−1, ϑ) = 2

∑
a,b=0,1 log ϑa,bEθi−1 [Ta,b|X1, . . . ,Xn]

M-Step: Set θi = arg maxϑ Q(θi−1, ϑ).

The M-step is,

θi
a,b = Eθi−1 [

Ta,b

2n
|X1, . . . ,Xn].
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Example: Haplotype Estimation Problem

This EM algorithm works well when we take a good initial
point θ0.

Does the sequence converge to MLE θ̂n?

Computer simulation tells us good information. But, how
about theoretical validation?
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Example: Haplotype Estimation Problem

We have,

1

n
∂θ log Ln(θ

i−1) = I1,2(θ
i−1)(θi − θi−1),

where Ln(θ) is the likelihood and I1,2(θ) is the Fisher
information of (X ,Y ).

Under some regularity conditions,

1

n
(∂θ log Ln(θ

i−1)− ∂θ log Ln(θ̂n)) ∼ −I (θi−1)(θi−1 − θ̂n).

Therefore, by easy calculation,

θi − θ̂n ∼ J(θi−1)(θi−1 − θ̂n),

where J(θ) = I − I1,2(θ)
−1I (θ0).
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Example: Haplotype Estimation Problem

Under some regularity conditions, we have

(θi − θ̂n) ∼ J(θ̂n)
i (θ0 − θ̂n) ∼ 0.

A similar expansion as above is well known.

We want to know what is the regularity condition. I tried
to find any paper related to the validation of the above
expansion.

Surprisingly, I could not find any validation for the above
expansion!

So we address the validity issue.

Kengo, KAMATANI Asymptotic Properties for Monte Carlo Methods



Asymptotic
Properties for
Monte Carlo

Methods

Kengo,
KAMATANI

Outline

Introduction

The EM
algorithm

Example

Asymptotic
Theory

Results

Regularity
Condition

The Gibbs
sampler

Example

Asymptotic
Theory

Results

Regularity
Condition

Conclusion

Example: Haplotype Estimation Problem

Under some regularity conditions, we have

(θi − θ̂n) ∼ J(θ̂n)
i (θ0 − θ̂n) ∼ 0.

A similar expansion as above is well known.

We want to know what is the regularity condition. I tried
to find any paper related to the validation of the above
expansion.

Surprisingly, I could not find any validation for the above
expansion!

So we address the validity issue.

Kengo, KAMATANI Asymptotic Properties for Monte Carlo Methods



Asymptotic
Properties for
Monte Carlo

Methods

Kengo,
KAMATANI

Outline

Introduction

The EM
algorithm

Example

Asymptotic
Theory

Results

Regularity
Condition

The Gibbs
sampler

Example

Asymptotic
Theory

Results

Regularity
Condition

Conclusion

Example: Haplotype Estimation Problem

Under some regularity conditions, we have

(θi − θ̂n) ∼ J(θ̂n)
i (θ0 − θ̂n) ∼ 0.

A similar expansion as above is well known.

We want to know what is the regularity condition. I tried
to find any paper related to the validation of the above
expansion.

Surprisingly, I could not find any validation for the above
expansion!

So we address the validity issue.

Kengo, KAMATANI Asymptotic Properties for Monte Carlo Methods



Asymptotic
Properties for
Monte Carlo

Methods

Kengo,
KAMATANI

Outline

Introduction

The EM
algorithm

Example

Asymptotic
Theory

Results

Regularity
Condition

The Gibbs
sampler

Example

Asymptotic
Theory

Results

Regularity
Condition

Conclusion

Example: Haplotype Estimation Problem

Under some regularity conditions, we have

(θi − θ̂n) ∼ J(θ̂n)
i (θ0 − θ̂n) ∼ 0.

A similar expansion as above is well known.

We want to know what is the regularity condition. I tried
to find any paper related to the validation of the above
expansion.

Surprisingly, I could not find any validation for the above
expansion!

So we address the validity issue.

Kengo, KAMATANI Asymptotic Properties for Monte Carlo Methods



Asymptotic
Properties for
Monte Carlo

Methods

Kengo,
KAMATANI

Outline

Introduction

The EM
algorithm

Example

Asymptotic
Theory

Results

Regularity
Condition

The Gibbs
sampler

Example

Asymptotic
Theory

Results

Regularity
Condition

Conclusion

Example: Haplotype Estimation Problem

Under some regularity conditions, we have

(θi − θ̂n) ∼ J(θ̂n)
i (θ0 − θ̂n) ∼ 0.

A similar expansion as above is well known.

We want to know what is the regularity condition. I tried
to find any paper related to the validation of the above
expansion.

Surprisingly, I could not find any validation for the above
expansion!

So we address the validity issue.

Kengo, KAMATANI Asymptotic Properties for Monte Carlo Methods



Asymptotic
Properties for
Monte Carlo

Methods

Kengo,
KAMATANI

Outline

Introduction

The EM
algorithm

Example

Asymptotic
Theory

Results

Regularity
Condition

The Gibbs
sampler

Example

Asymptotic
Theory

Results

Regularity
Condition

Conclusion

Some relative merit for large sample properties

We can show that the sequence of the EM algorithm
converges to the MLE. It is difficult under small sample
framework.

The rate matrix determines the convergence rate. This
fact is validated under large sample statistical theory.

It may be useful for other complicated algorithms.
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Some drawbacks for large sample properties

We assume a large sample size. Sometimes it is difficult to
assume.

We assume that the initial point θ0 is in a neighborhood
of the true value θ0. (A kind of moment estimator works
well.)
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Asymptotic Theory for IID

Let θ0 be a true parameter. Then, under general
assumptions,

log Lh,n = 〈h,Zn〉 −
1

2
〈h, I (θ0)h〉+ oPn

θ0
(1),

where log Lh,n =
∑

log pθ0+hn−1/2(xi )/pθ0(xi ) and

Zn = n−1/2
∑

∂ log pθ0(xi ).

The right hand side is maximized at h = I (θ0)
−1Zn.

Using this expansion, under some regularity condition, we
have

n1/2(θ̂n − θ0) ⇒ N(0, I (θ0)
−1).
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Asymptotic Theory for the EM algorithm

We take two parametric families
(X ,A,Pθ(dx) = pθ(x)dx ; θ ∈ Θ) and

(Y,B,P
2|1
x ,θ (dy) = p

2|1
x ,θ(y)dy ; θ ∈ Θ, x ∈ X ).

Let p1.2
s (x , y) = ps(x)p

2|1
x ,s (y).

Let

Qs,t(x) =

∫
Y

log
p1,2
t (x , y)

p1,2
s (x , y)

dP
2|1
x ,s (dy)

and

Qs,t,n(x
(n)) =

n∑
i=1

Qθ0+sn−1/2,θ0+tn−1/2(xi ).
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Asymptotic Theory for the EM algorithm

Under some regularity conditions,
Qs,t,n(x

(n)) = Qs,t,n(x
(n)) + oPn

θ0
(1), where Qs,t,n is

−1

2
〈t, I1,2(θ0)t〉+〈t,Zn+(I1,2(θ0)−I (θ0))s〉+cn(s, θ0, x

(n))

Note that, the maximizer of Qs,t,n with respect to t
satisfies

t − µn = J(θ0)(s − µn),

where µn = I (θ0)
−1Zn.
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The Result

Theorem (Convergence Theorem for the EM)

Under some regularity conditions, for any mn →∞,

n1/2(θmn − θ̂n) = oPn
θ0

(1),

where θ0, θ1, . . . is the sequence of the EM algorithm.

In the above result, we assume that for θ0 = θ0
n, for any ε > 0,

there exists δ > 0 such that

lim sup
n→∞

Pn
θ0

(n1/2|θ0
n − θ0| > δ) ≤ ε. (1)
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Regularity Condition

Assumption (Smoothness Assumption for the EM)

There exist some ε > 0, and some M ∈ L2(Pθ0) such that
for any s, t, u, v ∈ Bε(θ0), we have

|Qs,u(x)− Qt,v (x)| ≤ M(x)(|s − t|2 + |u − v |2)1/2.

The Fisher information matrix I (θ) is continuous around
θ0.
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Example

We explain the motivation for the Gibbs through the
Example, which is used in the previous section.

The prior distribution is Dir(α), where
α = (α0,0, α0,1, α1,0, α1,1).
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Example: Haplotype Estimation Problem

The Gibbs Sampler

Step i: For j = 1, . . . , n, generate yi ,j = (yi ,j ,1, yi ,j ,2) from

P
2|1
θi−1(dyi ,j |xj).

Then calculate T i
a,b,n =

∑n
j=1 Ta,b(yi ,j ,1, yi ,j ,2) and set

T i
n = (T i

0,0,n,T
i
0,1,n,T

i
1,0,n,T

i
1,1,n).

Generate θi from Dir(α + T i
n).
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Example: Haplotype Estimation Problem

The above procedure defines a Markov transition kernel
Fx(n),θ,n(dϕ) = fx(n),θ,n(ϕ)dϕ. We have

fx(n),θ,n(ϕ) ≥
Γ(2n +

∑1
a,b=0 αa,b)∏1

a,b=0 Γ(2n + αa,b)

1∏
a,b=0

ϕ
2n+αa,b−1
a,b ,

Moreover, we have

‖Fx(n),n − Fm
x(n),θ,n

‖TV ≤ ρm

where Fx(n),n is the posterior, and

ρ = 1− Γ(2n +
∑1

a,b=0 αa,b)/Γ(8n +
∑1

a,b=0 αa,b)
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Some relative merit for large sample properties

We approximate the Gibbs sampler by a simple transition
kernel, which is defined by simple statistics.

Therefore, we can measure the convergence rate of the
Gibbs sampler by the simple statistics.

In some situation, it is reasonable to consider large sample
theory.
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Some drawbacks for large sample properties

We assume a large sample. Sometimes it is difficult to
assume.

We assume that the initial guess θ0 is in a neighborhood of
the true value θ0. A kind of moment estimator works well.
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Asymptotic Theory for the Gibbs sampler

We showed that the sequence of the Gibbs sampler tends
to the following Markov chain:

The Markov chain h1, h2, . . . satisfies

hi − µn = J(θ0)(hi−1 − µn) + εi

where εi = N(0, 2I1,2(θ0)
−1 − I1,2(θ0)

−1I (θ0)I1,2(θ0)
−1).
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The Result

Theorem (Convergence Theorem for the Gibbs)

Under some regularity conditions, we have

n1/2|θ̃ln − θ̃n| = oPn
θ0

(1),

Note that θ̃ln is the empirical median of the sequence of the
Gibbs sampler such that θ0 = θ0

n ∼ νx(n),n. We assume that for
any ε > 0, there exists δ > 0,

lim sup
n→∞

Pn
θ0

(n1/2|θ0
n − θ0| > δ) ≤ ε. (2)
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Regularity Condition
Smoothness of the model

Assumption (Smoothness Assumption for the Gibbs)

For some ε > 0, there exists a constant C > 0 and for any
s, t ∈ Bε(θ0), we have

H(P
2|1
x ,s ,P

2|1
x ,t ) ≤ M(x)|s − t|,

where M(x) ∈ L2(Pθ0).

The Fisher information matrix I (θ) is continuous around
θ0.
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Regularity Condition
Existence of uniformly consistent test

Assumption (Existence of Uniformly Consistent Test)

There exists an integer N and a test ωn = ωn(x1, . . . , xn) on
(X n,An), such that there exists a constant ε0 ∈ (0, 1/2) and a
compact subset K of Θ such that

P
(n)
θ0

(ωn) ≤ ε0,P
(n)
θ (1− ωn) ≤ ε0 (∀θ ∈ K c).
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Conclusion

We showed convergence theorems for the EM and the
Gibbs.

These two algorithms are approximated by simple
algorithms. Using this approximation, we can compare
different algorithms.

It may be useful for constructing a new algorithm, or
studying efficiency of existing methods.
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