# Efficient Simulation of Tail Probabilities of Sums of Lognormal Random Variables with Gaussian Copula 

Leonardo Rojas-Nandayapa<br>joint work with José Blanchet and Sandeep Juneja

A Conference on the Occasion of R.Y. Rubinstein's 70th Birthday, July 15, 2008. Sandbjerg Gods, Denmark.

## Outline

## Introduction

Basic Concepts
Simulation of Tail Probabilities of Sums of Random Variables.

## Outline

Introduction
Basic Concepts
Simulation of Tail Probabilities of Sums of Random Variables.

Main Results
The Problem
The Algorithms
Examples

## Outline

Introduction

Basic Concepts
Simulation of Tail Probabilities of Sums of Random Variables.

## Main Results

The Problem
The Algorithms
Examples

## Estimation of rare event probabilities

Rare Event Simulation Algorithm
Let $\left\{A_{x}\right\}$ be an indexed set of events such that

$$
\lim _{x \rightarrow x_{0}} \mathbb{P}\left(A_{x}\right) \rightarrow 0 .
$$

An algorithm for estimating $\mathbb{P}\left(A_{x}\right)$ is a set of r.v. variables $\left\{Z_{x}\right\}$

$$
\mathbb{E} Z_{x}=\mathbb{P}\left(A_{x}\right) \forall x .
$$

## Estimation of rare event probabilities

Rare Event Simulation Algorithm
Let $\left\{A_{x}\right\}$ be an indexed set of events such that

$$
\lim _{x \rightarrow x_{0}} \mathbb{P}\left(A_{x}\right) \rightarrow 0
$$

An algorithm for estimating $\mathbb{P}\left(A_{x}\right)$ is a set of r.v. variables $\left\{Z_{x}\right\}$

$$
\mathbb{E} Z_{x}=\mathbb{P}\left(A_{x}\right) \forall x .
$$

Efficient algorithms

$$
\limsup _{x \rightarrow x_{0}} \frac{\operatorname{Var} Z_{x}}{\mathbb{P}^{2-\epsilon}\left(A_{x}\right)}<\infty
$$

Either for $\epsilon=0$ (Bounded Relative Error) or for all $\epsilon>0$ (Logarithmic Efficient).

## Outline

Introduction
Basic Concepts
Simulation of Tail Probabilities of Sums of Random Variables.

## Main Results

The Problem
The Algorithms
Examples

## Rare event simulation involving sums of r.v.'s.

Rare event probabilities of the type

$$
\mathbb{P}\left(X_{1}+\ldots+X_{N}>u\right) \quad u \rightarrow \infty
$$

$N$ possibly random.
Light tails
Most established tool is Importance Sampling.
Heavy Tails
Asmussen, Binswanger and Højgaard (1998) Severe difficulties.

## Rare event simulation involving sums of r.v.'s.

Rare event probabilities of the type

$$
\mathbb{P}\left(X_{1}+\ldots+X_{N}>u\right) \quad u \rightarrow \infty
$$

$N$ possibly random.
Light tails
Most established tool is Importance Sampling.

Asmussen, Binswanger and Højgaard (1998) Severe difficulties.

## Rare event simulation involving sums of r.v.'s.

Rare event probabilities of the type

$$
\mathbb{P}\left(X_{1}+\ldots+X_{N}>u\right) \quad u \rightarrow \infty
$$

$N$ possibly random.
Light tails
Most established tool is Importance Sampling.
Heavy Tails
Asmussen, Binswanger and Højgaard (1998) Severe difficulties.

## Rare event simulation involving i.i.d. r.v.

## State Independent

- Asmussen and Binswanger (1997) Logarithmic Efficiency
- Asmussen and Kroese (2006) Bounded Relative Error
- Juneja (2007) Zero Relative Error.


## State-Dependent

- Dupuis et. al. (2007) IS for Regularly Varying.


## Simulation with Heavy Tailed Random Variables

Subexponential Distributions
In the independent case

$$
\mathbb{P}\left(X_{1}+\ldots+X_{n}>u\right) \sim \sum_{i=1}^{n} \mathbb{P}\left(X_{i}>u\right)
$$

Intuitive Idea
$S_{n}$ becomes large as a consequence of single large jump.
Denendent Case
Ideas from the Independent Case might not work.

## Simulation with Heavy Tailed Random Variables

Subexponential Distributions
In the independent case

$$
\mathbb{P}\left(X_{1}+\ldots+X_{n}>u\right) \sim \sum_{i=1}^{n} \mathbb{P}\left(X_{i}>u\right)
$$

Intuitive Idea
$S_{n}$ becomes large as a consequence of single large jump.
Dependent Case
Ideas from the Independent Case might not work.

## Simulation with Heavy Tailed Random Variables

Subexponential Distributions
In the independent case

$$
\mathbb{P}\left(X_{1}+\ldots+X_{n}>u\right) \sim \sum_{i=1}^{n} \mathbb{P}\left(X_{i}>u\right)
$$

Intuitive Idea
$S_{n}$ becomes large as a consequence of single large jump.
Dependent Case
Ideas from the Independent Case might not work.

## Outline

## Introduction

Basic Concepts
Simulation of Tail Probabilities of Sums of Random Variables.

Main Results
The Problem
The Algorithms
Examples

## Lognormal marginals with Gaussian Copula

Definition
Let $\left(Y_{1}, \ldots, Y_{n}\right)$ be a multivariate Gaussian random vector.
Take $X_{k}=\mathrm{e}^{Y_{k}}$. The vector $\left(X_{1}, \ldots, X_{n}\right)$ is a lognormal random vector with gaussian copula.

## Lognormal marginals with Gaussian Copula

Definition
Let $\left(Y_{1}, \ldots, Y_{n}\right)$ be a multivariate Gaussian random vector.
Take $X_{k}=\mathrm{e}^{Y_{k}}$. The vector $\left(X_{1}, \ldots, X_{n}\right)$ is a lognormal random vector with gaussian copula.

Lognormal Random Variables as Heavy Tailed

- Light among Subexponential Distributions.
- All moments exist, however it does not have mgf.


## Lognormal marginals with Gaussian Copula

Definition
Let $\left(Y_{1}, \ldots, Y_{n}\right)$ be a multivariate Gaussian random vector.
Take $X_{k}=\mathrm{e}^{Y_{k}}$. The vector $\left(X_{1}, \ldots, X_{n}\right)$ is a lognormal random vector with gaussian copula.

Lognormal Random Variables as Heavy Tailed

- Light among Subexponential Distributions.
- All moments exist, however it does not have mgf.


## Lognormal marginals with Gaussian Copula

Definition
Let $\left(Y_{1}, \ldots, Y_{n}\right)$ be a multivariate Gaussian random vector.
Take $X_{k}=\mathrm{e}^{Y_{k}}$. The vector $\left(X_{1}, \ldots, X_{n}\right)$ is a lognormal random vector with gaussian copula.

Lognormal Random Variables as Heavy Tailed

- Light among Subexponential Distributions.
- All moments exist, however it does not have mgf.

Objective
Construct algorithms to estimate

$$
\mathbb{P}\left(X_{1}+\ldots+X_{n}>u\right)
$$

where $\left(X_{1}, \ldots, X_{n}\right) \sim \operatorname{LN}(\bar{\mu}, \Sigma)$.

## Main Contributions

Algorithm A
$\checkmark$ Importance Sampling.
$\checkmark$ Logarithmic efficient.
Algorithm B
$\checkmark$ Conditional Monte Carlo.
$\checkmark$ Logarithmic efficient.
Algorithm C
$\checkmark$ Algorithm A or B plus IS.
$\checkmark$ Bounded Relative Error.

## Main Contributions

Algorithm A
$\checkmark$ Importance Sampling.
$\checkmark$ Logarithmic efficient.
Algorithm B
$\checkmark$ Conditional Monte Carlo.
$\checkmark$ Logarithmic efficient.
Algorithm C
$\checkmark$ Algorithm A or B plus IS.
$\checkmark$ Bounded Relative Error.

## Main Contributions

Algorithm A
$\checkmark$ Importance Sampling.
$\checkmark$ Logarithmic efficient.
Algorithm B
$\checkmark$ Conditional Monte Carlo.
$\checkmark$ Logarithmic efficient.
Algorithm C
$\checkmark$ Algorithm A or B plus IS.
$\checkmark$ Bounded Relative Error.

## Outline

## Introduction

Basic Concepts
Simulation of Tail Probabilities of Sums of Random Variables.

Main Results
The Problem
The Algorithms
Examples

## Algorithm A

IS for Estimating the Probability of an Event $A$
Increases the probability of the event $A$ while resembling the original distribution.

How to Build a Proposal
Remember that if $\widetilde{X} \sim \mathrm{LN}\left(\mu, \theta^{2} \sigma^{2}\right)$ then Hence, it seems reasonable to propose as IS distribution $\operatorname{LN}_{n}\left(\bar{\mu}, \theta^{2}(u) \Sigma\right)$

## Algorithm A

IS for Estimating the Probability of an Event $A$
Increases the probability of the event $A$ while resembling the original distribution.

How to Build a Proposal
Remember that if $\widetilde{X} \sim \mathrm{LN}\left(\mu, \theta^{2} \sigma^{2}\right)$ then

$$
\mathbb{E}(X)=\mathrm{e}^{\mu+\theta^{2} \sigma^{2} / 2} \quad \operatorname{Var}\left(X_{i}\right)=\mathrm{e}^{2 \mu+2 \theta^{2} \sigma^{2}}-\mathrm{e}^{2 \mu+\theta^{2} \sigma^{2}}
$$

Hence, it seems reasonable to propose as IS distribution

$$
\mathrm{LN}_{n}\left(\bar{\mu}, \theta^{2}(u) \Sigma\right)
$$

## Algorithm A

IS for Estimating the Probability of an Event $A$
Increases the probability of the event $A$ while resembling the original distribution.

How to Build a Proposal
Remember that if $\widetilde{X} \sim \mathrm{LN}\left(\mu, \theta^{2} \sigma^{2}\right)$ then

$$
\mathbb{E}(X)=\mathrm{e}^{\mu+\theta^{2} \sigma^{2} / 2} \quad \operatorname{Var}\left(X_{i}\right)=\mathrm{e}^{2 \mu+2 \theta^{2} \sigma^{2}}-\mathrm{e}^{2 \mu+\theta^{2} \sigma^{2}}
$$

Hence, it seems reasonable to propose as IS distribution

$$
\mathrm{LN}_{n}\left(\bar{\mu}, \theta^{2}(u) \Sigma\right)
$$

## Algorithm A

IS for Estimating the Probability of an Event $A$
Increases the probability of the event $A$ while resembling the original distribution.

How to Build a Proposal
Remember that if $\widetilde{X} \sim \mathrm{LN}\left(\mu, \theta^{2} \sigma^{2}\right)$ then

$$
\mathbb{E}(X)=\mathrm{e}^{\mu+\theta^{2} \sigma^{2} / 2} \quad \operatorname{Var}\left(X_{i}\right)=\mathrm{e}^{2 \mu+2 \theta^{2} \sigma^{2}}-\mathrm{e}^{2 \mu+\theta^{2} \sigma^{2}}
$$

Hence, it seems reasonable to propose as IS distribution

$$
\mathrm{LN}_{n}\left(\bar{\mu}, \theta^{2}(u) \Sigma\right)
$$

## Algorithm A

Intuitive Idea
Let $\theta(u)$ grow moderately to as $u \rightarrow \infty$.
Formal Statement
Algorithm $A$ is logarithmic efficient if and only if $\log \theta(u)=o\left(\log ^{2} u\right)$

## Algorithm A

Intuitive Idea
Let $\theta(u)$ grow moderately to as $u \rightarrow \infty$.
Formal Statement
Algorithm $A$ is logarithmic efficient if and only if

$$
\log \theta(u)=\mathrm{o}\left(\log ^{2} u\right)
$$

How to choose it?
A convenient way to cho ose $\theta(u)$ is as the solution of

## Algorithm A

Intuitive Idea
Let $\theta(u)$ grow moderately to as $u \rightarrow \infty$.
Formal Statement
Algorithm $A$ is logarithmic efficient if and only if

$$
\log \theta(u)=\mathrm{o}\left(\log ^{2} u\right)
$$

How to choose it?
A convenient way to choose $\theta(u)$ is as the solution of

$$
\mathrm{e}^{\mu_{1}+\theta^{2} \sigma^{2} / 2}+\ldots+\mathrm{e}^{\mu_{n}+\theta^{2} \sigma^{2} / 2}=u .
$$

## Algorithm B

Conditional Monte Carlo<br>Use all known information. Simulate less.

Key Ideas
Let $Z_{1}, \ldots, Z_{n}$ i.i.d. $N(0,1)$ r.v.'s and define


We know $Z_{1}^{2}+\ldots+Z_{n}^{2} \sim \chi_{n}^{2}$ and how to simulate $\widehat{Z}_{i}$ 's.

## Algorithm B

Conditional Monte Carlo
Use all known information. Simulate less.

## Key Ideas

Let $Z_{1}, \ldots, Z_{n}$ i.i.d. $\mathrm{N}(0,1)$ r.v.'s and define

$$
\tilde{z}_{i}:=\frac{z_{i}}{\sqrt{Z_{1}^{2}+\ldots+Z_{n}^{2}}}
$$

We know $Z_{1}^{2}+\ldots+Z_{n}^{2} \sim \chi_{n}^{2}$ and how to simulate $\hat{Z}_{i}$ 's.

## Algorithm B

Conditional Monte Carlo
Use all known information. Simulate less.
Key Ideas
Let $Z_{1}, \ldots, Z_{n}$ i.i.d. $\mathrm{N}(0,1)$ r.v.'s and define

$$
\tilde{z}_{i}:=\frac{z_{i}}{\sqrt{Z_{1}^{2}+\ldots+Z_{n}^{2}}}
$$

We know $Z_{1}^{2}+\ldots+Z_{n}^{2} \sim \chi_{n}^{2}$ and how to simulate $\hat{Z}_{i}$ 's.

## Algorithm B

Key Ideas
Take $R^{2} \sim \chi_{n}^{2}$ and a decomposition $\Sigma=C C^{*}$ such that $C$ is square.

$$
\left(Y_{1}, \ldots, Y_{n}\right):=R C\left(\widetilde{Z}_{1}, \ldots, \tilde{Z}_{n}\right)^{t}+\bar{\mu} \sim N(\bar{\mu}, \Sigma)
$$

## Algorithm B

Key Ideas
Take $R^{2} \sim \chi_{n}^{2}$ and a decomposition $\Sigma=C C^{*}$ such that $C$ is square.

$$
\left(Y_{1}, \ldots, Y_{n}\right):=R C\left(\tilde{z}_{1}, \ldots, \tilde{Z}_{n}\right)^{t}+\bar{\mu} \sim N(\bar{\mu}, \Sigma)
$$

CMC Algorithm

$$
\begin{aligned}
& \mathbb{P}\left(S_{n}>u\right)= \mathbb{P}\left(\mathrm{e}^{Y_{1}}+\ldots+\mathrm{e}^{Y_{n}}>u\right) \\
&=\mathbb{E}\left[\mathbb { P } \left(\mathrm{e}^{R\left(C_{11} \tilde{Z}_{1}+\ldots+C_{1 n} \widetilde{Z}_{n}\right)+\mu_{1}}+\ldots\right.\right. \\
&\left.\left.\quad+\mathrm{e}^{R\left(C_{n 1} \tilde{Z}_{1}+\ldots+C_{n n} \widetilde{Z}_{n}\right)+\mu_{n}}>u \mid \widetilde{Z}_{1}, \ldots, \widetilde{Z}_{n}\right)\right]
\end{aligned}
$$

## Algorithm B

CMC Algorithm
Simulate $\tilde{\mathbf{Z}}=\left(\tilde{Z}_{1}, \ldots, \tilde{Z}_{n}\right)$ and return

$$
\mathbb{P}\left(R<\psi_{1}(u, \tilde{\mathbf{Z}})\right)+\mathbb{P}\left(R>\psi_{2}(u, \tilde{\mathbf{Z}})\right)
$$

## Algorithm B

CMC Algorithm
Simulate $\tilde{\mathbf{Z}}=\left(\tilde{Z}_{1}, \ldots, \tilde{Z}_{n}\right)$ and return

$$
\mathbb{P}\left(R<\psi_{1}(u, \tilde{\mathbf{Z}})\right)+\mathbb{P}\left(R>\psi_{2}(u, \tilde{\mathbf{Z}})\right)
$$

Efficiency
The algorithm B has logarithmic efficiency.

## Preliminaries of Algorithm C

## Asymptotic Result

A consequence of Asmussen and Rojas-Nandayapa (2008)

$$
\mathbb{P}\left(S_{n}>u\right) \sim \mathbb{P}\left(\max \left\{X_{i}: i=1, \ldots, n\right\}>u\right) \sim \sum_{i=1}^{n} \mathbb{P}\left(X_{i}>u\right)
$$

in the Dependent Case.

## Preliminaries of Algorithm C

Asymptotic Result
A consequence of Asmussen and Rojas-Nandayapa (2008)

$$
\mathbb{P}\left(S_{n}>u\right) \sim \mathbb{P}\left(\max \left\{X_{i}: i=1, \ldots, n\right\}>u\right) \sim \sum_{i=1}^{n} \mathbb{P}\left(X_{i}>u\right)
$$

in the Dependent Case.
Intuitive Ideas

## Preliminaries of Algorithm C

Asymptotic Result
A consequence of Asmussen and Rojas-Nandayapa (2008)

$$
\mathbb{P}\left(S_{n}>u\right) \sim \mathbb{P}\left(\max \left\{X_{i}: i=1, \ldots, n\right\}>u\right) \sim \sum_{i=1}^{n} \mathbb{P}\left(X_{i}>u\right)
$$

in the Dependent Case.
Intuitive Ideas

- Asymptotically $\mathbb{P}\left(M_{n}>u\right)$ accounts for most of the total probability $\mathbb{P}\left(S_{n}>u\right)$.
behave as independent random variables.


## Preliminaries of Algorithm C

## Asymptotic Result

A consequence of Asmussen and Rojas-Nandayapa (2008)

$$
\mathbb{P}\left(S_{n}>u\right) \sim \mathbb{P}\left(\max \left\{X_{i}: i=1, \ldots, n\right\}>u\right) \sim \sum_{i=1}^{n} \mathbb{P}\left(X_{i}>u\right)
$$

in the Dependent Case.
Intuitive Ideas

- Asymptotically $\mathbb{P}\left(M_{n}>u\right)$ accounts for most of the total probability $\mathbb{P}\left(S_{n}>u\right)$.
- In the event $\left\{M_{n}>u\right\}$ the random variables $X_{1}, \ldots, X_{n}$ behave as independent random variables.


## Preliminaries of Algorithm C

Key Idea
First proposed in Juneja (2008)

$$
\mathbb{P}\left(S_{n}>u\right)=\mathbb{P}\left(S_{n}>u, M_{n}<u\right)+\mathbb{P}\left(M_{n}>u\right)
$$

## Estimation of $\mathbb{P}\left(S_{n}\right.$ <br> The same as in Alaorith A A and B. Smaller variance.

Estimation of $\mathbb{P}\left(M_{n}>u\right)$
Design a new method for the Gaussian Copula (IS).

## Preliminaries of Algorithm C

Key Idea
First proposed in Juneja (2008)

$$
\mathbb{P}\left(S_{n}>u\right)=\mathbb{P}\left(S_{n}>u, M_{n}<u\right)+\mathbb{P}\left(M_{n}>u\right)
$$

Estimation of $\mathbb{P}\left(S_{n}>u, M_{n}<u\right)$
The same as in Algorithms A and B. Smaller variance.
Estimation of $\mathbb{P}\left(M_{n}>u\right)$
Design a new method for the Gaussian Copula (IS).

## Preliminaries of Algorithm C

Key Idea
First proposed in Juneja (2008)

$$
\mathbb{P}\left(S_{n}>u\right)=\mathbb{P}\left(S_{n}>u, M_{n}<u\right)+\mathbb{P}\left(M_{n}>u\right)
$$

Estimation of $\mathbb{P}\left(S_{n}>u, M_{n}<u\right)$
The same as in Algorithms $A$ and $B$. Smaller variance.
Estimation of $\mathbb{P}\left(M_{n}>u\right)$
Design a new method for the Gaussian Copula (IS).

## Estimation of $\mathbb{P}\left(M_{n}>u\right)$

Importance Sampling Distribution
Take $K$ supported over $\{1, \ldots, n\}$. Consider the distribution of

$$
\left(X_{1}, \ldots, X_{n} \mid X_{K}>u\right)
$$



## Estimation of $\mathbb{P}\left(M_{n}>u\right)$

Importance Sampling Distribution
Take $K$ supported over $\{1, \ldots, n\}$. Consider the distribution of

$$
\left(X_{1}, \ldots, X_{n} \mid X_{K}>u\right)
$$

## Main Features

$\checkmark$ We know how to simulate it.
$\checkmark$ We know its density.
$\checkmark$ It is supported exactly over $\left\{M_{n}>u\right\}$.
Distribution of $K$
Our proposal

$$
\mathbb{P}(K=K)=\frac{\mathbb{P}\left(X_{k}>u\right)}{\sum_{\ell=1}^{n} \mathbb{P}\left(X_{\ell}>u\right)}
$$

## Estimation of $\mathbb{P}\left(M_{n}>u\right)$

Importance Sampling Distribution
Take $K$ supported over $\{1, \ldots, n\}$. Consider the distribution of

$$
\left(X_{1}, \ldots, X_{n} \mid X_{K}>u\right)
$$

## Main Features

$\checkmark$ We know how to simulate it.
$\checkmark$ We know its density.
$\checkmark$ It is supported exactly over $\left\{M_{n}>u\right\}$.
Distribution of $K$
Our proposal

$$
\mathbb{P}(K=k)=\frac{\mathbb{P}\left(X_{k}>u\right)}{\sum_{\ell=1}^{n} \mathbb{P}\left(X_{\ell}>u\right)} .
$$

## Algorithm C

Efficiency
The following algorithms has Bounded Relative Error

- The IS algorithm for $\mathbb{P}\left(M_{n}>u\right)$
- Algorithm C for $\mathbb{P}\left(S_{n}>u\right)$ based on Algorithm A.


## Algorithm C

Efficiency
The following algorithms has Bounded Relative Error

- The IS algorithm for $\mathbb{P}\left(M_{n}>u\right)$.
- Algorithm C for $\mathbb{P}\left(S_{n}>u\right)$ based on Algorithm A. - Algorithm C for $\mathbb{P}\left(S_{n}>u\right)$ based on Algorithm B.


## Algorithm C

Efficiency
The following algorithms has Bounded Relative Error

- The IS algorithm for $\mathbb{P}\left(M_{n}>u\right)$.
- Algorithm C for $\mathbb{P}\left(S_{n}>u\right)$ based on Algorithm A.


## Algorithm C

Efficiency
The following algorithms has Bounded Relative Error

- The IS algorithm for $\mathbb{P}\left(M_{n}>u\right)$.
- Algorithm C for $\mathbb{P}\left(S_{n}>u\right)$ based on Algorithm A.
- Algorithm C for $\mathbb{P}\left(S_{n}>u\right)$ based on Algorithm B.


## Outline

## Introduction

Basic Concepts
Simulation of Tail Probabilities of Sums of Random Variables.

Main Results
The Problem
The Algorithms
Examples

## Example 1

## Example

10 lognormal r.v. with
Gaussian Copula

- $\mu_{i}=i-10$
- $\sigma_{i}^{2}=i$
- $\sigma_{i j}=0.4 \sigma_{i} \sigma_{j}$
- $R=10000$
(Estimator)
- $R=1000000$



## Example 1




