Overview of State-Dependent Importance Sampling for Simulating Jackson Networks

Victor F. Nicola

{vfnicola@ieee.org}

Outline

- Motivation
- Model and Notation
- MAP-Based Approach (Kroese and Nicola 1999)
- Adaptive IS Heuristics (Rubinstein 1999, de Boer and Nicola 2002)
- State-Dependent Heuristics (Nicola and Zaburnenko 2004)
- Game-Based Approach (Dupuis, Sezer and Wang 2007)
- Conclusions and Further Research

Motivation

- Efficient simulation of rare events in queueing models (e.g., buffer overflow)
- Applications

 Computer Systems: performance/dependability evaluation
 Telecommunication Networks:
 QoS management and control
 Manufacturing: scheduling and resource allocation
- Importance sampling (IS) technique

 State-independent (static) IS
 (does not always work!)
 state-dependent (dynamic) IS
 (generally more effective!)
- Brief overview of recent advances in dynamic IS

Model and Notation

• Jackson queueing network with n nodes

 λ_i external arrival rate at Node i

 μ_i service rate at Node i

 p_{ij} routing probability from i to j

 p_{ie} routing probability from i to exit

 Λ_i total arrival rate at Node *i* (from traffic equations):

$$\Lambda_i = \lambda_i + \sum_{\forall j} \Lambda_j p_{ji}, i = 1, \dots, n$$

 $\Lambda_i < \mu_i, i = 1, \dots, n$ (all queues are stable!)

Model and Notation (contd.)

- Notation
 - $X_{i,t}$ (i = 1, ..., n) number at Node i at $t \ge 0$
 - $\mathbf{X}_t = (X_{1,t}, \dots, X_{n,t}), t \ge 0$, Markov process
 - $S_t = \sum_{\forall i} \beta_i X_{i,t}$, with $\beta_i = \{0, 1\}, i = 1, ..., n$

When $\forall i \ \beta_i = 1$, $S_t \equiv$ network population

When only $\beta_i = 1$, $S_t \equiv$ buffer *i* content

- Starting from $S_0 = i \ge 1$ τ_K first time $S_t = K$ τ_0 first time $S_t = 0$ - rare event of interest: S_t hits K before return to 0
 - associated probability: $\gamma_i(K) = \mathbb{P}(\tau_K < \tau_0)$

State-Independent (Static) IS

- heuristics based on large deviations, e.g., (Parekh and Walrand 1989) (Frater et al. 1989, 1991 and 1994) (Juneja and Nicola 2005)
- heuristics based on effective bandwidth, e.g., (Chang et al. 1994)
 (De Veciana et al. 1994)
 (L'Ecuyer and Champoux 2001)
- not always asymptotically efficient! (Glasserman et al. 1995 and 1997) (Randhawa and Juneja 2004) (de Boer 2004)

State-Depdependent (Dynamic) IS

- Two basic ideas:
 - approximate the zero-variance C.O.M.

- "push" the system close to the most likely path to the rare set (MLP C.O.M.)

- Zero-variance and MLP C.O.M.s:
 not known (require the true probability!)
 state-dependent (even for the M/M/1 queue!)
 strong dependence close to boundaries (when one or more queues are empty!)
 weak or no dependence in the interior
- Challenges:
 - determine C.O.M.s (at boundaries/interior)
 - appropriately combine these C.O.M.s
 - dependence range along boundaries
 - is crucial for asymptotic efficiency!
 - boundaries increase with number of queues

State-Depdependent (Dynamic) IS (contd.)

- Generally more effective than static IS!
- Formal MAP approach (Kroese and Nicola 2002)
 - for 2-node tandem networks
 - provably effective
 - difficult for networks with many nodes?
- Adaptive IS heuristics
 - cross-entropy (CE) (pioneerd by Rubinstein)
 - CE for QN models (de Boer and Nicola 2002)
 - stoch. approximation (Ahamed et al. 2005)
 - less effective for networks with many nodes: excessive computational effort;

convergence problems?

State-Depdependent (Dynamic) IS (contd.)

- State-dependent IS heuristics (Nicola and Zaburnenko 2007)
 - less computational effort than adaptive IS
 - effective for tandem/parallel topologies
 - not developed for general Jackson networks?
- Formal game-theoretic approach (Dupuis and Wang 2008)
 - rigorous optimal control framework
 - provably effective
 - implementation and performance problems for networks with many nodes?

MAP-Based Approach

- First (formal) approach to state-dependent IS (Kroese and Nicola 1999, 2002)
- Stable two-node tandem network (λ, μ_1, μ_2)
- Rare event: starting from $(X_{1,0} = i, X_{2,0} = 1)$, second buffer $(X_{2,t})$ hits some high level Kbefore returning to 0; associated prob. $\gamma_i(K)$
- (X_{1,t}): birth-death process (λ, μ₁)
 (D_t): departure process from Node 1
 (E_t): pure death process (rate μ₂)
- Define $S_t \stackrel{\text{def}}{=} X_{2,0} + (D_t E_t), t \ge 0$, then $S_t \equiv X_{2,t}, 0 \le t \le \min\{\tau_0, \tau_K\}$

MAP-Based Approach (contd.)

• $(X_{1,t}, S_t)$: Markov additive process (MAP)

 $(X_{1,t})$: modulating (driving) process; continuous-time birth-death process (λ, μ_1)

(S_t): modulated (additive) process, with increments D_t and death rate μ_2

- $M_t(\theta)$: matrix of moment gen. functions $(M_t(\theta))_{i,j} \stackrel{\text{def}}{=} \mathbf{E}_i \, \mathrm{e}^{\theta S_t} \, I_{\{X_t=j\}}, \ 0 \leq i,j \leq \infty$
- Then $M_t(\theta) = e^{t G(\theta)}, t \ge 0$, with $G(\theta)$ given by

$$\begin{pmatrix} -\lambda - \mu_2 + \mu_2 e^{-\theta} & \lambda \\ \mu_1 e^{\theta} & -\lambda - \mu_1 - \mu_2 + \mu_2 e^{-\theta} & \lambda \\ & \ddots & \ddots & \ddots \\ & & & & & \\ \mu_1 e^{\theta} & -\mu_1 - \mu_2 + \mu_2 e^{-\theta} \end{pmatrix}$$

MAP-Based Approach (contd.)

- $\kappa(\theta)$: largest positive eigen value of $G(\theta)$
- $\mathbf{w}(\theta) = \{w_i(\theta), i = 0, 1, ...\}$: right-eigenvector corresponding to $\kappa(\theta)$
- Exponential C.O.M.: MAP $(\tilde{X}_{1,t}, \tilde{S}_t)$ given by

 $(\tilde{X}_{1,t})$: modulating process; a continuous-time birth-death process with conjugate rates

$$\tilde{\lambda}(i) = G_{i,i+1}(\theta) \frac{w_{i+1}(\theta)}{w_i(\theta)}, \quad i = 0, 1, \dots$$
$$\tilde{\mu}_1(i) = G_{i,i-1}(\theta) \frac{w_{i-1}(\theta)}{w_i(\theta)}, \quad i = 1, 2, \dots$$

rates depend on *i* (content of the first buffer)

• (\tilde{S}_t) : modulated additive process, with increments \tilde{D}_t and death rate $\tilde{\mu}_2 = \mu_2 e^{-\theta}$

MAP-Based Approach (contd.)

- To estimate γ_i(K), perform IS simulation with the optimal tilting parameter θ*, as determined from κ(θ*) = 0 (Asmussen and Rubinstein 1995)
- IS estimator is provably asymptotically efficient!
- MAP-based approach application to larger networks seems difficult?
- Conclusion: more research on state-dep. IS!

Adaptive IS Heuristics

- The method of Cross-Entropy (CE) for rare event simulation (Rubinstein 1999, de Boer and Nicola 2000, 2002)
- The CE method is an iterative procedure; each iteration involves two basic steps:

1. generate samples according to a given prob. measure (specified by a set of parameters)

2. update parameters of the prob. measure (based on the samples collected in Step 1) to produce "better" samples in the next iteration

• The goal is to converge to a prob. measure sufficiently close to the zero-variance C.O.M.

Adaptive IS Heuristics (contd.)

- Consider the simulation of an M/M/1 queue
 - original prob. measure $f(t; \mathbf{v})$:
 - $\mathbf{v} = (\lambda, \mu)$ (with $\lambda + \mu = 1$)

- for overflow level K, we wish to estimate $\gamma(K)$ using importance sampling

- change of measure $f(t; \hat{\mathbf{v}})$: $\hat{\mathbf{v}} = (\hat{\lambda}, \hat{\mu})$ (also, $\hat{\lambda} + \hat{\mu} = 1$)

• The CE method is used to determine an optimal parameter vector $\widehat{\mathbf{v}}^*$

Adaptive IS Heuristics (contd.)

- The CE algorithm (to determine $\hat{\mathbf{v}}^*$):
 - 1. Set $\hat{\mathbf{v}}_0 = \mathbf{v}$ and j = 1 (iteration counter)
 - 2. Update $\hat{\mathbf{v}}_j$:
 - generate cycles w_1, \ldots, w_m using $f(t; \hat{\mathbf{v}}_{j-1})$
 - select the "best" 1% cycles (with highest levels). Set $K_j \leq K$ to the lowest level reached
 - update $\hat{\mathbf{v}}_j = (\hat{\lambda}_j, \hat{\mu}_j)$ (CE minimization):

 $\hat{\lambda}_{j} = \frac{\sum_{i=1}^{m} I_{i}(K_{j}) L_{i} \times A_{ij}}{\sum_{i=1}^{m} I_{i}(K_{j}) L_{i} \times (A_{ij} + D_{ij})}, \qquad \hat{\mu}_{j} = 1 - \hat{\lambda}_{j}$ A_{ij} : arrivals in cycle *i* before reaching K_{j} D_{ij} : departures in cycle *i* before reaching K_{j} 3. if $K_{j} = K$, set $\hat{\mathbf{v}}^{*} = \hat{\mathbf{v}}_{j}$ and go to Step 4; otherwise, set j = j + 1 and go to Step 2 4. use $\hat{\mathbf{v}}^{*}$ to estimate $\gamma(K)$ via IS

Adaptive IS Heuristics (contd.)

• The CE algorithm can be used to optimize a state-dependent C.O.M. $\underline{\hat{v}} = (\underline{\hat{\lambda}}, \hat{\mu})$ with

 $\underline{\hat{\lambda}} = (\hat{\lambda}(0), \dots, \hat{\lambda}(b))$

 $\underline{\hat{\mu}} = (\hat{\mu}(1), \dots, \hat{\mu}(b))$

b is the dependence range along boundary(generally critcical for asymptotic efficiency!)

- Adaptive IS:
 - robust and effective for small networks

less effective for large networks:
 excessive computational effort
 convergence problems?

 Related work based on stoch. approximation (Ahamed, Borkar and Juneja 2005)

State-Dependent Heuristics

- Goal: "push" the system close to the most likely path (MLP) to the rare set (Nicola and Zaburnenko 2007)
- Methodology:
 - approximate the MLP C.O.M. along a few important boundaries and in the interior of the state-space (e.g., via time-reversal arguments)
 - appropriately combine these C.O.M.s(e.g., via simple linear interpolation)
 - set/adjust the dependence range (boundary thickness) to attain asymptotic efficiency

State-Dependent Heuristics (contd.)

Time reversal of the 2-node tandem network

State-Dependent Heuristics (contd.)

SDH for n-node tandem networks

 $\mu_1 \geqslant \mu_2 \geqslant \ldots \geqslant \mu_n$

From an empty network:

- initially $(x_i = 0, \forall i)$, no change of measure;
- as $x_1 \ge 1$, start 'pushing' Node 1;
- as $x_2 \ge 1$, gradually go to 'pushing' Node 2;
- as $x_3 \ge 1$, gradually go to 'pushing' Node 3;
- etc.

State-Dependent Heuristics (contd.)

- Advantages:
 - relatively simple to develop and implement
 - no computational effort to determine C.O.M.
 - empirical results show effectiveness for

tandem/parallel networks with any number of nodes

feed-forward/feedback networks of small and moderate size

- Challenges:
 - approximating MLP C.O.M. along boundaries
 - guidelines to set the dependence range
 - proof of asymptotic efficiency

Game-based Approach

- A formal game-theoretic foundation for the development of provably efficient state-dependent IS schemes (Dupuis, Sezer and Wang 2007)
- Goal: "push" the system along the most likely path (MLP) to the rare set
- Methodology:

- stochastic optimal control formulation to minimize the variance of the IS estimator (in the limit as $K \to \infty$, converges to a deterministic optimal control problem)

approximate solution to the associated DPE provides "key ingredients" to determine MLP
 C.O.M.s along distinct boundaries

- a proper weighted sum of these C.O.M.s yields an asymptotically efficient IS scheme

Game-based Approach (contd.)

• Advantage:

 rigorous and systematic framework for the construction of asymptotically efficient IS schemes for Jackson networks

- simultaneous estimation of probabilities for different overflow events

• Challenges:

- despite asymptotic efficiency, performance is sensitive to boundary thickness; rel. error may grow quickly (more than linear) with K

- number of boundaries $(2^n - 1)$ increases exponentially with the number of nodes (n)

- implementation and performance issues for large networks

Conclusions and Further Research

- Significant and promising recent advances
 - Adaptive IS heuristics
 - State-dependent IS heuristics
 - rigorous control-theoretic approach
- Further research
 - formal study of boundary thickness' impact on asymptotic efficiency and actual performance
 - effectiveness for large networks
 (applicability and performance issues)
 - reversibility-based approach (work in progress)
 - extensions to non-Jackson queueing networks