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Sensitivities

Let Yx(t) be a stochastic process on (Ω,F , µx), where x is a real
parameter.
For any functional Aµx [Yx(·)], we are interested in the sensitivity
w.r.t. the parameter x , i.e. the gradient (subgradient,
supergradient)

∂

∂x
Aµx [Yx(·)].

Compare: The score function method (Rubinstein & Shapiro),
perturbation analysis, etc.
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Examples

I Stochastic Optimization, especially for decision dependent
probabilities:
Queueing, Service, Manufacturing, Renewal Systems
A[Yx(·)] = E[f (Yx(T ))], the performance of the system at
time T , where f is a cost function, or
A[Yx(·)] =

∫ T
t E[f (Yx(t))] dt, the integrated transient

behavior
or
A[Yx(·)] = E[f (Yx(∞))], the stationary behavior.

I Sensitivity Analysis, especially in Finance:

I Calculation of the ”Greeks”
I Sensitivity of Risk functionals
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Weak derivatives

Let (R, d) be a metric space. To the family of Borel probabilities
on (R, d), we associate a ”dual space” F such as

I the space of all bounded, continuous functions

I the space of all continuous functions f , such that
|f (u)| ≤ K1 + K2d

p(u, u0)

I the space of all bounded measurable function

I the space of all measurable functions f , such that
|f (u)| ≤ K1 + K2d

p(u, u0)

Definition. The family of probability measures (µx)x∈X⊆R on R is
weakly differentiable w.r.t. the dual space F, if there is a finite
signed measure µ′x such that for all f ∈ F

1

s

[∫
f (w) dµx+s(w)−

∫
f (w) dµx(w)

]
→

∫
f (w) dµ′x(w)

as s → 0. (Heidergott, Vasquez-Abad, Leahu, G.P.)
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Decomposing the weak derivative

Any finite signed measure may be decomposed into its positive and
negative part (Jordan decomposition). Since

∫
1dµx = 1, we have

that
∫

1dµ′x = 0, i.e. the positive and the negative part have the
same mass. Thus we may decompose the derivative object µ′x

µ′x = cx(µ̇x − µ̈x)

where µ̇x and µ̈x are probability measures. The representation as a
multiple of the difference of two probability measures
µ′x = c(µ1 − µ2) is not unique, however the constant c is minimal
if the two parts µ1 and µ2 are orthogonal, i.e. if the decomposition
is the Jordan decomposition.
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Any triplet (cx , µ̇x , µ̈x), such that for f ∈ F

1

s

[∫
f (w) dµx+s(w) −

∫
f (w) dµx(w)

]

→ cx

[∫
f (w) d µ̇x(w)−

∫
f (w) d µ̈x(w)

]
,

for s → 0, is called a weak derivative triplet.
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Examples for weak derivatives

Distribution µx Constant Positive part of Negative part of
(x varies) cx the derivative: µ̇x the derivative: µ̈x

Poisson(x) 1 Poisson(x) + 1 Poisson(x)

Normal(x , σ2) 1/σ
√

2π x + Weibull(2, 1
2σ2 ) x - Weibull(2, 1

2σ2 )

Normal(m, x2) 1/x ds-Maxwell(m, x2) Normal(m, x2)

Exponential(x) 1/x Exponential(x) x−1 Erlang(2)

Gamma(α, x) α/x Gamma(α, x) Gamma(α + 1, x)

Weibull(α, x) 1/x Weibull(α, x) [Gamma(2, x)]1/α
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Use of weak derivatives in sensitivity estimation

If Ẏx resp. Ÿx are distributed according to µ̇x resp. Ÿx , then for
f ∈ F

cx [f (Ẏx)− f (Ÿx)]

is a consistent estimate of ∂
∂xE[f (Yx)].

(Academic) Example. Let F (x) = E[cos(Yx)], where Yx is a
Normal(0,x2) variable. Then

1/x [cos(Ẏx)− cos(Ÿx)]

where

Ẏx ∼ doublesidedMaxwell(0, x2) and Ÿx ∼ Normal(0, x2)

is a consistent estimate for ∂
∂x F (x).

Notice that no limits of infinitesimal quantities appear and that we
do not have to know the derivative of cos.
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Coupling

A probability measure µ̄ on R × R has marginals µ1 and µ2, if

[µ̄J1] (A) :=

∫
γ(A× dy) = µ1(A)

[µ̄J2] (B) :=

∫
γ(dx × B) = µ2(B).

J1, J2 are the projection operators. A coupling of two probability
measures µ1 and µ2 w.r.t. h is a probability measure µ̄ on R × R
with given marginals µi , which minimizes the expectation of the
criterion function h(u, v), i.e. is the solution of the following
optimization problem:

∥∥∥∥∥∥∥∥∥∥

Minimize
∫

h(u, v) d(µ̄(u, v))
subject to
γJ1 = µ1,
γJ2 = µ2,
γ is a probability on R2
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The solution may not be unique. We denote the solution (or the
set of solutions) by

µ1 c©
h
µ2

and call it ”µ1 and µ2 coupled over h”.

Georg Ch. Pflug Sensitivity Analysis of Risk Functionals



Example

Distribution µx Constant Positive part of Negative part of
(x varies) cx the derivative: µ̇x the derivative: µ̈x

Poisson(x) 1 Poisson(x) + 1 Poisson(x)

Coupling over the Euclidean distance leads to taking Ẏ = Yx + 1,
Ÿ = Yx , i.e.:
For any integrable cost function f and any Poisson variable
Yx ∼ Poisson(x) we have

∂

∂x
E[f (Yx)] = E[f (Yx + 1)]− E[f (Yx)]

with very low variance.
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Another example from my 1996 book:
Estimation of sensitivity of x 7→ E[

√
Yx ], where

Yx ∼ Exponential(x).
Then the variances are

Numerical differences 1069.9
Score function method 2.81
Weak derivatives with coupling 0.022
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Scenario processes and information processes

In multi-period decision problems, one is confronted with a
stochastic process Yx(t), which we call the scenario process and
the information process, which describes the available information.
Information is measured in terms of filtrations (increasing
sequences of σ-algebras).
Artzner’s Example:
A fair coin is tossed three times. The payoff process ξ(A) is

ξ
(A)
1 = 0; ξ

(A)
2 = 0;

ξ
(A)
3 =

{
1 if heads is shown at least two times
0 otherwise

We compare this process to another payoff process

ξ
(B)
1 = 0; ξ

(B)
2 = 0;

ξ
(B)
3 =

{
1 if heads is shown at least the last throw
0 otherwise
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Left: the process-and-information pair A, Right: the
process-and-information pair B
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In contrast, if we consider only the filtration generated by the
payoff process ξ(A) or ξ(B), we get the following tree:

- - ¡
¡µ

@
@R

0 0

1

0

1 1

0.5

0.5

Notice that for finite probability spaces, filtrations and trees are
equivalent. To formalize the concept of filtrations (and processes
adapted to them) in a version-independent way, we introduce the
notion of nested distributions.
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Nested distributions

Let (Ξ, d) be a Polish space, i.e. complete separable metric space
and let P1(Ξ, d) be the family of all Borel probability measures P
on (Ξ, d) such that

∫
d(u, u0) dP(u) < ∞

for some u0 ∈ Ξ.
For two Borel probabilities, P and Q in P1(Ξ, d), let d(P ,Q)
denote the Kantorovich distance

d(P, Q) = sup{
∫

f (u) dP(u)−
∫

f (u) dQ(u) : |f (u)−f (v)| ≤ d(u, v)}

d metrizises the weak topology on P1.
P1 is a complete separable metric space (Polish space) under d .
Iterate the argument: P1(P1(Ξ, d), d) is a polish space, a space of
distributions over distributions (i.e. what Bayesians would call a
hyperdistribution).
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If (Ξ1, d1) and (Ξ2, d2) are Polish spaces then so is the Cartesian
product (Ξ1 × Ξ2) with metric

d2((u1, u2), (v1, v2)) = d1(u1, v1) + d2(u2, v2).

Consider some metric d on Rm, which makes it Polish (it needs
not to be the Euclidean one). Then we define the following spaces

Ξ1 = (Rm, d)

Ξ2 = (Rm ×P1(Ξ1, d), d2) = (Rm × P1(Rm, d), d2)

Ξ3 = (Rm ×P1(Ξ2, d), d2) = (Rm × P1(Rm × P1(Rm, d), d2), d2)
...

ΞT = (Rm ×P1(ΞT−1, d), d2)

All spaces Ξ1, . . . ,ΞT are Polish spaces and they may carry
probability distributions.
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Definition. A Borel probability distribution P with finite first
moment on ΞT is called a nested distribution of depth T .
For any nested distribution P, there is an embedded multivariate
distribution P. We illustrate this for depth 2: Let P be a nested
distribution on Ξ2, which has components η (a real random
variable) and µ (a random distribution). Then

P(A1 × A2) = EP[1l{η∈A1}µ(A2)].

The projection from the nested distribution to the embedded
distribution is not injective:
Example.
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] [
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]



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The embedded multivariate, but non-nested distribution of the
stochastic process can be gotten from it:




0.08 0.04 0.08 0.3 0.3 0.2

3.0 3.0 3.0 3.0 2.4 2.4
6.0 4.7 3.3 2.8 1.0 5.1




Evidently, this multivariate distribution has lost the information
about the nested structure. If one considers the filtration
generated by the scenario process itself and forms the pertaining
nested distribution, one gets




0.5 0.5

3.0 2.4[
0.16 0.08 0.16 0.6

6.0 4.7 3.3 2.8

] [
0.6 0.4

1.0 5.1

]



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Markov Chains as nested distributions

Markov Chains are special cases of nested distributions.
Let, for instance, γ = (γ(1), γ(2), γ(3)) be a starting distribution
and let P be a transition matrix on the state space (z1, z2, z3)

P =




p(1, 1) p(1, 2) p(1, 3)
p(2, 1) p(2, 2) p(2, 3)
p(3, 1) p(3, 2) p(3, 3)




The pertaining nested distribution is




γ(1) γ(2) γ(3)

z1 z2 z3


p(1, 1) p(1, 2) p(1, 3)
z1 z2 z3

[. . . ] [. . . ] [. . . ]







p(2, 1) p(2, 2) p(2, 3)
z1 z2 z3

[. . . ] [. . . ] [. . . ]







p(3, 1) p(3, 2) p(3, 3)
z1 z2 z3

[. . . ] [. . . ] [. . . ]






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Derivatives of nested distributions

Let Px be a family of nested distributions indexed by x ∈ R. We
consider the derivative object P′x in the sense of weak derivatives
for Borel measures in Polish spaces.
To begin with, let us consider the derivative of discrete probability
measures

distribution family:
[

px (1) px (2) . . . px (m)

z1 z2 . . . zm

]

derivative object:
[

p′x (1) p′x (2) . . . p′x (m)

z1 z2 . . . zm

]

triplet representation:
cx

[
ṗx (1) ṗx (2) . . . ṗx (m)

z1 z2 . . . zm

]
,

[
p̈x (1) p̈x (2) . . . p̈x (m)

z1 z2 . . . zm

]
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We write the nested distribution Px as

(P(1)
x ,P(2)

x , . . . ,P(T )
x )

i.e. as the composition of the conditional distributions, given the
filtration. Notice that the filtration does not change with x .
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The Leibniz law for nested distributions

Let
Px = (P(1)

x ,P(2)
x , . . . ,P(T )

x )

be a nested distribution. Then the derivative object is

P′x =
T∑

t=1

(P(1)
x ,P(2)

x , . . .P′(t)x , . . .P(T )
x )

which may be decomposed into

P′x =
T∑

t=1

c
(t)
x [(P(1)

x , . . . ,P(t−1)
x , Ṗ(t)

x ,P(t+1)
x , . . . , )

− (P(1)
x , . . . ,P(t−1)

x , P̈x(t), . . .P
(T )
x )].
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Triplet representation

First stage:
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Using weak derivatives and coupling

Do for every t

- - - ¡
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@
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- -

- -

P(1)
x P(·)

x P(t−1)
x

Ṗ(t)
x

P̈(t)
x

P(t+1)
x P(T )

x

P(t+1)
x P(T )

x

or choose t randomly with uniform distribution in {1, . . . ,T}.
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Single-period functionals

Let A(Y ) be a version-independent probability functional, i.e. if
Y1 and Y2 have the same distributions, then A(Y1) = A(Y2),
irrespective on which probability space the random variables are
defined.
We assume that Y 7→ A(Y ) is concave, i.e. for all 0 ≤ λ ≤ 1

A(λY1 + (1− λ)Y2) ≥ λA(Y1) + (1− λ)A(Y2).

Concave u.s.c. functionals have the (dual) representation

A(Y ) = inf{
∫
E[Y · Z ]−A+(Z ) : Z ∈ Z}

where A+ is the (concave) dual functional.
Examples are

I A(Y ) = E(Y )
I A(Y ) = E(Y )− 1

2Mad(Y )
I A(Y ) = E(Y )− Std(Y )
I A(Y ) = AV@Rα(Y ) = 1

α

∫ 1
0 G−1

Y (p) dp
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Sensitivity of concave functionals

Suppose that

I the functional A(Y ) is version-independent, concave and has
the representation

A{µx} = inf{Eµx [Y · Z ]−A+
µx

(Z ) : Z ∈ Z}, (1)

I x 7→ µx is (appropriately) weakly differentiable,

I x 7→ A+
µx

(Z ) is differentiable for all Z ∈ Z.

Then the mapping x 7→ A{µx} is (super-)differentiable with
supergradient set

∂xA{µx} =
{
Eµ′x [Y · Z ]− ∂

∂x
A+

µx
(Z ) : Z ∈ argmin{(1)}

}
.

(Y is identity here)
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Example: Sensitivity of the average value-at-risk

Suppose that we choose the dual space F as the continuous
functions with at most linear growth. The AV@R:
AV@Rα{µx} = 1

α

∫ α
0 G−1

x (u) du, where Gx =
∫ u
0 dµx has the

following dual representation

AV@Rα{µx} = inf{Eµx [Y · Z ] : Eµx [Z ] = 1, 0 ≤ Z ≤ 1/α}.
The minimizer is (cum grano salis)

Z =
1

α
1l{Y≤G−1

x (α)}.

The full supergradient set is

∂xAV@Rα{µx} = conv{
∫

y

α
1l{y<u} +

y

α

(
α− α−Gx

α+
Gx
− α−Gx

)
1l{y=u} dµ′x(y) :

u ∈ [G−1
x (α), G−1

x (α+)]}
where α+

Gx
= Gx(G

−1
x (α)), α−Gx

= limh↓0 Gx(G
−1
x (α)− h).
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Sensitivity of the multiperiod average value-at-risk

Let Px be a nested distribution of depth T .
The multiperiod average value-at-risk is defined as

AV@R(Px) =
T∑

t=1

E[AV@Rα(Yx(t)|Ft−1)]

The supergradient of this functional is

T∑

t=1

EP′(t−1)
x

[AV@Rα(Yx(t)|Ft−1)]

+
T∑

t=1

EP(t−1)
x

[EP′(t)x
[Yx(t)Zx(t)]|Ft−1)]

where

Zx(t) =
1

α
1l{Y <G−1

x (t)} +
1

α

(
α− α−Gx (t)

α−Gx (t)
α−Gx (t)

)
1l{Y=G−1

x (t)(α)}

Georg Ch. Pflug Sensitivity Analysis of Risk Functionals



Conclusions

I The triplet representation of derivative objects allows to
implement low variance estimates through coupling.

I There is something beyond chains of conditional distributions:
nested distributions. They capture also the information aspect
through filtrations.

I Not only the sensitivity of expectations can be calculated: By
virtue of the supergradient representation of functionals, we
may represent their sensitivities also as integrals w.r.t. the
derivative objects. This allows to find estimation formulas
using the triplet representation and coupling.
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