Randomized methods based on new Monte Carlo schemes for control and optimization

B.T. Polyak

Institute for Control Sciences, Russian Academy of Sciences, Moscow, Russia

$$
\text { July } 2008
$$

with E. Gryazina, F. Dabbene, P. Scherbakov

Efficient Monte Carlo: From Variance Reduction to Combinatorial Optimization - A Conference on the Occasion of R.Y.Rubinstein's 70th Birthday (Soenderborg)

Outline

- Historical background
- "Ideal" Monte Carlo and convergence estimates
- Implementable random algorithms: boundary oracle
- Hit-and-Run
- Shake-and-Bake
- Numerical simulation
- Conclusions

Historical background

- First random search methods Rastrigin (1960-ies)
- Pessimism on effectiveness of randomized algorithms Nemirovski and Yudin (1983)
- Revival of randomized approaches for optimization Bertsimas and Vempala (2004), Polyak and Shcherbakov (2006) and Dabbene (2008), Campi (2008)

Historical background

- First random search methods

Rastrigin (1960-ies)

- Pessimism on effectiveness of randomized algorithms Nemirovski and Yudin (1983)
- Revival of randomized approaches for optimization Bertsimas and Vempala (2004), Polyak and Shcherbakov (2006) and Dabbene (2008), Campi (2008)

Historical background

- First random search methods

Rastrigin (1960-ies)

- Pessimism on effectiveness of randomized algorithms Nemirovski and Yudin (1983)
- Revival of randomized approaches for optimization Bertsimas and Vempala (2004), Polyak and Shcherbakov (2006) and Dabbene (2008), Campi (2008)

Problem statement

$$
\begin{gathered}
\min c^{T} x \\
\text { s.t. } x \in X
\end{gathered}
$$

X is a convex bounded closed set in \mathbb{R}^{n} with nonempty interior

Remark: Any convex optimization problem

$$
\begin{gathered}
\min f(x) \\
\text { s.t. } x \in Q \\
Q \text { and } f \text { are convex }
\end{gathered}
$$

can be converted to this format.

"Ideal" Monte Carlo

$x_{1}, x_{2}, \ldots x_{N}$ independent uniformly distributed points in X

Cutting plane method

1. Set $X_{1}=X$
2. Generate uniform

$$
x_{1}, x_{2}, \ldots x_{N} \in X_{k}
$$

3. Find $f_{k}=\min c^{T} x_{i}$
4. Set $X_{k+1}=X_{k} \bigcap\{x$:
$\left.c^{T} x \leq f_{k}\right\}$
go to Step 2.

Convergence estimates

$$
f^{*}=\max _{x \in X} c^{T} x, \quad f_{*}=\min _{x \in X} c^{T} x, h=f^{*}-f_{*}
$$

Theorem

After k iterations of the algorithm

$$
E\left[f_{k}\right]-f_{*} \leq q^{k}, \quad q=\frac{h}{n} B\left(N+1, \frac{1}{n}\right)
$$

where $B(a, b)$ is Euler beta-function.

Case of a special interest: $N=1, k=1$

Theorem

Let x_{1} be a random point uniformly distributed in X. Then

$$
E\left[c^{T} x_{1}\right]-f_{*} \leq h\left(1-\frac{1}{n+1}\right)
$$

Radon theorem and center of gravity method

Remark:

$$
\begin{gathered}
E\left[x_{1}\right]=g(\text { center of gravity of } X), \quad \Rightarrow \quad c^{T} g-f_{*} \leq h\left(1-\frac{1}{n+1}\right) \\
{[\text { Radon theorem (1916)] }}
\end{gathered}
$$

Deterministic version: center of gravity method

$$
x^{k}=g^{k}, \quad X_{k+1}=X_{k} \bigcap\left\{x: c^{T} x \leq c^{T} g^{k}\right\}
$$

Implementable random algorithms: boundary oracle

uniform random samples \Rightarrow asymptotically uniformly distributed via Markov-chain Monte Carlo schemes

Implementable random algorithms: boundary oracle

uniform random samples \Rightarrow asymptotically uniformly distributed via Markov-chain Monte Carlo schemes

Given $x_{0} \in X, d$ - vector specifying the direction in \mathbb{R}^{n}
Boundary oracle
$L=\left\{t \in \mathbb{R}: x^{0}+t d \in X\right\}$
For convex sets $L=(\underline{t}, \bar{t})$,
where $\underline{t}=\inf \left\{t: x^{0}+t d \in X\right\}, \bar{t}=\sup \left\{t: x^{0}+t d \in X\right\}$

Implementable random algorithms: boundary oracle

uniform random samples \Rightarrow asymptotically uniformly distributed via Markov-chain Monte Carlo schemes

Given $x_{0} \in X, d$ - vector specifying the direction in \mathbb{R}^{n}
Boundary oracle
$L=\left\{t \in \mathbb{R}: x^{0}+t d \in X\right\}$
For convex sets $L=(\underline{t}, \bar{t})$,
where $\underline{t}=\inf \left\{t: x^{0}+t d \in X\right\}, \bar{t}=\sup \left\{t: x^{0}+t d \in X\right\}$
Complete boundary oracle
$L=\left\{t \in \mathbb{R}: x^{0}+t d \in X\right\}+$ inner normals to X at the boundary points

Boundary oracle is available for numerous sets

- LMI set

$$
X=\left\{x \in \mathbb{R}^{n}: A_{0}+\sum_{i=1}^{n} x_{i} A_{i} \leq 0\right\}
$$

- LMI constrained set of symmetric matrices P

$$
X=\left\{P: A P+P A^{T}+C \leq 0, P \geq 0\right\}
$$

- Quadratic matrix inequalities set

$$
X=\left\{P: A P+P A^{T}+P B B^{T} P+C \leq 0, P \geq 0\right\}
$$

- Linear algebraic inequalities set

$$
X=\left\{x \in \mathbb{R}^{n}: c_{i}^{T} x \leq a_{i}, i=1, \ldots, m\right\}
$$

Hit-and-Run

1. $i=0, x^{0} \in X$
2. Choose random direction d uniformly distributed on the unit sphere
3. $x^{i+1}=x^{i}+t_{1} d$,
t_{1} is uniformly distributed on $L=(\underline{t}, \bar{t})$
4. L is updated with respect to x^{i+1}, go to Step 2.

Theorem (Smith (1984))

Let X be bounded open or coincides with the closure of interior points of X. Then for any measurable set $A \subset X$ probability $P_{i}(A)=P\left(x^{i} \in A \mid x^{0}\right)$ can be estimated as $\left|P_{i}(A)-P(A)\right| \leq q^{i}$, where $P(A)=\frac{\operatorname{Vol}(\mathrm{A})}{\operatorname{Vol}(\mathrm{X})}$ and
$q<1$ does not depend on x^{0}.

Shake-and-Bake: an alternative way for generating points

Points are asymptotically uniformly distributed in the boundary of X.
Complete boundary oracle is exploited.

- LMI set

$$
X=\left\{x \in \mathbb{R}^{n}: A_{0}+\sum_{i=1}^{n} x_{i} A_{i} \leq 0\right\}
$$

$n_{i}=-\left(A_{i} e, e\right), \quad$ where e is the eigenvector corresponding to

$$
\text { zero eigenvalue of the matrix } A_{0}+\sum_{i=1}^{n} x_{i}^{0} A_{i} \text {. }
$$

- LMI constrained set of symmetric matrices P

$$
X=\left\{P: A P+P A^{T}+C \leq 0\right\}
$$

$N=-\left(e e^{T} A+A^{T} e e^{T}\right), \quad$ where e is the eigenvector corresponding to zero eigenvalue of the matrix $A P_{0}+P_{0} A^{T}+C$.

Shake-and-Bake: the algorithm

1. $i=0, x^{0} \in \partial X, n^{0}$ is the normal.
2. Choose random direction s^{i},
$s^{i}=\sqrt{1-\xi^{\frac{2}{n-1}}} n^{0}+r$,
ξ uniform random in $(0,1)$,
r is random unit uniform direction $\left(n^{0}, r\right)=0$.
3. $x^{i+1}=x^{i}+\bar{t} s$,
\bar{t} is given by the boundary oracle for the direction s.
4. L is updated with respect to

x^{0}
x^{i+1}, go to Step 2.

Shake-and-Bake for nonconvex sets

Numerical simulation

Standard SDP of the form

$$
\begin{gathered}
\min c^{T} x \\
\text { s.t. } A_{0}+\sum_{i=1}^{n} x_{i} A_{i} \leq 0
\end{gathered}
$$

$A_{i}, i=0,1, \ldots n-$ symmetric real matrices $m \times m ; c=[0, \ldots, 0,1]$ We applied modified HR where min x_{i} was replaced with averaged X_{i} + various heuristic acceleration methods (scaling, projecting, accelerating step)
Open problem: number of HR points in every step.

Numerical simulation

Standard SDP of the form

$$
\begin{gathered}
\min \operatorname{tr} P \\
\text { s.t. } A P+P A^{T} \leq 0 \\
P \geq I
\end{gathered}
$$

A is stable matrix $n \times n$

We applied SB for various dimensions

+ extension for the nonsmooth boundary

Simulation results:small size problem

Applications to control

Sets with available boundary oracle

- Stability set for polynomials

$$
\mathcal{K}=\left\{k \in \mathbb{R}^{n}: p(s, k)=p_{0}(s)+\sum_{i=1}^{n} k_{i} p_{i}(s) \text { is stable }\right\}
$$

- Stability set for matrices

$$
\begin{gathered}
A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times m}, C \in \mathbb{R}^{l \times n} \\
\mathcal{K}=\left\{K \in \mathbb{R}^{m \times l}: A+B K C \text { is stable }\right\}
\end{gathered}
$$

- Robust stability set for polynomials

$$
\mathcal{K}=\left\{k: P_{0}(s, q)+\sum_{i=1}^{n} k_{i} P_{i}(s, q) \text { is stable } \forall q \in Q\right\}, \quad Q \subset \mathbb{R}^{m}
$$

- Quadratic stability set

$$
\begin{gathered}
\dot{x}=A x \\
\mathcal{K}=\left\{P>0: A P+P A^{T} \leq 0\right\}
\end{gathered}
$$

Stability set for polynomials

$$
\begin{gathered}
\mathcal{K}=\left\{k \in \mathbb{R}^{n}: p(s, k)=p_{0}(s)+\sum_{i=1}^{n} k_{i} p_{i}(s) \text { is stable }\right\} \\
k^{0} \in \mathcal{K} \text { i.e. } p\left(s, k^{0}\right) \text { is stable, } \\
d=s /\|s\|, s=\operatorname{randn}(\mathrm{n}, 1)-\text { random direction }
\end{gathered}
$$

$$
\text { Boundary oracle: } L=\left\{t \in \mathbb{R}: k^{0}+t d \in \mathcal{K}\right\}
$$

$$
\text { i.e. }\left\{t \in \mathbb{R}: p\left(s, k^{0}\right)+t \sum d_{i} p_{i}(s) \text { is stable }\right\}
$$

$$
D \text {-decomposition problem for real scalar parameter } t \text { ! }
$$

Gryazina E. N., Polyak B. T. Stability regions in the parameter space: D-decomposition revisited //Automatica. 2006. Vol. 42, No. 1, P. 13-26.

Example: Generating points in the disconnected set

$$
\mathcal{K}=\left\{k \in \mathbb{R}^{n}: p(s, k)=p_{0}(s)+\sum_{i=1} k_{i} p_{i}(s) \text { is stable }\right\},
$$

$$
p(s, k)=2.2 s^{3}+1.9 s^{2}+1.9 s+2.2+k_{1}\left(s^{3}+s^{2}-s-1\right)+k_{2}\left(s^{3}-3 s^{2}+3 s-1\right)
$$

Stability set for matrices

$$
\dot{x}=A x+B u, \quad y=C x, \quad u=K y
$$

$$
\begin{gathered}
A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times m}, C \in \mathbb{R}^{l \times n} ; \quad \mathcal{K}=\left\{K \in \mathbb{R}^{m \times l}: A+B K C \text { is stable }\right\} \\
D=Y /\|Y\|, Y=\operatorname{randn}(m, l) \text { - random direction in the matrix space } K \\
\\
K^{0} \in \mathcal{K} \text { i.e. } A+B K^{0} C \text { is stable } \\
\\
A+B\left(K^{0}+t D\right) C=F+t G, \text { where } F=A+B K^{0} C, G=B D C
\end{gathered}
$$

Boundary oracle: $L=\{t \in \mathbb{R}: F+t G$ is stable $\}$
Total description of L is hard:

$$
f(t)=\max R e \operatorname{eig}(F+t G)
$$

numerical solution of the equation $f(t)=0, t>0$ (MatLab command fsolve)

Quadratic stability

$$
\begin{gathered}
\dot{x}=A x+B u, \quad u=K x \\
\mathcal{K}=\left\{K: \exists P>0, A_{c}^{T} P+P A_{c} \leq 0\right\}, \quad A_{c}=A+B K \\
\mathcal{K} \text { is convex and bounded. } \\
Q=P^{-1}>0, \quad Q A^{T}+A Q+B Y+Y^{T} B^{T}<0, \quad Y=K Q . \\
k^{0} \in \mathcal{K}, Q_{0}=P_{0}^{-1}, Y_{0}=K_{0} Q_{0}-\text { starting points } \\
Q=Q_{0}+t J, Y=Y_{0}+t G, \text { where } J \text { and } G \text { are random directions in the matrix } \\
\text { space. } \\
\text { initial inequality } \Longleftrightarrow F+t R<0 \\
\text { Boundary oracle: } L=(-\underline{t}, \bar{t}) \\
\text { where } \bar{t}=\min \lambda_{i}, \underline{t}=\min \mu_{i} ; \\
F=Q_{0} A^{T}+A Q_{0}+B Y_{0}+Y_{0}^{T} B^{T} \text { and }-R=J A^{T}+A J+B G+G^{T} B^{T} ; \\
\mu_{i} \text { correspondingly for matrices } F, R .
\end{gathered}
$$

Polyak B.T., Shcherbakov P.S. The D-decomposition technique for linear matrix inequalities // Automation and Remote Control. 2006. No. 11. P. 1847-1861

Conclusions

- Randomized approaches for optimization are promising.
- Proposed methods are simple in implementation and give an opportunity to solve large-dimensional problems.

