Randomized methods based on new Monte Carlo schemes for control and optimization

B.T. Polyak

Institute for Control Sciences, Russian Academy of Sciences, Moscow, Russia

July 2008

with E. Gryazina, F. Dabbene, P. Scherbakov

Efficient Monte Carlo: From Variance Reduction to Combinatorial Optimization — A Conference on the Occasion of R.Y.Rubinstein's 70th Birthday (Soenderborg)

B.T. Polyak (ICS, Moscow)

Randomized methods

- Historical background
- "Ideal" Monte Carlo and convergence estimates
- Implementable random algorithms: boundary oracle
 - Hit-and-Run
 - Shake-and-Bake
- Numerical simulation
- Conclusions

- First random search methods Rastrigin (1960-ies)
- Pessimism on effectiveness of randomized algorithms Nemirovski and Yudin (1983)
- Revival of randomized approaches for optimization
 Bertsimas and Vempala (2004), Polyak and Shcherbakov (2006) and
 Dabbene (2008), Campi (2008)

- First random search methods Rastrigin (1960-ies)
- Pessimism on effectiveness of randomized algorithms Nemirovski and Yudin (1983)
- Revival of randomized approaches for optimization Bertsimas and Vempala (2004), Polyak and Shcherbakov (2006) and Dabbene (2008), Campi (2008)

- First random search methods Rastrigin (1960-ies)
- Pessimism on effectiveness of randomized algorithms Nemirovski and Yudin (1983)
- Revival of randomized approaches for optimization
 Bertsimas and Vempala (2004), Polyak and Shcherbakov (2006) and
 Dabbene (2008), Campi (2008)

 $\min \ c^T x$
s.t. $x \in X$

X is a convex bounded closed set in \mathbb{R}^n with nonempty interior

Remark: Any convex optimization problem

 $\begin{array}{l} \min \ f(x) \\ \text{s.t. } x \in Q, \\ Q \ \text{and} \ f \ \text{are convex} \end{array}$

can be converted to this format.

 $x_1, x_2, \ldots x_N$ independent uniformly distributed points in X Cutting plane method

- 1. Set $X_1 = X$
- 2. Generate uniform $x_1, x_2, \ldots x_N \in X_k$
- 3. Find $f_k = \min c^T x_i$
- 4. Set $X_{k+1} = X_k \bigcap \{x : c^T x \leq f_k\}$ go to Step 2.

Convergence estimates

$$f^* = \max_{x \in X} c^T x, \quad f_* = \min_{x \in X} c^T x, h = f^* - f_*$$

Theorem

After k iterations of the algorithm

$$E[f_k] - f_* \le q^k, \quad q = \frac{h}{n} B\left(N+1, \frac{1}{n}\right),$$

where B(a, b) is Euler beta-function.

Case of a special interest: N = 1, k = 1

Theorem

Let x_1 be a random point uniformly distributed in X. Then

$$E\left[c^{T}x_{1}\right] - f_{*} \le h\left(1 - \frac{1}{n+1}\right)$$

B.T. Polyak (ICS, Moscow)

Remark:

$$E[x_1] = g$$
 (center of gravity of X), $\Rightarrow c^T g - f_* \le h\left(1 - \frac{1}{n+1}\right)$
[Radon theorem (1916)]

Deterministic version: center of gravity method

$$x^k = g^k, \quad X_{k+1} = X_k \bigcap \{x : c^T x \le c^T g^k\}$$

uniform random samples \Rightarrow asymptotically uniformly distributed via Markov-chain Monte Carlo schemes

Given $x_0 \in X$, d — vector specifying the direction in \mathbb{R}^n Boundary oracle $L = \{t \in \mathbb{R} : x^0 + td \in X\}$

For convex sets $L = (\underline{t}, \overline{t})$, where $\underline{t} = \inf\{t : x^0 + td \in X\}$, $\overline{t} = \sup\{t : x^0 + td \in X\}$ **Complete boundary oracle**

 $L = \{t \in \mathbb{R}: x^0 + td \in X\} + \mathsf{inner}$ normals to X at the boundary points

uniform random samples \Rightarrow asymptotically uniformly distributed via Markov-chain Monte Carlo schemes

Given $x_0 \in X$, d — vector specifying the direction in \mathbb{R}^n Boundary oracle $L = \{t \in \mathbb{R} : x^0 + td \in X\}$

For convex sets $L = (\underline{t}, \overline{t})$, where $\underline{t} = \inf\{t : x^0 + td \in X\}$, $\overline{t} = \sup\{t : x^0 + td \in X\}$ Complete boundary oracle

 $L = \{t \in \mathbb{R}: x^0 + td \in X\} + \mathsf{inner}$ normals to X at the boundary points

uniform random samples \Rightarrow asymptotically uniformly distributed via Markov-chain Monte Carlo schemes

Given
$$x_0 \in X$$
, d — vector specifying the direction in \mathbb{R}^n
Boundary oracle
 $L = \{t \in \mathbb{R} : x^0 + td \in X\}$

For convex sets $L = (\underline{t}, \overline{t})$, where $\underline{t} = \inf\{t : x^0 + td \in X\}$, $\overline{t} = \sup\{t : x^0 + td \in X\}$ Complete boundary oracle

 $L = \{t \in \mathbb{R} : x^0 + td \in X\}$ + inner normals to X at the boundary points

Boundary oracle is available for numerous sets

LMI set

$$X = \left\{ x \in \mathbb{R}^n : A_0 + \sum_{i=1}^n x_i A_i \le 0 \right\}$$

 $\bullet~{\rm LMI}$ constrained set of symmetric matrices P

$$X = \{P : AP + PA^T + C \le 0, \ P \ge 0\}$$

• Quadratic matrix inequalities set

$$X = \left\{ P : AP + PA^T + PBB^TP + C \le 0, \ P \ge 0 \right\}$$

• Linear algebraic inequalities set

$$X = \left\{ x \in \mathbb{R}^n : c_i^T x \le a_i, \ i = 1, \dots, m \right\}$$

Hit-and-Run

1. $i = 0, x^0 \in X$

- 2. Choose random direction d uniformly distributed on the unit sphere
- 3. $x^{i+1} = x^i + t_1 d$, t_1 is uniformly distributed on $L = (\underline{t}, \overline{t})$
- 4. L is updated with respect to x^{i+1} , go to Step 2.

Theorem (Smith (1984))

Let X be bounded open or coincides with the closure of interior points of X. Then for any measurable set $A \subset X$ probability $P_i(A) = P(x^i \in A | x^0)$ can be estimated as $|P_i(A) - P(A)| \le q^i$, where $P(A) = \frac{Vol(A)}{Vol(X)}$ and q < 1 does not depend on x^0 .

Shake-and-Bake: an alternative way for generating points

Points are *asymptotically* uniformly distributed in the boundary of X. **Complete boundary oracle** is exploited.

LMI set

$$X = \left\{ x \in \mathbb{R}^n : A_0 + \sum_{i=1}^n x_i A_i \le 0 \right\}$$

 $n_i = -(A_i e, e), \quad {\rm where} \ e \ {\rm is \ the \ eigenvector \ corresponding \ to}$

zero eigenvalue of the matrix $A_0 + \sum_{i=1}^n x_i^0 A_i$.

• LMI constrained set of symmetric matrices P

$$X = \left\{ P : AP + PA^T + C \le 0 \right\}$$

 $N = -(ee^T A + A^T ee^T)$, where e is the eigenvector corresponding to zero eigenvalue of the matrix $AP_0 + P_0A^T + C$.

Shake-and-Bake: the algorithm

- 1. $i = 0, x^0 \in \partial X$, n^0 is the normal.
- 2. Choose random direction s^i , $s^i = \sqrt{1 - \xi^{\frac{2}{n-1}}} n^0 + r$, ξ uniform random in (0, 1), r is random unit uniform direction $(n^0, r) = 0$. 3. $x^{i+1} = x^i + \bar{t}s$, \bar{t} is given by the boundary oracle

for the direction s.

4. *L* is updated with respect to x^{i+1} , go to Step 2.

Shake-and-Bake for nonconvex sets

Standard SDP of the form

 $\min \ c^T x$ s.t. $A_0 + \sum_{i=1}^n x_i A_i \le 0$

 A_i , i = 0, 1, ..., n — symmetric real matrices $m \times m$; c = [0, ..., 0, 1]We applied modified HR where min x_i was replaced with averaged X_i + various heuristic acceleration methods (scaling, projecting, accelerating step)

Open problem: number of HR points in every step.

Standard SDP of the form

 $\min trP$ s.t. $AP + PA^T \le 0$ $P \ge I$

A is stable matrix $n \times n$

We applied SB for various dimensions + extension for the nonsmooth boundary

Simulation results:small size problem

Applications to control

Sets with available boundary oracle

• Stability set for polynomials

$$\mathcal{K} = \{k \in \mathbb{R}^n : p(s,k) = p_0(s) + \sum_{i=1}^n k_i p_i(s) \text{ is stable}\}\$$

Stability set for matrices

$$A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times m}, C \in \mathbb{R}^{l \times n}$$
$$\mathcal{K} = \{K \in \mathbb{R}^{m \times l} : A + BKC \text{ is stable}\}$$

Robust stability set for polynomials

$$\mathcal{K} = \{k : P_0(s,q) + \sum_{i=1}^n k_i P_i(s,q) \text{ is stable } \forall q \in Q\}, \quad Q \subset \mathbb{R}^m$$

• Quadratic stability set

$$\dot{x} = Ax$$

 $\mathcal{K} = \{P > 0 : AP + PA^T \le 0\}$

B.T. Polyak (ICS, Moscow)

Stability set for polynomials

$$\mathcal{K} = \{k \in \mathbb{R}^n : p(s,k) = p_0(s) + \sum_{i=1}^n k_i p_i(s) \text{ is stable}\}$$

 $k^0 \in \mathcal{K} \text{ i.e. } p(s,k^0) \text{ is stable,}$

d = s/||s||, s = randn(n,1) — random direction

Boundary oracle: $L = \{t \in \mathbb{R} : k^0 + td \in \mathcal{K}\}$, i.e. $\{t \in \mathbb{R} : p(s, k^0) + t \sum d_i p_i(s) \text{ is stable}\}$. *D*-decomposition problem for real scalar parameter t!

Gryazina E. N., Polyak B. T. Stability regions in the parameter space: *D*-decomposition revisited //Automatica. 2006. Vol. 42, No. 1, P. 13–26.

B.T. Polyak (ICS, Moscow)

Randomized methods

Example: Generating points in the disconnected set

$$\mathcal{K} = \{k \in \mathbb{R}^n : p(s,k) = p_0(s) + \sum_{i=1}^{n} k_i p_i(s) \text{ is stable}\},\$$

 $p(s,k) = 2.2s^3 + 1.9s^2 + 1.9s + 2.2 + k_1(s^3 + s^2 - s - 1) + k_2(s^3 - 3s^2 + 3s - 1)$

B.T. Polyak (ICS, Moscow)

$$\dot{x} = Ax + Bu, \quad y = Cx, \quad u = Ky$$

 $A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times m}, C \in \mathbb{R}^{l \times n}; \quad \mathcal{K} = \{K \in \mathbb{R}^{m \times l} : A + BKC \text{ is stable}\}$

 $K^0 \in \mathcal{K} \text{, i.e. } A + BK^0C \text{ is stable} \\ D = Y/||Y||, Y = \texttt{randn}(m,l) \text{ — random direction in the matrix space } K$

 $A + B(K^0 + tD)C = F + tG$, where $F = A + BK^0C$, G = BDC

Boundary oracle: $L = \{t \in \mathbb{R} : F + tG \text{ is stable}\}$ Total description of L is hard: $f(t) = \max Re \operatorname{eig}(F + tG)$

numerical solution of the equation f(t) = 0, t > 0 (MatLab command fsolve)

Quadratic stability

 $\dot{x} = Ax + Bu, \quad u = Kx$

$$\mathcal{K} = \{ K : \exists P > 0, A_c^T P + P A_c \le 0 \}, \quad A_c = A + B K$$

 \mathcal{K} is convex and bounded.

$$Q = P^{-1} > 0, \quad QA^T + AQ + BY + Y^TB^T < 0, \quad Y = KQ.$$

 $k^0 \in \mathcal{K}, Q_0 = P_0^{-1}, Y_0 = K_0 Q_0$ — starting points

 $Q = Q_0 + tJ$, $Y = Y_0 + tG$, where J and G are random directions in the matrix space.

 $\begin{array}{l} \text{initial inequality} \Longleftrightarrow F + tR < 0 \\ \text{Boundary oracle: } L = (-\underline{t}, \overline{t}), \\ \text{where } \overline{t} = \min \lambda_i, \ \underline{t} = \min \mu_i; \\ \lambda_i \text{ — real positive eigenvalues for the pair of matrices} \\ F = Q_0 A^T + AQ_0 + BY_0 + Y_0^T B^T \text{ and } -R = JA^T + AJ + BG + G^T B^T; \\ \mu_i \text{ correspondingly for matrices } F, R. \end{array}$

Polyak B.T., Shcherbakov P.S. The *D*-decomposition technique for linear matrix inequalities // Automation and Remote Control. 2006. No. 11. P. 1847–1861

B.T. Polyak (ICS, Moscow)

Randomized methods

- Randomized approaches for optimization are promising.
- Proposed methods are simple in implementation and give an opportunity to solve large-dimensional problems.