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Historical background

First random search methods
Rastrigin (1960-ies)

Pessimism on effectiveness of randomized algorithms
Nemirovski and Yudin (1983)

Revival of randomized approaches for optimization
Bertsimas and Vempala (2004), Polyak and Shcherbakov (2006) and
Dabbene (2008), Campi (2008)
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Problem statement

min cT x

s.t. x ∈ X

X is a convex bounded closed set in Rn with nonempty interior

Remark: Any convex optimization problem

min f(x)
s.t. x ∈ Q,

Q and f are convex

can be converted to this format.
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”Ideal” Monte Carlo

x1, x2, . . . xN independent uniformly distributed points in X

Cutting plane method

1. Set X1 = X

2. Generate uniform
x1, x2, . . . xN ∈ Xk

3. Find fk = min cT xi

4. Set Xk+1 = Xk

⋂
{x :

cT x ≤ fk}
go to Step 2.
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Convergence estimates

f∗ = max
x∈X

cT x, f∗ = min
x∈X

cT x, h = f∗ − f∗

Theorem

After k iterations of the algorithm

E [fk]− f∗ ≤ qk, q =
h

n
B

(
N + 1,

1
n

)
,

where B(a, b) is Euler beta-function.

Case of a special interest: N = 1, k = 1

Theorem

Let x1 be a random point uniformly distributed in X. Then

E
[
cT x1

]
− f∗ ≤ h

(
1− 1

n + 1

)
.
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Radon theorem and center of gravity method

Remark:

E [x1] = g (center of gravity of X), ⇒ cT g − f∗ ≤ h

(
1− 1

n + 1

)
[Radon theorem (1916)]

Deterministic version:
center of gravity method

xk = gk, Xk+1 = Xk

⋂
{x : cT x ≤ cT gk}
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Implementable random algorithms: boundary oracle

uniform random samples ⇒ asymptotically uniformly distributed

via Markov-chain Monte Carlo schemes

Given x0 ∈ X, d — vector specifying the direction in Rn

Boundary oracle
L = {t ∈ R : x0 + td ∈ X}

For convex sets L = (t, t),
where t = inf{t : x0 + td ∈ X}, t = sup{t : x0 + td ∈ X}

Complete boundary oracle

L = {t ∈ R : x0 + td ∈ X} + inner normals to X at the boundary points
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Boundary oracle is available for numerous sets

LMI set

X =

{
x ∈ Rn : A0 +

n∑
i=1

xiAi ≤ 0

}
LMI constrained set of symmetric matrices P

X =
{
P : AP + PAT + C ≤ 0, P ≥ 0

}
Quadratic matrix inequalities set

X =
{
P : AP + PAT + PBBT P + C ≤ 0, P ≥ 0

}
Linear algebraic inequalities set

X =
{
x ∈ Rn : cT

i x ≤ ai, i = 1, . . . ,m
}
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Hit-and-Run

1. i = 0, x0 ∈ X

2. Choose random direction
d uniformly distributed on
the unit sphere

3. xi+1 = xi + t1d,
t1 is uniformly distributed
on L = (t, t)

4. L is updated with respect
to xi+1, go to Step 2.

Theorem (Smith (1984))

Let X be bounded open or coincides with the closure of interior points of
X. Then for any measurable set A ⊂ X probability Pi(A) = P (xi ∈ A|x0)

can be estimated as |Pi(A)− P (A)| ≤ qi, where P (A) =
Vol(A)
Vol(X)

and

q < 1 does not depend on x0.
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Shake-and-Bake: an alternative way for generating points

Points are asymptotically uniformly distributed in the boundary of X.
Complete boundary oracle is exploited.

LMI set

X =

{
x ∈ Rn : A0 +

n∑
i=1

xiAi ≤ 0

}
ni = −(Aie, e), where e is the eigenvector corresponding to

zero eigenvalue of the matrix A0 +
n∑

i=1

x0
i Ai.

LMI constrained set of symmetric matrices P

X =
{
P : AP + PAT + C ≤ 0

}
N = −(eeT A + AT eeT ), where e is the eigenvector corresponding to

zero eigenvalue of the matrix AP0 + P0A
T + C.
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Shake-and-Bake: the algorithm

1. i = 0, x0 ∈ ∂X, n0 is the
normal.

2. Choose random direction si,

si =
√

1− ξ
2

n−1 n0 + r,
ξ uniform random in (0, 1),
r is random unit uniform
direction (n0, r) = 0.

3. xi+1 = xi + ts,
t is given by the boundary oracle
for the direction s.

4. L is updated with respect to
xi+1, go to Step 2.
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Shake-and-Bake for nonconvex sets
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Numerical simulation

Standard SDP of the form

min cT x

s.t. A0 +
n∑

i=1

xiAi ≤ 0

Ai, i = 0, 1, . . . n — symmetric real matrices m×m; c = [0, . . . , 0, 1]
We applied modified HR where min xi was replaced with averaged Xi

+ various heuristic acceleration methods (scaling, projecting, accelerating
step)
Open problem: number of HR points in every step.
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Numerical simulation

Standard SDP of the form

min trP

s.t. AP + PAT ≤ 0
P ≥ I

A is stable matrix n× n

We applied SB for various dimensions
+ extension for the nonsmooth boundary
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Simulation results:small size problem
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Experiments with very large dimensions 100× 100 using new versions
combinations with projection methods
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Applications to control

Sets with available boundary oracle

Stability set for polynomials

K = {k ∈ Rn : p(s, k) = p0(s) +
n∑

i=1

kipi(s) is stable}

Stability set for matrices

A ∈ Rn×n, B ∈ Rn×m, C ∈ Rl×n

K = {K ∈ Rm×l : A + BKC is stable}
Robust stability set for polynomials

K = {k : P0(s, q) +
n∑

i=1

kiPi(s, q) is stable ∀q ∈ Q}, Q ⊂ Rm

Quadratic stability set

ẋ = Ax

K = {P > 0 : AP + PAT ≤ 0}
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Stability set for polynomials

K = {k ∈ Rn : p(s, k) = p0(s) +
n∑

i=1

kipi(s) is stable}

k0 ∈ K i.e. p(s, k0) is stable,
d = s/||s||, s = randn(n,1) — random direction

Boundary oracle: L = {t ∈ R : k0 + td ∈ K},
i.e. {t ∈ R : p(s, k0) + t

∑
dipi(s) is stable}.

D-decomposition problem for real scalar parameter t!

Gryazina E. N., Polyak B. T. Stability regions in the parameter space:

D-decomposition revisited //Automatica. 2006. Vol. 42, No. 1, P. 13–26.
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Example: Generating points in the disconnected set
K = {k ∈ Rn : p(s, k) = p0(s) +

n∑
i=1

kipi(s) is stable},

p(s, k) = 2.2s3 + 1.9s2 + 1.9s + 2.2 + k1(s3 + s2 − s− 1) + k2(s3 − 3s2 + 3s− 1)
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Stability set for matrices

ẋ = Ax + Bu, y = Cx, u = Ky

A ∈ Rn×n, B ∈ Rn×m, C ∈ Rl×n; K = {K ∈ Rm×l : A + BKC is stable}

K0 ∈ K, i.e. A + BK0C is stable
D = Y/||Y ||, Y = randn(m, l) — random direction in the matrix space K

A + B(K0 + tD)C = F + tG, where F = A + BK0C, G = BDC

Boundary oracle: L = {t ∈ R : F + tG is stable}
Total description of L is hard:
f(t) = max Re eig(F + tG)

numerical solution of the equation f(t) = 0, t > 0 (MatLab command fsolve)
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Quadratic stability

ẋ = Ax + Bu, u = Kx

K = {K : ∃P > 0, AT
c P + PAc ≤ 0}, Ac = A + BK

K is convex and bounded.

Q = P−1 > 0, QAT + AQ + BY + Y T BT < 0, Y = KQ.

k0 ∈ K, Q0 = P−1
0 , Y0 = K0Q0 — starting points

Q = Q0 + tJ , Y = Y0 + tG, where J and G are random directions in the matrix
space.

initial inequality ⇐⇒ F + tR < 0
Boundary oracle: L = (−t, t),
where t = minλi, t = minµi;

λi — real positive eigenvalues for the pair of matrices
F = Q0A

T + AQ0 + BY0 + Y T
0 BT and −R = JAT + AJ + BG + GT BT ;

µi correspondingly for matrices F,R.

Polyak B.T., Shcherbakov P.S. The D-decomposition technique for linear matrix

inequalities // Automation and Remote Control. 2006. No. 11. P. 1847–1861
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Conclusions

Randomized approaches for optimization are promising.

Proposed methods are simple in implementation and give an
opportunity to solve large-dimensional problems.
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