Randomized Algorithms for Rare Events, Combinatorial Optimization and Counting

Technion, 2008

Reuven Rubinstein

Faculty of Industrial Engineering and Management, Technion, Israel
1. Introduction
2. CE for Rare Events and Combinatorial Optimization
3. MinxEnt for Rare Events and Combinatorial Optimization
4. The Cloning Method for Rare Events, Combinatorial Optimization and Counting
5. The Gibbs Sampler
6. Integer Programs, Multiple Events and the Satisfiability problem
7. Why and when it Works
8. Generating Points Uniformly on Different Bodies
9. Convergence and Numerical Results.
10. Open Problems.
Applications

- Combinatorial Optimization, like TSP, Maximal Cut, Scheduling and Production Lines.
Applications

- Combinatorial Optimization, like TSP, Maximal Cut, Scheduling and Production Lines.
- Machine Learning
Applications

- Combinatorial Optimization, like TSP, Maximal Cut, Scheduling and Production Lines.
- Machine Learning
- Pattern Recognition, Clustering and Image Analysis
Applications

- Combinatorial Optimization, like TSP, Maximal Cut, Scheduling and Production Lines.
- Machine Learning
- Pattern Recognition, Clustering and Image Analysis
- DNA Sequence Alignment
Applications

- Combinatorial Optimization, like TSP, Maximal Cut, Scheduling and Production Lines.
- Machine Learning
- Pattern Recognition, Clustering and Image Analysis
- DNA Sequence Alignment
- Simulation-based (noisy) Optimization, like Optimal Buffer Allocation and Optimization in Finance Engineering
Applications

- Combinatorial Optimization, like TSP, Maximal Cut, Scheduling and Production Lines.
- Machine Learning
- Pattern Recognition, Clustering and Image Analysis
- DNA Sequence Alignment
- Simulation-based (noisy) Optimization, like Optimal Buffer Allocation and Optimization in Finance Engineering
- Multi-extremal Continuous Optimization
Applications

- Combinatorial Optimization, like TSP, Maximal Cut, Scheduling and Production Lines.
- Machine Learning
- Pattern Recognition, Clustering and Image Analysis
- DNA Sequence Alignment
- Simulation-based (noisy) Optimization, like Optimal Buffer Allocation and Optimization in Finance Engineering
- Multi-extremal Continuous Optimization
- NP-hard Counting problems: Hamiltonian Cycles, SAW’s, calculation the Permanent, Satisfiability Problem, etc.
We wish to color the nodes white and black.

How should we color so that the total number of links between the two groups is maximized? This problem is known as the **Maximal Cut** problem.
A Maze Problem

The Optimal Trajectory
Counting Hamiltonian Cycles

How many Hamiltonian cycles does this graph have?
Calculating the Number of HC’s

Randomized Algorithms for Rare Events, Combinatorial Optimization and Counting
General Procedure

We cast the original optimization problem of \(S(x) \) and counting into an associated rare-events probability estimation problem, that estimation of

\[
\ell = P(S(X) \geq m) = E[I_{\{S(x)\geq m\}}]
\]

and involves the following iterative steps:

- Formulate a random mechanism to \textit{generate} the objects \(x \in X \).
- Give the \textit{updating formulas} (parametric or non parametric), in order to produce a better sample in the next iteration.
Generating Tuples

In our randomized algorithms we shall generate either an adaptive parametric sequence of tuples

\[\{(m_0, v_0), (m_1, v_1), \ldots, (m_T, v_T)\} \]

or non-parametric one

\[\{(m_0, f(x, v_0)), (m_1, g^*(x, m_0)), \ldots, (m_T, g^*(x, m_{T-1}))\} . \]
1 Starting: Start with the proposal pdf, like
\[f(x) = f(x, p). \] Set \(t := 1. \)
1 **Starting**: Start with the proposal pdf, like $f(x) = f(x, p)$. Set $t := 1$.

2 **Update \hat{m}_t**: Draw X_1, \ldots, X_N from parametric $f(x, \hat{p}_t)$ or non-parametric pdf $g_t = g(x, \hat{m}_t)$. Find the elite sampling based on \hat{m}_t, which is the worst performance of the $\rho \times 100\%$ best performances.
1 **Starting:** Start with the proposal pdf, like
\[f(x) = f(x, p). \] Set \(t := 1. \)

2 **Update \(\hat{m}_t: \)** Draw \(X_1, \ldots, X_N \) from parametric
\[f(x, \hat{p}_t) \] or non-parametric pdf \(g_t = g(x, \hat{m}_t). \) Find the
elite sampling based on \(\hat{m}_t, \) which is the worst
performance of the \(\rho \times 100\% \) best performances.

3 **Update \(\hat{p}_t \) or \(g_t = g(x, \hat{m}_t): \)** For a parametric method
update the parameter \(\hat{p}_t \) and for a non-parametric
one update the pdf \(g_t = g(x, \hat{m}_t) \) and increase \(t \) by 1.
A Randomized Algorithm for Optimization

1. **Starting:** Start with the proposal pdf, like $f(x) = f(x, p)$. Set $t := 1$.

2. **Update \hat{m}_t:** Draw X_1, \ldots, X_N from parametric $f(x, \hat{p}_t)$ or non-parametric pdf $g_t = g(x, \hat{m}_t)$. Find the elite sampling based on \hat{m}_t, which is the worst performance of the $\rho \times 100\%$ best performances.

3. **Update \hat{p}_t or $g_t = g(x, \hat{m}_t)$:** For a parametric method update the parameter \hat{p}_t and for a non-parametric one update the pdf $g_t = g(x, \hat{m}_t)$ and increase t by 1.

4. **Stopping:** If the stopping criterion is met, then stop; otherwise set $t := t + 1$ and reiterate from step 2.
Non-Parametric MinxEnt

\[
\min_g \left\{ \mathcal{D}(g|h) = \int \ln \frac{g(x)}{h(x)} g(x) dx = \mathbb{E}_g \ln \frac{g(X)}{h(X)} \right\}
\]

\((P_0)\) \hspace{1cm} \text{s.t.} \hspace{1cm} \int S_j(x) g(x) dx = \mathbb{E}_g S_j(X) = b_j, \ j = 1, \ldots, k,

\[
\int g(x) dx = 1.
\]

Here \(g\) and \(h\) are joint \(n\)-dimensional pdf’s or \(n\)-dimensional pmf’s, \(S_j(x), \ j = 1, \ldots, k,\) are known functions of an \(n\)-dimensional vector \(x\) and \(h\) is a known pdf, called the prior pdf.
When we have only a single constraint

\[\mathbb{E}_g S(X) = b, \quad \left(\int g(x) dx = 1 \right) \]

the solution of the program \((P_0)\) is

\[g(x) = \frac{h(x) \exp\{-S(x)\lambda\}}{\mathbb{E}_h \exp\{-S(X)\lambda\}} \]

and

\[\frac{\mathbb{E}_h S(X) \exp\{-\lambda S(X)\}}{\mathbb{E}_h \exp\{-\lambda S(X)\}} = b, \]

respectively.
We start with the following basic **Example**.

Assume we want to calculate an area of same "irregular" region \mathcal{X}^*. The Monte-Carlo method suggests inserting the "irregular" region \mathcal{X}^* into a nice "regular" one \mathcal{X} as per figure below.

\mathcal{X} : Set of objects (paths in a graph, colorings of a graph, etc.)

\mathcal{X}^* : Subset of special objects (cycles in a graph, colorings of a certain type, etc.).
To calculate $|\mathcal{X}^*|$ we apply the following sampling procedure:

(i) Generate a random sample X_1, \ldots, X_N, uniformly distributed over the “regular” region \mathcal{X}.

(ii) Estimate the desired area $|\mathcal{X}^*|$ as

$$|\hat{\mathcal{X}}^*| = \hat{\ell}|\mathcal{X}|,$$

where

$$\hat{\ell} = \frac{N_{\mathcal{X}^*}}{N_{\mathcal{X}}} = \frac{1}{N} \sum_{k=1}^{N} I\{X_k \in \mathcal{X}^*\},$$

$I\{X_k \in \mathcal{X}^*\}$ denotes the indicator of the event $\{X_k \in \mathcal{X}^*\}$ and $\{X_k\}$ is a sample from $f(x)$ over \mathcal{X}, where $f(x) = \frac{1}{|\mathcal{X}|}$.
The Approach

Each problem will be casted into the problem of estimation of the rare event probability of the type

\[\ell(m) = \mathbb{E}_f \left[I\{ S(X) \geq m \} \right]. \]

Here \(S(X) \) is the sample performance, \(X \sim f(x) \) and \(m \) is fixed, called, the level chosen such that \(\ell(m) \) is very small.
Approach

To estimate $\ell(m) = \mathbb{E}_f [I_{\{S(x) \geq m\}}]$ we define a fixed grid
$\{m_t, \ t = 0, 1, \ldots, T\}$ satisfying
$-\infty < m_0 < m_1 < \ldots m_T = m$ and then use for $\ell(m)$ the well
known chain (nested events) rule

$$\ell(m) = \mathbb{E}_f[I_{\{S(x) \geq m_0\}}] \prod_{t=1}^{T} \mathbb{E}_f[I_{\{S(x) \geq m_t\}} | I_{\{S(x) \geq m_{t-1}\}}] = c_0 \prod_{t=1}^{T} c_t,$$

or as

$$\ell(m) = \mathbb{E}_f[I_{\{S(x) \geq m_0\}}] \prod_{t=1}^{T} \mathbb{E}_{g_{t-1}^*}[I_{\{S(x) \geq m_t\}}] = c_0 \prod_{t=1}^{T} c_t,$$

$$c_t = \mathbb{E}_f[I_{\{S(x) \geq m_t\}} | I_{\{S(x) \geq m_{t-1}\}}] = \mathbb{E}_{g_{t-1}^*}[I_{\{S(x) \geq m_t\}}].$$
Here \(f \) denotes the proposal pdf \(f = f(x) = f(x, v_0) \); and \(g^*_{t-1} = g^*(x, m_{t-1}) = \ell_{t-1}^{-1} f(x) I\{S(x) \geq m_{t-1}\} \), denotes the zero variance importance sampling (IS) pdf at iteration \(t - 1 \), where \(\ell_{t-1} = \ell(m_{t-1}) = \mathbb{E}_f \left[I\{S(x) \geq m_{t-1}\} \right] \) is the normalization constant.

Note that the sequence \(c_t \) in the product formula for \(\ell \) will be used only for counting.
The estimator of $\ell(m)$ is

$$\hat{\ell}(m) = \prod_{t=0}^{T} \hat{c}_t, \quad \hat{c}_t = \frac{1}{N} \sum_{i=1}^{N} I\{S(X_i) \geq m_t\},$$

where $X_i \sim g_{t-1}^*$. It is readily seen that if the proposal density $f(x)$ is uniformly distributed on the original set $\mathcal{X} = \{x : S(x) \geq m-1\}$, then g_{t-1}^* is uniformly distributed on the set $\mathcal{X}_{t-1} = \{x : S(x) \geq m_{t-1}\}$. The main trick of this work is to show how to sample from the IS pdf $g^*(x, m_{t-1})$ without knowing the normalization constant $\ell_{t-1} = \ell(m_{t-1})$.
For such an estimator to be useful, the levels m_t should be chosen such that each quantity $\mathbb{E}_f[I\{S(x) \geq m_t\} | I\{S(x) \geq m_{t-1}\}]$ is not too small, say approximately equal to 10^{-2}. In our approach we shall estimate each $\mathbb{E}_f[I\{S(x) \geq m_t\} | I\{S(x) \geq m_{t-1}\}] = \rho$ by using the Gibbs sampler.

As mentioned, we shall generate here an adaptive sequence of tuples

$$\{(m_0, f(x, v_0)), (m_1, g^*(x, m_0)), \ldots, (m_T, g^*(x, m_{T-1}))\}$$

instead of the sequence

$$\{(m_0, v_0), (m_1, v_1), \ldots, (m_T, v_T)\}.$$
Consider

\[\ell(m) = \mathbb{E}_f \left[I\{\sum_{i=1}^n X_i \geq m\} \right], \]

where all \(X_i \)'s are iid Ber\((p = 1/2)\) random variables. Assume that we want to count the number of outcomes on the set

\[\mathcal{X}^* = \{ x : \sum_{i=1}^n X_i \geq m \}. \]

Let \(n = m = 3 \). Although it is obvious that \(|\mathcal{X}^*| = 1 \), we demonstrate the sampling mechanism in the product formula

\[\ell(m) = \mathbb{E}_f[I\{S(X) \geq m_0\}] \prod_{t=1}^T \mathbb{E}_{g_{t-1}^*}[I\{S(X) \geq m_t\}] = c_0 \prod_{t=1}^T c_t. \]
Possible dynamic of the evolution of the sequence of levels m_t and cardinalities $|\mathcal{X}_t|$, that is tuples

$$\{(m_{-1}, |\mathcal{X}_{-1}|), (m_0, |\mathcal{X}_0|), \ldots, (m, |\mathcal{X}_m|)\}.$$
According to Figure we obtain \(m_0 = 2 \) after the first iteration, which means that while flipping 3 symmetric coins \(\sum_{i=1}^{3} X_i = m_0 = 2 \), (2 coins resulted to 1 and one coin resulted to 0). As soon as we obtain \(m_0 = 2 \) we reduce the original sample space \(\mathcal{X}_1 \) containing 8 points to the one \(\mathcal{X}_0 \) containing 4 points. This is done by eliminating 4 outcomes corresponding to events \(\{ \sum_{i=1}^{3} X_i = 0 \} \) and \(\{ \sum_{i=1}^{3} X_i = 1 \} \) from the space \(\mathcal{X}_1 = \{ X : \sum_{i=1}^{3} X_i \geq 0 \} \). In other words, as soon as we obtain an outcome, such that \(\sum_{i=1}^{3} X_i = 2 \) we truncate the sample space \(\mathcal{X}_1 \) by excluding from it all points corresponding to the event \(\{ \sum_{i=1}^{3} X_i \leq 1 \} \), etc.
Consider a set containing both equality and inequality constraints of an integer program, that is

$$\sum_{k=1}^{n} a_{ik}x_k = b_i, \ i = 1, \ldots, m_1,$$

$$\sum_{k=1}^{n} a_{jk}x_k \geq b_j, \ j = m_1 + 1, \ldots, m_1 + m_2,$$

$$x \geq 0, \ x_k \text{ integer } \forall k = 1, \ldots, n.$$
General Case: Multiple Constraints

It can be shown that in order to count the number of points (feasible solutions) of the above set one can consider the following associated rare-event probability problem

$$
\ell(m) = \mathbb{E}_u \left[I_{\{\sum_{i=1}^m C_i(X) \geq m\}} \right],
$$

where the first m_1 terms $C_i(X)$’s are

$$
C_i(X) = I_{\{\sum_{k=1}^n a_{ik}X_k = b_i\}}, \quad i = 1, \ldots, m_1,
$$

while the remaining m_2 ones are

$$
C_i(X) = I_{\{\sum_{k=1}^n a_{ik}X_k \geq b_i\}}, \quad i = m_1 + 1, \ldots, m_1 + m_2.
$$
General Case: Multiple Constraints

Thus, in order to count the number of feasible solution on the above set we shall consider an associated rare event probability estimation problem involving a sum of dependent Bernoulli random variables. Such representation is crucial for a large set of counting problems.
The Gibbs Sampler

Our goal is sample from the IS pdf $g^*(x)$ or any other pdf $g(x)$. It is assumed that generating from the conditional pdfs $g(X_i|X_1, \ldots, X_{i-1}, X_{i+1}, \ldots, X_n)$, $i = 1, \ldots, n$ is simple. In Gibbs sampler for any given vector $X = (X_1, \ldots, X_n) \in \mathcal{X}$ one generates a new vector $\widetilde{X} = (\widetilde{X}_1, \ldots, \widetilde{X}_n)$ as:

Algorithm: The Gibbs Sampler

1. Draw \widetilde{X}_1 from the conditional pdf $g(X_1|X_2, \ldots, X_n)$.
2. Draw \widetilde{X}_i from the conditional pdf $g(X_i|\widetilde{X}_1, \ldots, \widetilde{X}_{i-1}, X_{i+1}, \ldots, X_n)$, $i = 2, \ldots, n - 1$.
3. Draw \widetilde{X}_n from the conditional pdf $g(X_n|\widetilde{X}_1, \ldots, \widetilde{X}_{n-1})$.

After many burn-in periods \widetilde{X} is distributed $g(x)$.
Consider estimation

\[\ell(m) = \mathbb{E}_f \left[I\{\sum_{i=1}^n x_i \geq m\} \right]. \]

The Gibbs sampler for generating variables \(X_i, \ i = 1, \ldots, N \) is

\[g^*(x_i, m | x_{-i}) = c_i(m) f_i(x_i) I\{x_i \geq m - \sum_{j \neq i} x_j\}, \]

where \(|x_{-i}\) denotes conditioning on all random variables but excluding the remaining ones and \(c_i(m) \) is the normalization constant. Sampling a random variable \(\tilde{X}_i \) can be performed as follows. Generate \(Y \sim \text{Ber}(1/2) \). If \(I\{\tilde{Y} \geq m - \sum_{j \neq i} x_j\} \), then set \(\tilde{X}_i = Y \), otherwise set \(\tilde{X}_i = 1 - Y \).
Cloning Algorithm for Counting

Given ρ, say $\rho = 0.1$, the sample size N, the burn in period b, say $3 \leq b \leq 10$ execute the following steps:

1. **Acceptance-Rejection**

Set a counter $t = 1$. Generate a sample X_1, \ldots, X_N from the proposal density $f(x)$. Let $\tilde{X}_0 = \{\tilde{X}_1, \ldots, \tilde{X}_{N_0}\}$ be the largest subset of the population $\{X_1, \ldots, X_N\}$, called the elite samples for which $S(X_i) \geq m_0$. Note that $\tilde{X}_1, \ldots, \tilde{X}_{N_0} \sim g^*(x, m_0)$ and that

$$\hat{\ell}(m_0) = \hat{c}_0 = \frac{1}{N} \sum_{i=1}^{N} I_{\{S(X_i) \geq m_0\}} = \frac{N_0}{N}$$

is an unbiased estimator of $\ell(m_0)$.
The Cloning Mechanism

The goal of the cloning parameter η is to reproduce η times the N_{t-1} elites at iteration $t - 1$. After that we apply the burn-in period of length b the total ηN_{t-1} samples, such that $b \eta N_{t-1} = N$, that is

$$b_{t-1} = \left\lceil \frac{N}{\eta N_{t-1}} \right\rceil.$$

The goal of the cloning mechanism is to find a good balance in the Gibbs sampler in terms of bias-variance using N, N_{t-1}, η, b. As an example, let $N = 1,000, N_{t-1} = 20, \eta = 5$. We obtain $b = 10$. Our numerical studies show that it is quite reasonable to choose $3 \leq \eta \leq 5$.
No Cloning ($\eta = 1$) for $P(X_1 + X_2 \geq m)$
Cloning ($\eta = 2$) for $P(X_1 + X_2 \geq m)$
Given ρ, say $\rho = 0.1$, the sample size N, the burn in period b, say $3 \leq b \leq 10$ execute the following steps:

1. **Acceptance-Rejection**

Set a counter $t = 1$. Generate a sample X_1, \ldots, X_N from the proposal density $f(x)$. Let $\tilde{\mathcal{X}}_0 = \{\tilde{X}_1, \ldots, \tilde{X}_{N_0}\}$ be the largest subset of the population $\{X_1, \ldots, X_N\}$, called the **elite samples** for which $S(X_i) \geq m_0$. Note that $\tilde{X}_1, \ldots, \tilde{X}_{N_0} \sim g^*(x, m_0)$ and that

$$\hat{\ell}(m_0) = \hat{c}_0 = \frac{1}{N} \sum_{i=1}^{N} I\{S(X_i) \geq m_0\} = \frac{N_0}{N}$$

is an **unbiased** estimator of $\ell(m_0)$.

Cloning Algorithm for Counting

Randomized Algorithms for Rare Events, Combinatorial Optimization and Counting

Technion, 2008 – p. 33/4
2. Cloning Given \(b \) and the number of elites \(N_{t-1} \) find the cloning parameter \(\eta_{t-1} \) according to
\[
\eta_{t-1} = \left\lceil \frac{N}{bN_{t-1}} \right\rceil - 1.
\]
Reproduce \(\eta_{t-1} \) times each vector \(\tilde{X}_k = (\tilde{X}_{1k}, \ldots, \tilde{X}_{nk}) \) of the elite sample \(\{\tilde{X}_1, \ldots, \tilde{X}_{N_{t-1}}\} \). Denote the entire new population by \(\mathcal{X}_{cl} = \{(\tilde{X}_1, \ldots, \tilde{X}_1), \ldots, (\tilde{X}_{N_{t-1}}, \ldots, \tilde{X}_{N_{t-1}})\} \).

To each of the cloned vectors of the population \(\mathcal{X}_{cl} \) apply the Gibbs sampler for \(b_{t-1} \) burn-in periods. Denote the new entire population by \(\{X_1, \ldots, X_N\} \). Observe that each component of \(\{X_1, \ldots, X_N\} \) is distributed approximately \(g^*(\mathbf{x}, \hat{m}_{t-1}) \).
3. Estimating $c_t = \mathbb{E}_f[I\{S(x) \geq m_t\} | I\{S(x) \geq m_{t-1}\}]$. Let $	ilde{\mathcal{X}}_t = \{\tilde{X}_1, \ldots, \tilde{X}_{N_t}\}$ be the subset of the population $\{X_1, \ldots, X_N\}$ for which $S(X_i) \geq m_t$. Take

$$\hat{c}_t = \frac{1}{N} \sum_{i=1}^{N} I\{S(x_i) \geq m_t\} = \frac{N_t}{N}$$

is an estimator of c_t. Note that $\tilde{X}_1, \ldots, \tilde{X}_{N_t}$ is distributed only approximately $g^*(x, m_t)$.
4. **Stopping Rule** If \(t = T \) go to step 5, otherwise set \(t = t + 1 \) and repeat from step 2.

5. **Estimating \(\ell(m) \).** Deliver

\[
\hat{\ell}(m) = \prod_{t=0}^{T} \hat{c}_t = \frac{1}{N^T} \prod_{t=0}^{T} N_t
\]

as an estimator of \(\ell(m) \).

The Direct Estimator
3-SAT with Matrix $A = (75 \times 325)$, $N = 10,000$ and $\rho = 0.1$

| t | $|X^*|$ | Mean | Max | Min | Mean | Max | Min | m_t |
|-----|--------|------|-----|-----|------|-----|-----|-------|
| 1 | | 5.4e+020 | 5.6e+020 | 5.1e+020 | 0.0 | 0.0 | 0.0 | 292 |
| 4 | | 1.2e+018 | 1.3e+018 | 1.1e+018 | 0.0 | 0.0 | 0.0 | 304 |
| 7 | | 6.1e+015 | 6.8e+015 | 5.7e+015 | 0.0 | 0.0 | 0.0 | 310 |
| 10 | | 5.0e+012 | 5.7e+012 | 4.4e+012 | 0.0 | 0.0 | 0.0 | 315 |
| 13 | | 2.5e+010 | 2.8e+010 | 2.1e+010 | 0.0 | 0.0 | 0.0 | 318 |
| 16 | | 3.5e+008 | 4.7e+008 | 4.2e+007 | 0.0 | 0.0 | 0.0 | 321 |
| 20 | | 2341.2 | 2924.0 | 1749.9 | 2203.5 | 2224.0 | 2181.0 | 325 |
| 21 | | 2341.2 | 2924.0 | 1749.9 | 2225.0 | 2247.0 | 2197.0 | 325 |
Dynamics for 3-SAT with Matrix $A = (75 \times 325)$

| t | $|\mathcal{X}^*|$ | Empirical | $N_{t,e}$ | $N_{t,e}^{(s)}$ | m_t^* | m_{*t} | ρ_t |
|-----|-----------------|-----------|-----------|----------------|---------|---------|---------|
| 1 | 5.4e+020 | 0.0 | 1020 | 1020 | 305 | 292 | 0.11 |
| 4 | 1.2e+018 | 0.0 | 1462 | 1462 | 310 | 304 | 0.12 |
| 7 | 6.1e+015 | 0.0 | 1501 | 1501 | 316 | 310 | 0.12 |
| 10 | 5.0e+012 | 0.0 | 2213 | 2213 | 320 | 315 | 0.23 |
| 13 | 2.5e+010 | 0.0 | 1962 | 1962 | 321 | 318 | 0.17 |
| 16 | 3.5e+008 | 0.0 | 1437 | 1437 | 324 | 321 | 0.12 |
| 20 | 2341 | 2203 | 196 | 187 | 325 | 325 | 0.01 |
| 21 | 2341 | 2225 | 10472 | 2199 | 325 | 325 | 1.00 |
Complexity of the \((N = 1) \)-policy Algorithm

According to the \((N = 1) \)-policy algorithm, at each fixed level \(m_{t-1} \) we use the acceptance-rejection (single trial) method, until for the first time we hit a higher level \(m_t > m_{t-1} \).

Theorem. Under some mild conditions, the average number of iterations and the associated variance to hit the desired level \(m \) while estimating

\[
\ell(m) = \mathbb{E}_u \left[I\{\sum_{i=1}^{m} c_i(x) \geq m\} \right]
\]

by using the \((N = 1) \)-policy algorithm is at most

\[
O\left(n^b \ln \frac{n}{n + 1 - m}\right) \text{ and } O(n^{2b}),
\]

where \(1 \leq b = b(p) \leq 2 \).
Further Research