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Combinatorial Optimization: A
Coloring Problem

We wish to color the nodes white and black.

How should we color so that the total number of linksbetween
the two groups is maximized? This problem is known as
Maximal Cut problem.
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A Maze Problem

The Optimal Trajectory
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Counting Hamiltonian Cycles

How many Hamiltonian cycles does this graph have?
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Calculating the Number of HC’s
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General Procedure

We cast cast the original optimization problem ofS(x) and
counting into an associated rare-events probability estimation
problem, that estimation of

ℓ = P(S(X) ≥ m) = E
[
I{S(X)≥m}

]
.

and involves the following iterative steps:

Formulate a random mechanism togenerate the objects
x ∈ X .

Give theupdating formulas (parametric or non parametric),
in order to produce a better sample in the next iteration.
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Generating Tuples

In our randomized algorithms we shall generate either an
adaptive parametric sequence of tpuples

{(m0,v0), (m1,v1), . . . , (mT ,vT )}

or non-parametric one

{(m0, f(x,v0)), (m1, g
∗(x,m0)), . . . , (mT , g∗(x,mT−1))}.
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A Randomized Algorithm for
Optimization

1 Starting: Start with the proposal pdf, like

f(x) = f(x,p). Set t := 1.
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elite sampling based on m̂t, which is the worst

performance of the ρ × 100% best performances.

3 Update p̂t or gt = g(x, m̂t:. For a parametric method

update the parameter p̂t and for a non-parametric

one update the pdf gt = g(x, m̂t) and increase t by 1.

4 Stopping: If the stopping criterion is met, then

stop; otherwise set t := t + 1 and reiterate from step

2.
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Non-Parametric MinxEnt

(P0)

ming

{
D(g|h) =

∫
ln g(x)

h(x)
g(x)dx = IEg ln g(X)

h(X)

}

s.t.
∫

Sj(x)g(x)dx = IEgSj(X) = bj, j = 1, . . . , k,

∫
g(x)dx = 1.

(1)

Hereg andh arejoint n-dimensional pdf’s orn-dimensional

pmf’s, Sj(x), j = 1, . . . , k, are known functions of an

n-dimensional vectorx andh is a known pdf, called theprior

pdf.
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Single Constraint MinxEnt Program

When we have only a single constraint

IEgS(X) = b, (

∫
g(x)dx = 1)

the solution of the program(P0) is

g(x) =
h(x) exp{−S(x)λ}

IEh exp{−S(X)λ}

and
IEhS(X) exp {−λS(X)}

IEh exp {−λS(X)}
= b,

respectively.
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Counting via Monte Carlo

We start with the following basic
Example.
Assume we want to calculate an area of same “irregular" region
X ∗. The Monte-Carlo method suggests inserting the ”irregular"
regionX ∗ into a nice “regular" oneX as per figure below

X ∗

X

X : Set of objects (paths in a graph,
colorings of a graph, etc.)
X ∗ : Subset ofspecialobjects (cy-
cles in a graph, colorings of a cer-
tain type, etc).
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Counting via Monte Carlo

To calculate|X ∗| we apply the following sampling procedure:

(i) Generate a random sampleX1, . . . ,XN , uniformly

distributed over the “regular” regionX .

(ii) Estimate the desired area|X ∗| as

|̂X ∗| = ℓ̂|X |,

where

ℓ̂ =
NX ∗

NX
=

1

N

N∑

k=1

I{Xk∈X ∗},

I{Xk∈X ∗} denotes the indicator of the event{Xk ∈ X ∗} and

{Xk} is a sample fromf(x) overX , wheref(x) = 1
|X |

.
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The Approach

Each problem will be casted into the problem of estimation of
the rare event probability of the type

ℓ(m) = Ef

[
I{S(X)≥m}

]
.

HereS(X) is the sample performance,X ∼ f(x) andm is
fixed, called, thelevel chosen such thatℓ(m) is very small.
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Approach

To estimateℓ(m) = Ef

[
I{S(X)≥m}

]
we define a fixed grid

{mt, t = 0, 1, . . . , T} satisfying

−∞ < m0 < m1 < . . . mT = m and then use forℓ(m) the well

known chain (nested events) rule

ℓ(m) = Ef [I{S(X)≥m0}]
T∏

t=1

Ef [I{S(X)≥mt}|I{S(X)≥mt−1}] = c0

T∏

t=1

ct,

or as

ℓ(m) = Ef [I{S(X)≥m0}]
T∏

t=1

Eg∗t−1
[I{S(X)≥mt}] = c0

T∏

t=1

ct,

ct = Ef [I{S(X)≥mt}|I{S(X)≥mt−1}] = Eg∗t−1
[I{S(X)≥mt}].
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Approach

Here f denotes the proposal pdff = f(x) = f(x,v0); and
g∗

t−1 = g∗(x,mt−1) = ℓ−1
t−1f(x)I{S(x)≥mt−1},denotes the zero

variance importance sampling (IS) pdf at iterationt − 1, where
ℓt−1 = ℓ(mt−1) = Ef

[
I{S(X)≥mt−1}

]
is the normalization

constant.
Note that the sequencect in the product formula forℓ will be
used only for counting.
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Approach

The estimator ofℓ(m) is

ℓ̂(m) =

T∏

t=0

ĉt, ĉt =
1

N

N∑

i=1

I{S(Xi)≥mt},

whereX i ∼ g∗
t−1.

It is readily seen that if the proposal densityf(x) is uniformly

distributed on the original setX = {x : S(x) ≥ m−1}, thang∗
t−1

is uniformly distributed on the setXt−1 = {x : S(x) ≥ mt−1}.
The main trick of this work is to show how to sample from

the IS pdf g∗(x,mt−1) without knowing the normalization

constant ℓt−1 = ℓ(mt−1).
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Approach

For such an estimator to be useful, the levelsmt should be

chosen such that each quantityEf [I{S(X)≥mt}|I{S(X)≥mt−1}] is

not too small, say approximately equal to10−2. In our approach

we shall estimate eachEf [I{S(X)≥mt}|I{S(X)≥mt−1}] = ρ by

using the Gibbs sampler.

As mentioned, we shall generate here anadaptive sequence of

tuples

{(m0, f(x,v0)), (m1, g
∗(x,m0)), . . . , (mT , g∗(x,mT−1))}

instead of the sequence

{(m0,v0), (m1,v1), . . . , (mT ,vT )}.
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Quick Glance

Consider

ℓ(m) = Ef

[
I{Pn

i=1 Xi≥m}

]
,

where allXi’s are iid Ber(p = 1/2) random variables. Assume

that we want to count the number of outcomes on the set

X ∗ = {x :
n∑

i=1

Xi ≥ m}.

Let n = m = 3. Although it is obvious that|X ∗| = 1, we

demonstrate the sampling mechanism in the product formula

ℓ(m) = Ef [I{S(X)≥m0}]
T∏

t=1

Eg∗t−1
[I{S(X)≥mt}] = c0

T∏

t=1

ct.
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Quick Glance: Flipping 3 Coins

Possible dynamic of the evolution of the sequence of levelsmt

and cardinalities|Xt|, that is tuples

{(m−1, |X−1|), (m0, |X0|), . . . , (m, |Xm|)}.

2 3
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Quick Glance

According to Figure we obtainm0 = 2 after the first iteration,
which means that while flipping 3 symmetric coins∑3

i=1 Xi = m0 = 2, (2 coins resulted to 1 and one coin resulted
to 0). As soon as we obtainm0 = 2 we reduce the original
sample spaceX−1 containing 8 points to the oneX0 containing 4
points. This is done by eliminating 4 outcomes corresponding to
events{

∑3
i=1 Xi = 0} and{

∑3
i=1 Xi = 1} from the space

X−1 = {X :
∑3

i=1 Xi ≥ 0}. In other words, as soon as we

obtain an outcome, such that
∑3

i=1 Xi = 2 we truncate the
sample spaceX−1 by excluding from it all points corresponding
to the event{

∑3
i=1 Xi ≤ 1}, etc.
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General Case: Multiple Constraints

Consider a set containing both equality and inequality
constraints of an integer program, that is

∑n

k=1 aikxk = bi, i = 1, . . . ,m1,

∑n

k=1 ajkxk ≥ bj, j = m1 + 1, . . . ,m1 + m2,

x ≥ 0, xk integer ∀k = 1, . . . , n.
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General Case: Multiple Constraints

It can be shown that in order to count the number of points
(feasible solutions) of the above set one can consider the
following associated rare-event probability problem

ℓ(m) = Eu

[
I{Pm

i=1 Ci(X)≥m}

]
,

where the firstm1 termsCi(X)’s are

Ci(X) = I{Pn
k=1 aikXk=bi}, i = 1, . . . ,m1,

while the remainingm2 ones are

Ci(X) = I{
Pn

k=1 aikXk≥bi}, i = m1 + 1, . . . ,m1 + m2.
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General Case: Multiple Constraints

Thus, in order to count the the number of feasible solution onthe
above set we shall consider an associated rare event probability
estimation problem involving asum of dependent Bernoulli

random variables. Such representation is crucial for a large set
of counting problems.
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The Gibbs Sampler

Our goal is sample from the IS pdfg∗(x) or any other pdfg(x).
It is assumed that generating from the conditional pdfs
g(Xi|X1, . . . , Xi−1, Xi+1, . . . , Xn), i = 1, . . . , n is simple.
In Gibbs sampler for any given vectorX = (X1, . . . , Xn) ∈ X

one generates anew vectorX̃ = (X̃1, . . . , X̃n) as:
Algorithm: The Gibbs Sampler

1. DrawX̃1 from the conditional pdfg(X1|X2, . . . , Xn).

2. DrawX̃i from the conditional pdf
g(Xi|X̃1, . . . , X̃i−1, Xi+1, . . . , Xn), i = 2, . . . , n − 1.

3. DrawX̃n from the conditional pdfg(Xn|X̃1, . . . , X̃n−1).

After manyburn-in periodsX̃ is distributedg(x).
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The Gibbs Sampler: Example

Consider estimation

ℓ(m) = Ef

[
I{

Pn
i=1 Xi≥m}

]
.

The Gibbs sampler for generating variablesXi, i = 1, . . . , N is

g∗(xi,m|x−i) = ci(m)fi(xi)I{xi≥m−
P

j 6=i xj},

where|x−i denotes conditioning on all random variables but

excluding the remaining ones andci(m) is the normalization

constant. Sampling a random variablẽXi can be performed as

follows. GenerateY ∼ Ber (1/2). If I{eY ≥m−
P

j 6=i xj}
, then set

X̃i = Y , oterwise set set̃Xi = 1 − Y .
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Cloning Algorithm for Counting

Givenρ, sayρ = 0.1, the sample sizeN , the burn in periodb, say

3 ≤ b ≤ 10 execute the following steps:

1. Acceptance-Rejection

Set a countert = 1. Generate a sampleX1, . . . ,XN from the

proposal densityf(x). Let X̃0 = {X̃1, . . . , X̃N0} be the largest

subset of the population{X1, . . . ,XN}, calledthe elite samples

for whichS(X i) ≥ m0. Note that̃X1, . . . , X̃N0 ∼ g∗(x,m0)

and that

ℓ̂(m0) = ĉ0 =
1

N

N∑

i=1

I{S(Xi)≥m0} =
N0

N

is anunbiased estimator ofℓ(m0).
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The Cloning Mechanism

The goal of the cloning parameterη is to reproduceη times the
Nt−1 elites at iterationt − 1. After that we apply the burn-in
period of lengthb the totalηNt−1 samples, such that
bηNt−1 = N , that is

bt−1 =

⌈
N

ηNt−1

⌉
.

The goal of the cloning mechanism is to find a good balance in
the Gibbs sampler in terms of bias-variance usingN,Nt−1, η, b.
As an example, letN = 1, 000, Nt−1 = 20, η = 5. We obtain
b = 10. Our numerical studies show that it is quite reasonable to
choose3 ≤ η ≤ 5.
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No Cloning (η = 1) for P (X1 + X2 ≥ m)

0m 1m

m
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Cloning (η = 2) for P (X1 + X2 ≥ m)
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Cloning Algorithm for Counting
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3 ≤ b ≤ 10 execute the following steps:

1. Acceptance-Rejection

Set a countert = 1. Generate a sampleX1, . . . ,XN from the
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The Cloning Algorithm for Counting

2. Cloning Given b and the number of elitesNt−1 find the

cloning parameterηt−1 according toηt−1 =
⌈

N
bNt−1

⌉
− 1.

Reproduceηt−1 times each vector̃Xk = (X̃1k, . . . , X̃nk) of the

elite sample{X̃1, . . . , X̃Nt−1}. Denote the entire new

population byXcl = {(X̃1, . . . , X̃1), . . . , (X̃Nt−1 , . . . , X̃Nt−1)}.

To each of the cloned vectors of the populationXcl apply the

Gibbs sampler forbt−1 burn-in periods. Denote thenew entire

population by{X1, . . . ,XN}. Observe that each component of

{X1, . . . ,XN} is distributed approximatelyg∗(x, m̂t−1).
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The Cloning Algorithm for Counting

3. Estimating ct = Ef [I{S(X)≥mt}|I{S(X)≥mt−1}]. Let

X̃t = {X̃1, . . . , X̃Nt
} be the subset of the population

{X1, . . . ,XN} for whichS(X i) ≥ mt. Take

ĉt =
1

N

N∑

i=1

I{S(Xi)≥mt} =
Nt

N

is an estimator ofct. Note that̃X1, . . . , X̃Nt
is distributed only

approximately g∗(x,mt).
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The Cloning Algorithm for Counting

4.Stopping Rule If t = T go to step 5, otherwise sett = t + 1

and repeat from step 2.

5. Estimating ℓ(m). Deliver

ℓ̂(m) =
T∏

t=0

ĉt =
1

NT

T∏

t=0

Nt

as an estimator ofℓ(m).

The Direct Estimator
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3-SAT with Matrix A = (75 × 325),
N = 10, 000 and ρ = 0.1

|X ∗| Empirical

t Mean Max Min Mean Max Min mt

1 5.4e+020 5.6e+020 5.1e+020 0.0 0.0 0.0 292

4 1.2e+018 1.3e+018 1.1e+018 0.0 0.0 0.0 304

7 6.1e+015 6.8e+015 5.7e+015 0.0 0.0 0.0 310

10 5.0e+012 5.7e+012 4.4e+012 0.0 0.0 0.0 315

13 2.5e+010 2.8e+010 2.1e+010 0.0 0.0 0.0 318

16 3.5e+008 4.7e+008 4.2e+007 0.0 0.0 0.0 321

20 2341.2 2924.0 1749.9 2203.5 2224.0 2181.0 325

21 2341.2 2924.0 1749.9 2225.0 2247.0 2197.0 325
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Dynamics for 3-SAT with Matrix
A = (75 × 325)

t |X ∗| Empirical Nt,e N
(s)
t,e m∗

t m∗t ρt

1 5.4e+020 0.0 1020 1020 305 292 0.11

4 1.2e+018 0.0 1462 1462 310 304 0.12

7 6.1e+015 0.0 1501 1501 316 310 0.12

10 5.0e+012 0.0 2213 2213 320 315 0.23

13 2.5e+010 0.0 1962 1962 321 318 0.17

16 3.5e+008 0.0 1437 1437 324 321 0.12

20 2341 2203 196 187 325 325 0.01

21 2341 2225 10472 2199 325 325 1.00
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Complexity of the (N = 1)-policy
Algorithm

According to the (N = 1)-policy algorithm, at each fixed level
mt−1 we use the acceptance-rejection (single trial) method, until
for the first time we hit a higher levelmt > mt−1.
Theorem. Under some mild conditions, the average number of
iterations and the associated variance to hit the desired level m
while estimating

ℓ(m) = Eu

[
I{Pm

i=1 Ci(X)≥m}

]

by using the (N = 1)-policy algorithm is at most

O(nb ln
n

n + 1 − m
) and O(n2b),

where1 ≤ b = b(p) ≤ 2.
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Further Research
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