

Randomized Algorithms for Rare Events, Combinatorial Optimization and Counting

Technion, 2008

Reuven Rubinstein

Faculty of Industrial Engineering and Management, Technion, Israel

Randomized Algorithms for Rare Events, Combinatorial Optimization and Counting Technion, 2008 – p. 1/4

- 1. Introduction
- 2. CE for Rare Events and Combinatorial Optimization
- 3. MinxEnt for Rare Events and Combinatorial Optimization
- 4. The Cloning Method for Rare Events, Combinatorial Optimization and Counting
- 5. The Gibbs Sampler
- 6. Integer Programs, Multiple Events and the Satisfiability problem
- 7. Why and when it Works
- 8. Generating Points Uniformly on Different Bodies
- 9. Convergence and Numerical Results.

Handom is per Problemse Events, Combinatorial Optimization and Counting Technion, 2008 - p. 2/4

Combinatorial Optimization, like TSP, Maximal Cut, Scheduling and Production Lines.

- Combinatorial Optimization, like TSP, Maximal Cut, Scheduling and Production Lines.
- Machine Learning

- Combinatorial Optimization, like TSP, Maximal Cut, Scheduling and Production Lines.
- Machine Learning
- Pattern Recognition, Clustering and Image Analysis

- Combinatorial Optimization, like TSP, Maximal Cut, Scheduling and Production Lines.
- Machine Learning
- Pattern Recognition, Clustering and Image Analysis
- DNA Sequence Alignment

- Combinatorial Optimization, like TSP, Maximal Cut, Scheduling and Production Lines.
- Machine Learning
- Pattern Recognition, Clustering and Image Analysis
- DNA Sequence Alignment
- Simulation-based (noisy) Optimization, like Optimal Buffer
 Allocation and Optimization in Finance Engineering

- Combinatorial Optimization, like TSP, Maximal Cut, Scheduling and Production Lines.
- Machine Learning
- Pattern Recognition, Clustering and Image Analysis
- DNA Sequence Alignment
- Simulation-based (noisy) Optimization, like Optimal Buffer
 Allocation and Optimization in Finance Engineering
- Multi-extremal Continuous Optimization

- Combinatorial Optimization, like TSP, Maximal Cut, Scheduling and Production Lines.
- Machine Learning
- Pattern Recognition, Clustering and Image Analysis
- DNA Sequence Alignment
- Simulation-based (noisy) Optimization, like Optimal Buffer Allocation and Optimization in Finance Engineering
- Multi-extremal Continuous Optimization
- NP- hard Counting problems: Hamiltonian Cycles, SAW's, calculation the Permanent, Satisfiability Problem, etc.

Randomized Algorithms for Rare Events, Combinatorial Optimization and Counting Technion, 2008 – p. 3/4

Combinatorial Optimization: A Coloring Problem

We wish to color the nodes white and black.

How should we color so that the total number of links between the two groups is maximized? This problem is known as *Maximal Cut* problem.

Randomized Algorithms for Rare Events, Combinatorial Optimization and Counting Technion, 2008 – p. 4/4

The Optimal Trajectory

Randomized Algorithms for Rare Events, Combinatorial Optimization and Counting Technion, 2008 - p. 5/4

How many Hamiltonian cycles does this graph have?

Randomized Algorithms for Rare Events, Combinatorial Optimization and Counting Technion, 2008 - p. 6/4

Calculating the Number of HC's

Randomized Algorithms for Rare Events, Combinatorial Optimization and Counting Technion, 2008 – p. 7/4

We cast cast the original optimization problem of S(x) and counting into an associated rare-events probability estimation problem, that estimation of

$$\ell = \mathbb{P}(S(\boldsymbol{X}) \ge m) = \mathbb{E}\left[I_{\{S(\boldsymbol{X}) \ge m\}}\right]$$
.

and involves the following iterative steps:

- Formulate a random mechanism to *generate* the objects $x \in \mathcal{X}$.
- Give the *updating formulas* (parametric or non parametric), in order to produce a better sample in the next iteration.

Randomized Algorithms for Rare Events, Combinatorial Optimization and Counting Technion, 2008 – p. 8/4

In our randomized algorithms we shall generate either an adaptive parametric sequence of tpuples

$$\{(m_0, \boldsymbol{v}_0), (m_1, \boldsymbol{v}_1), \dots, (m_T, \boldsymbol{v}_T)\}$$

or non-parametric one

{ $(m_0, f(\boldsymbol{x}, \boldsymbol{v}_0)), (m_1, g^*(\boldsymbol{x}, m_0)), \dots, (m_T, g^*(\boldsymbol{x}, m_{T-1}))$ }.

1 Starting: Start with the proposal pdf, like f(x) = f(x, p). Set t := 1.

- 1 Starting: Start with the proposal pdf, like f(x) = f(x, p). Set t := 1.
- 2 Update \hat{m}_t : Draw X_1, \ldots, X_N from parametric $f(\boldsymbol{x}, \hat{\boldsymbol{p}}_t)$ or non-parametric pdf $g_t = g(\boldsymbol{x}, \hat{m}_t)$. Find the elite sampling based on \hat{m}_t , which is the worst performance of the $\rho \times 100\%$ best performances.

- 1 Starting: Start with the proposal pdf, like f(x) = f(x, p). Set t := 1.
- 2 Update \hat{m}_t : Draw X_1, \ldots, X_N from parametric $f(\boldsymbol{x}, \hat{\boldsymbol{p}}_t)$ or non-parametric pdf $g_t = g(\boldsymbol{x}, \hat{m}_t)$. Find the elite sampling based on \hat{m}_t , which is the worst performance of the $\rho \times 100\%$ best performances.
- 3 Update \hat{p}_t or $g_t = g(x, \hat{m}_t)$. For a parametric method update the parameter \hat{p}_t and for a non-parametric one update the pdf $g_t = g(x, \hat{m}_t)$ and increase t by 1.

- 1 Starting: Start with the proposal pdf, like f(x) = f(x, p). Set t := 1.
- 2 Update \hat{m}_t : Draw X_1, \ldots, X_N from parametric $f(\boldsymbol{x}, \hat{\boldsymbol{p}}_t)$ or non-parametric pdf $g_t = g(\boldsymbol{x}, \hat{m}_t)$. Find the elite sampling based on \hat{m}_t , which is the worst performance of the $\rho \times 100\%$ best performances.
- 3 Update \hat{p}_t or $g_t = g(x, \hat{m}_t)$. For a parametric method update the parameter \hat{p}_t and for a non-parametric one update the pdf $g_t = g(x, \hat{m}_t)$ and increase t by 1.
- 4 Stopping: If the stopping criterion is met, then stop; otherwise set t := t + 1 and reiterate from step 2.

$$\min_{g} \left\{ \mathcal{D}(g|h) = \int \ln \frac{g(\boldsymbol{x})}{h(\boldsymbol{x})} g(\boldsymbol{x}) d\boldsymbol{x} = \mathbb{E}_{g} \ln \frac{g(\boldsymbol{X})}{h(\boldsymbol{X})} \right\}$$

(1)

(P₀) s.t. $\int S_j(\boldsymbol{x})g(\boldsymbol{x})d\boldsymbol{x} = \mathbb{E}_g S_j(\boldsymbol{X}) = b_j, \ j = 1, \dots, k,$

$$\int g(\boldsymbol{x}) \mathrm{d}\boldsymbol{x} = 1.$$

Here g and h are joint n-dimensional pdf's or n-dimensional pmf's, $S_j(x)$, j = 1, ..., k, are known functions of an n-dimensional vector x and h is a known pdf, called the prior pdf.

Randomized Algorithms for Rare Events, Combinatorial Optimization and Counting Technion, 2008 – p. 11/4

When we have only a single constraint

$$\mathbb{E}_g S(\boldsymbol{X}) = b, \ (\int g(\boldsymbol{x}) d\boldsymbol{x} = 1)$$

the solution of the program (P_0) is

$$g(\boldsymbol{x}) = \frac{h(\boldsymbol{x}) \exp\{-S(\boldsymbol{x})\lambda\}}{\mathbb{E}_h \exp\{-S(\boldsymbol{X})\lambda\}}$$

and

$$\frac{\mathbb{E}_h S(\boldsymbol{X}) \exp\left\{-\lambda S(\boldsymbol{X})\right\}}{\mathbb{E}_h \exp\left\{-\lambda S(\boldsymbol{X})\right\}} = b,$$

respectively.

Randomized Algorithms for Rare Events, Combinatorial Optimization and Counting Technion, 2008 – p. 12/4

We start with the following basic

Example.

Assume we want to calculate an area of same "irregular" region \mathcal{X}^* . The Monte-Carlo method suggests inserting the "irregular" region \mathcal{X}^* into a nice "regular" one \mathcal{X} as per figure below

 \mathscr{X} : Set of objects (paths in a graph, colorings of a graph, etc.) \mathscr{X}^* : Subset of special objects (cycles in a graph, colorings of a certain type, etc).

To calculate |X*| we apply the following sampling procedure:
(i) Generate a random sample X₁,..., X_N, *uniformly*distributed over the "regular" region X.
(ii) Estimate the desired area |X*| as

 $|\widehat{\mathcal{X}^*}| = \widehat{\ell}|\mathcal{X}|,$

where

$$\widehat{\ell} = \frac{N_{\mathcal{X}^*}}{N_{\mathcal{X}}} = \frac{1}{N} \sum_{k=1}^N I_{\{\mathbf{X}_k \in \mathcal{X}^*\}},$$

 $I_{\{\boldsymbol{X}_k \in \mathcal{X}^*\}}$ denotes the indicator of the event $\{\boldsymbol{X}_k \in \mathcal{X}^*\}$ and $\{\boldsymbol{X}_k\}$ is a sample from $f(\boldsymbol{x})$ over \mathcal{X} , where $f(\boldsymbol{x}) = \frac{1}{|\mathcal{X}|}$.

Each problem will be casted into the problem of estimation of the rare event probability of the type

$$\ell(m) = \mathbb{E}_f \left[I_{\{S(\mathbf{X}) \ge m\}} \right].$$

Here $S(\mathbf{X})$ is the sample performance, $\mathbf{X} \sim f(\mathbf{x})$ and m is fixed, called, the *level* chosen such that $\ell(m)$ is very small.

To estimate $\ell(m) = \mathbb{E}_f \left[I_{\{S(\mathbf{X}) \ge m\}} \right]$ we define a fixed grid $\{m_t, t = 0, 1, \dots, T\}$ satisfying $-\infty < m_0 < m_1 < \dots m_T = m$ and then use for $\ell(m)$ the well known chain (nested events) rule

$$\ell(m) = \mathbb{E}_f[I_{\{S(\mathbf{X}) \ge m_0\}}] \prod_{t=1}^T \mathbb{E}_f[I_{\{S(\mathbf{X}) \ge m_t\}} | I_{\{S(\mathbf{X}) \ge m_{t-1}\}}] = c_0 \prod_{t=1}^T c_t,$$

or as

$$\ell(m) = \mathbb{E}_f[I_{\{S(\mathbf{X}) \ge m_0\}}] \prod_{t=1}^T \mathbb{E}_{g_{t-1}^*}[I_{\{S(\mathbf{X}) \ge m_t\}}] = c_0 \prod_{t=1}^T c_t,$$

$$c_t = \mathbb{E}_f [I_{\{S(\mathbf{X}) \ge m_t\}} | I_{\{S(\mathbf{X}) \ge m_{t-1}\}}] = \mathbb{E}_{g_{t-1}^*} [I_{\{S(\mathbf{X}) \ge m_t\}}].$$

Randomized Algorithms for Rare Events, Combinatorial Optimization and Counting Technion, 2008 – p. 16/4

Here f denotes the proposal pdf $f = f(\boldsymbol{x}) = f(\boldsymbol{x}, \boldsymbol{v}_0)$; and $g_{t-1}^* = g^*(\boldsymbol{x}, m_{t-1}) = \ell_{t-1}^{-1} f(\boldsymbol{x}) I_{\{S(\boldsymbol{x}) \ge m_{t-1}\}}$, denotes the zero variance importance sampling (IS) pdf at iteration t - 1, where $\ell_{t-1} = \ell(m_{t-1}) = \mathbb{E}_f \left[I_{\{S(\boldsymbol{X}) \ge m_{t-1}\}} \right]$ is the normalization constant.

Note that the sequence c_t in the product formula for ℓ will be used only for counting.

The estimator of $\ell(m)$ is

$$\hat{\ell}(m) = \prod_{t=0}^{T} \hat{c}_t, \ \hat{c}_t = \frac{1}{N} \sum_{i=1}^{N} I_{\{S(\mathbf{X}_i) \ge m_t\}},$$

where $X_i \sim g_{t-1}^*$. It is readily seen that if the proposal density $f(\boldsymbol{x})$ is uniformly distributed on the original set $\mathcal{X} = \{\boldsymbol{x} : S(\boldsymbol{x}) \ge m_{-1}\}$, than g_{t-1}^* is uniformly distributed on the set $\mathcal{X}_{t-1} = \{\boldsymbol{x} : S(\boldsymbol{x}) \ge m_{t-1}\}$. The main trick of this work is to show how to sample from the IS pdf $g^*(\boldsymbol{x}, m_{t-1})$ without knowing the normalization constant $\ell_{t-1} = \ell(m_{t-1})$.

Randomized Algorithms for Rare Events, Combinatorial Optimization and Counting Technion, 2008 – p. 18/4

For such an estimator to be useful, the levels m_t should be chosen such that each quantity $\mathbb{E}_f[I_{\{S(\mathbf{X}) \ge m_t\}} | I_{\{S(\mathbf{X}) \ge m_{t-1}\}}]$ is not too small, say approximately equal to 10^{-2} . In our approach we shall estimate each $\mathbb{E}_f[I_{\{S(\mathbf{X}) \ge m_t\}} | I_{\{S(\mathbf{X}) \ge m_{t-1}\}}] = \rho$ by using the Gibbs sampler.

As mentioned, we shall generate here an adaptive sequence of tuples

{ $(m_0, f(\boldsymbol{x}, \boldsymbol{v}_0)), (m_1, g^*(\boldsymbol{x}, m_0)), \dots, (m_T, g^*(\boldsymbol{x}, m_{T-1}))$ }

instead of the sequence

$$\{(m_0, \boldsymbol{v}_0), (m_1, \boldsymbol{v}_1), \dots, (m_T, \boldsymbol{v}_T)\}.$$

Randomized Algorithms for Rare Events, Combinatorial Optimization and Counting Technion, 2008 – p. 19/4

Consider

$$\ell(m) = \mathbb{E}_f\left[I_{\{\sum_{i=1}^n X_i \ge m\}}\right],$$

where all X_i 's are iid Ber(p = 1/2) random variables. Assume that we want to count the number of outcomes on the set

$$\mathcal{X}^* = \{ x : \sum_{i=1}^n X_i \ge m \}.$$

Let n = m = 3. Although it is obvious that $|\mathcal{X}^*| = 1$, we demonstrate the sampling mechanism in the product formula

$$\ell(m) = \mathbb{E}_f[I_{\{S(\mathbf{X}) \ge m_0\}}] \prod_{t=1}^T \mathbb{E}_{g_{t-1}^*}[I_{\{S(\mathbf{X}) \ge m_t\}}] = c_0 \prod_{t=1}^T c_t.$$

Randomized Algorithms for Rare Events, Combinatorial Optimization and Counting Technion, 2008 – p. 20/4

Possible dynamic of the evolution of the sequence of levels m_t and cardinalities $|\mathcal{X}_t|$, that is tuples

$$\{(m_{-1}, |\mathcal{X}_{-1}|), (m_0, |\mathcal{X}_0|), \dots, (m, |\mathcal{X}_m|)\}.$$

$$m_{-1} = 0 \quad |X|_{-1} = 8$$

$$m_{0} = 2 \quad |X|_{0} = 4$$

$$m_{1} = 2 \quad |X|_{0} = 4$$

$$m_{2} = 3 \quad |X|_{2} = 1$$

Randomized Algorithms for Rare Events, Combinatorial Optimization and Counting Technion, 2008 – p. 21/4

According to Figure we obtain $m_0 = 2$ after the first iteration, which means that while flipping 3 symmetric coins $\sum_{i=1}^{3} X_i = m_0 = 2$, (2 coins resulted to 1 and one coin resulted to 0). As soon as we obtain $m_0 = 2$ we reduce the original sample space \mathcal{X}_{-1} containing 8 points to the one \mathcal{X}_0 containing 4 points. This is done by eliminating 4 outcomes corresponding to events $\{\sum_{i=1}^{3} X_i = 0\}$ and $\{\sum_{i=1}^{3} X_i = 1\}$ from the space $\mathcal{X}_{-1} = \{ \boldsymbol{X} : \sum_{i=1}^{3} X_i \ge 0 \}$. In other words, as soon as we obtain an outcome, such that $\sum_{i=1}^{3} X_i = 2$ we truncate the sample space \mathcal{X}_{-1} by excluding from it all points corresponding to the event $\{\sum_{i=1}^{3} X_i \leq 1\}$, etc.

Randomized Algorithms for Rare Events, Combinatorial Optimization and Counting Technion, 2008 – p. 22/4

Consider a set containing both equality and inequality constraints of an integer program, that is

$$\sum_{k=1}^{n} a_{ik} x_k = b_i, \ i = 1, \dots, m_1,$$

$$\sum_{k=1}^{n} a_{jk} x_k \ge b_j, \ j = m_1 + 1, \dots, m_1 + m_2,$$

 $x \ge 0$, x_k integer $\forall k = 1, \ldots, n$.

It can be shown that in order to count the number of points (feasible solutions) of the above set one can consider the following associated rare-event probability problem

 $\ell(m) = \mathbb{E}_{\boldsymbol{u}}\left[I_{\{\sum_{i=1}^m C_i(\boldsymbol{X}) \ge m\}}\right],$

where the first m_1 terms $C_i(\boldsymbol{X})$'s are

$$C_i(\mathbf{X}) = I_{\{\sum_{k=1}^n a_{ik} X_k = b_i\}}, \ i = 1, \dots, m_1,$$

while the remaining m_2 ones are

$$C_i(\mathbf{X}) = I_{\{\sum_{k=1}^n a_{ik} X_k \ge b_i\}}, \ i = m_1 + 1, \dots, m_1 + m_2.$$

Randomized Algorithms for Rare Events, Combinatorial Optimization and Counting Technion, 2008 – p. 24/4

Thus, in order to count the the number of feasible solution on the above set we shall consider an associated rare event probability estimation problem involving a *sum of dependent Bernoulli random variables*. Such representation is crucial for a large set of counting problems.

Randomized Algorithms for Rare Events, Combinatorial Optimization and Counting Technion, 2008 - p. 26/4

Our goal is sample from the IS pdf $g^*(x)$ or any other pdf g(x). It is assumed that generating from the conditional pdfs $g(X_i|X_1, \ldots, X_{i-1}, X_{i+1}, \ldots, X_n), i = 1, \ldots, n$ is simple. In Gibbs sampler for any given vector $\mathbf{X} = (X_1, \ldots, X_n) \in \mathcal{X}$ one generates a *new* vector $\widetilde{\mathbf{X}} = (\widetilde{X}_1, \ldots, \widetilde{X}_n)$ as: Algorithm: The Gibbs Sampler

1. Draw \widetilde{X}_1 from the conditional pdf $g(X_1|X_2, \ldots, X_n)$.

 Draw X̃_i from the conditional pdf
 g(X_i | X̃₁,..., X̃_{i-1}, X_{i+1},..., X_n), i = 2,...,n − 1.
 Draw X̃_n from the conditional pdf g(X_n | X̃₁,..., X̃_{n-1}).

After many *burn-in* periods \widetilde{X} is distributed $g(\boldsymbol{x})$.

Consider estimation

$$\ell(m) = \mathbb{E}_f \left[I_{\{\sum_{i=1}^n X_i \ge m\}} \right].$$

The Gibbs sampler for generating variables X_i , i = 1, ..., N is

 $g^*(x_i, m | \boldsymbol{x}_{-i}) = c_i(m) f_i(x_i) I_{\{x_i \ge m - \sum_{j \ne i} x_j\}},$

where $|\boldsymbol{x}_{-i}|$ denotes conditioning on all random variables but excluding the remaining ones and $c_i(m)$ is the normalization constant. Sampling a random variable \widetilde{X}_i can be performed as follows. Generate $Y \sim \text{Ber } (1/2)$. If $I_{\{\widetilde{Y} \ge m - \sum_{j \ne i} x_j\}}$, then set $\widetilde{X}_i = Y$, oterwise set set $\widetilde{X}_i = 1 - Y$.

Given ρ , say $\rho = 0.1$, the sample size N, the burn in period b, say $3 \le b \le 10$ execute the following steps:

1. Acceptance-Rejection

Set a counter t = 1. Generate a sample X_1, \ldots, X_N from the proposal density $f(\boldsymbol{x})$. Let $\widetilde{X}_0 = \{\widetilde{X}_1, \ldots, \widetilde{X}_{N_0}\}$ be the largest subset of the population $\{X_1, \ldots, X_N\}$, called the elite samples for which $S(\boldsymbol{X}_i) \ge m_0$. Note that $\widetilde{\boldsymbol{X}}_1, \ldots, \widetilde{\boldsymbol{X}}_{N_0} \sim g^*(\boldsymbol{x}, m_0)$ and that

$$\hat{\ell}(m_0) = \hat{c}_0 = \frac{1}{N} \sum_{i=1}^N I_{\{S(\mathbf{X}_i) \ge m_0\}} = \frac{N_0}{N}$$

is an *unbiased* estimator of $\ell(m_0)$.

Randomized Algorithms for Rare Events, Combinatorial Optimization and Counting Technion, 2008 – p. 29/4

The goal of the cloning parameter η is to reproduce η times the N_{t-1} elites at iteration t - 1. After that we apply the burn-in period of length b the total ηN_{t-1} samples, such that $b\eta N_{t-1} = N$, that is

$$b_{t-1} = \left\lceil \frac{N}{\eta N_{t-1}} \right\rceil.$$

The goal of the cloning mechanism is to find a good balance in the Gibbs sampler in terms of bias-variance using N, N_{t-1}, η, b . As an example, let $N = 1,000, N_{t-1} = 20, \eta = 5$. We obtain b = 10. Our numerical studies show that it is quite reasonable to choose $3 \le \eta \le 5$.

No Cloning $(\eta = 1)$ for $P(X_1 + X_2 \ge m)$

Randomized Algorithms for Rare Events, Combinatorial Optimization and Counting Technion, 2008 - p. 31/4

Cloning ($\eta = 2$) for $P(X_1 + X_2 \ge m)$

Randomized Algorithms for Rare Events, Combinatorial Optimization and Counting Technion, 2008 - p. 32/4

Given ρ , say $\rho = 0.1$, the sample size N, the burn in period b, say $3 \le b \le 10$ execute the following steps:

1. Acceptance-Rejection

Set a counter t = 1. Generate a sample X_1, \ldots, X_N from the proposal density $f(\boldsymbol{x})$. Let $\widetilde{X}_0 = \{\widetilde{X}_1, \ldots, \widetilde{X}_{N_0}\}$ be the largest subset of the population $\{X_1, \ldots, X_N\}$, called the elite samples for which $S(X_i) \ge m_0$. Note that $\widetilde{X}_1, \ldots, \widetilde{X}_{N_0} \sim g^*(\boldsymbol{x}, m_0)$ and that

$$\hat{\ell}(m_0) = \hat{c}_0 = \frac{1}{N} \sum_{i=1}^N I_{\{S(\mathbf{X}_i) \ge m_0\}} = \frac{N_0}{N}$$

is an *unbiased* estimator of $\ell(m_0)$.

Randomized Algorithms for Rare Events, Combinatorial Optimization and Counting Technion, 2008 – p. 33/4

2. Cloning Given b and the number of elites N_{t-1} find the cloning parameter η_{t-1} according to $\eta_{t-1} = \left\lceil \frac{N}{bN_{t-1}} \right\rceil - 1$. Reproduce η_{t-1} times each vector $\tilde{X}_k = (\tilde{X}_{1k}, \ldots, \tilde{X}_{nk})$ of the elite sample $\{\widetilde{X}_1, \ldots, \widetilde{X}_{N_{t-1}}\}$. Denote the entire new population by $\mathcal{X}_{cl} = \{ (\widetilde{X}_1, \ldots, \widetilde{X}_1), \ldots, (\widetilde{X}_{N_{t-1}}, \ldots, \widetilde{X}_{N_{t-1}}) \}.$ To each of the cloned vectors of the population \mathcal{X}_{cl} apply the Gibbs sampler for b_{t-1} burn-in periods. Denote the new entire population by $\{X_1, \ldots, X_N\}$. Observe that each component of $\{X_1, \ldots, X_N\}$ is distributed approximately $g^*(x, \hat{m}_{t-1})$.

3. Estimating $c_t = \mathbb{E}_f[I_{\{S(\mathbf{X}) \ge m_t\}} | I_{\{S(\mathbf{X}) \ge m_{t-1}\}}]$. Let $\widetilde{\mathcal{X}}_t = \{\widetilde{\mathbf{X}}_1, \dots, \widetilde{\mathbf{X}}_{N_t}\}$ be the subset of the population $\{\mathbf{X}_1, \dots, \mathbf{X}_N\}$ for which $S(\mathbf{X}_i) \ge m_t$. Take

$$\hat{c}_t = \frac{1}{N} \sum_{i=1}^N I_{\{S(\mathbf{X}_i) \ge m_t\}} = \frac{N_t}{N}$$

is an estimator of c_t . Note that $\widetilde{X}_1, \ldots, \widetilde{X}_{N_t}$ is distributed only approximately $g^*(\boldsymbol{x}, m_t)$.

4.Stopping Rule If t = T go to step 5, otherwise set t = t + 1and repeat from step 2.

5. Estimating $\ell(m)$. Deliver

$$\hat{\ell}(m) = \prod_{t=0}^{T} \hat{c}_t = \frac{1}{N^T} \prod_{t=0}^{T} N_t$$

as an estimator of
$$\ell(m)$$
.
The Direct Estimator

3-SAT with Matrix $A = (75 \times 325)$, N = 10,000 and $\rho = 0.1$

$ \mathscr{X}^* $			Empirical			
Mean	Max	Min	Mean	Max	Min	m_t
5.4e+020	5.6e+020	5.1e+020	0.0	0.0	0.0	292
1.2e+018	1.3e+018	1.1e+018	0.0	0.0	0.0	304
6.1e+015	6.8e+015	5.7e+015	0.0	0.0	0.0	310
5.0e+012	5.7e+012	4.4e+012	0.0	0.0	0.0	315
2.5e+010	2.8e+010	2.1e+010	0.0	0.0	0.0	318
3.5e+008	4.7e+008	4.2e+007	0.0	0.0	0.0	321
2341.2	2924.0	1749.9	2203.5	2224.0	2181.0	325
2341.2	2924.0	1749.9	2225.0	2247.0	2197.0	325
	5.4e+020 1.2e+018 6.1e+015 5.0e+012 2.5e+010 3.5e+008 2341.2	MeanMax5.4e+0205.6e+0201.2e+0181.3e+0186.1e+0156.8e+0155.0e+0125.7e+0122.5e+0102.8e+0103.5e+0084.7e+0082341.22924.0	MeanMaxMin5.4e+0205.6e+0205.1e+0201.2e+0181.3e+0181.1e+0186.1e+0156.8e+0155.7e+0155.0e+0125.7e+0124.4e+0122.5e+0102.8e+0102.1e+0103.5e+0084.7e+0084.2e+0072341.22924.01749.9	MeanMaxMinMean5.4e+0205.6e+0205.1e+0200.01.2e+0181.3e+0181.1e+0180.06.1e+0156.8e+0155.7e+0150.05.0e+0125.7e+0124.4e+0120.02.5e+0102.8e+0102.1e+0100.03.5e+0084.7e+0084.2e+0070.02341.22924.01749.92203.5	MeanMaxMinMeanMax5.4e+0205.6e+0205.1e+0200.00.01.2e+0181.3e+0181.1e+0180.00.06.1e+0156.8e+0155.7e+0150.00.05.0e+0125.7e+0124.4e+0120.00.02.5e+0102.8e+0102.1e+0100.00.03.5e+0084.7e+0084.2e+0070.00.02341.22924.01749.92203.52224.0	MeanMaxMinMeanMaxMin5.4e+0205.6e+0205.1e+0200.00.00.01.2e+0181.3e+0181.1e+0180.00.00.06.1e+0156.8e+0155.7e+0150.00.00.05.0e+0125.7e+0124.4e+0120.00.00.02.5e+0102.8e+0102.1e+0100.00.00.03.5e+0084.7e+0084.2e+0070.00.00.02341.22924.01749.92203.52224.02181.0

Randomized Algorithms for Rare Events, Combinatorial Optimization and Counting Technion, 2008 - p. 37/4

Dynamics for 3-**SAT with Matrix** $A = (75 \times 325)$

t	$ \mathscr{X}^* $	Empirical	$N_{t,e}$	$N_{t,e}^{\left(s ight)}$	m_t^*	m_{*t}	$ ho_t$
1	5.4e+020	0.0	1020	1020	305	292	0.11
4	1.2e+018	0.0	1462	1462	310	304	0.12
7	6.1e+015	0.0	1501	1501	316	310	0.12
10	5.0e+012	0.0	2213	2213	320	315	0.23
13	2.5e+010	0.0	1962	1962	321	318	0.17
16	3.5e+008	0.0	1437	1437	324	321	0.12
20	2341	2203	196	187	325	325	0.01
21	2341	2225	10472	2199	325	325	1.00

Randomized Algorithms for Rare Events, Combinatorial Optimization and Counting Technion, 2008 - p. 38/4

Complexity of the
$$(N = 1)$$
-policy Algorithm

According to the (N = 1)-policy algorithm, at each fixed level m_{t-1} we use the acceptance-rejection (single trial) method, until for the first time we hit a higher level $m_t > m_{t-1}$. **Theorem**. Under some mild conditions, the average number of iterations and the associated variance to hit the desired level m while estimating

 $\ell(m) = \mathbb{E}_{\boldsymbol{u}}\left[I_{\{\sum_{i=1}^{m} C_i(\boldsymbol{X}) \ge m\}}\right]$

by using the (N = 1)-policy algorithm is at most

$$O(n^b \ln \frac{n}{n+1-m})$$
 and $O(n^{2b})$,

where $1 \le b = b(p) \le 2$.

Randomized Algorithms for Rare Events, Combinatorial Optimization and Counting Technion, 2008 – p. 39/4

Further Research

Randomized Algorithms for Rare Events, Combinatorial Optimization and Counting Technion, 2008 - p. 40/4