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Consider stochastic optimization problem:

Min
x∈X

{
f(x) := EP [F (x, ξ)]

}
, (1)

where ξ is a random vector having probability distribution P

supported on set Ξ ⊂ Rd, F (x, ξ) is a real valued function and
X ⊂ Rn. For example, consider two-stage (linear) stochastic
programming problem with recourse

Minx∈X cTx + E[Q(x, ξ)], (2)

where X = {x : Ax = b, x ≥ 0} and Q(x, ξ) is the optimal value
of the second stage problem

Miny qTy s.t. Tx + Wy = h, y ≥ 0, (3)

with ξ = (q, T, W, h). The feasible set X can be finite, i.e., integer
first stage problem. Both stages can be integer (mixed integer)
problems.
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Suppose that the probability distribution P of ξ has a finite sup-

port, i.e., ξ can take values ξ1, ..., ξK (called scenarios) with

respective probabilities p1, ..., pK. Then

EP [F (x, ξ)] =
K∑

k=1

pkF (x, ξk).

In the case of two-stage (linear) stochastic programming problem

with recourse we can write problem (2)-(3) as one large linear

program:

Minx,y1,...,yK cTx +
∑K

k=1 pkqT
k yk

subject to Ax = b,
Tkx + Wkyk = hk, k = 1, ..., K,
x ≥ 0, yk ≥ 0, k = 1, ..., K.

(4)
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Even crude discretization of the distribution of ξ leads to an

exponential growth of the number of scenarios.

Could such problems be solved numerically?

How do we know the probability distribution P?

Why do we optimize the expected value of the objective (cost)

function?

Monte Carlo sampling approach

Let ξ1, ..., ξN be a generated (iid) random sample drawn from P

and

f̂N(x) := N−1
N∑

j=1

F (x, ξj)

be the corresponding sample average function. By the Law of

Large Numbers, for a given x ∈ X, we have f̂N(x) → f(x) =

EP [F (x, ξ)] w.p.1 as N →∞.
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Notoriously slow convergence of order Op(N−1/2). By the Cen-

tral Limit Theorem

N1/2
[
f̂N(x)− f(x)

]
⇒ N(0, σ2(x)),

where σ2(x) := Var[F (x, ξ)].

The sample average approximation (SAA) approach to Monte

Carlo sampling optimization, the true problem is approximated

by the sample average approximation problem:

Minx∈X

{
f̂N(x) := N−1∑N

j=1 F (x, ξj)
}

.

Once the sample ξ1, ..., ξN ∼ P is generated, the SAA prob-

lem becomes a deterministic optimization problem and can be

considered as a stochastic programming problem with scenarios

ξ1, ..., ξN ∼ P each with probability 1/N .
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Notation

v0 is the optimal value of the true problem
S0 is the optimal solutions set of the true problem
Sε is the set of ε-optimal solutions of the true problem
v̂N is the optimal value of the SAA problem
Ŝε

N is the set of ε-optimal solutions of the SAA problem
x̂N is an optimal solution of the SAA problem

Convergence properties

Vast literature on statistical properties of the SAA estimators v̂N

and x̂N :

Consistency. By the Law of Large Numbers, f̂N(x) converge

(pointwise) to f(x) w.p.1. Under mild additional conditions, this

implies that v̂N → v0 and dist(x̂N , S0) → 0 w.p.1 as N → ∞.

In particular, x̂N → x0 w.p.1 if S0 = {x0}. (Consistency of

Maximum Likelihood estimators, Wald (1949)).
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Central Limit Theorem type results.

v̂N = min
x∈S0

f̂N(x) + op(N
−1/2).

In particular, if S0 = {x0}, then

N1/2[v̂N − v0] ⇒ N(0, σ2(x0))

(Shapiro, 1991).

These results suggest that the optimal value of the SAA problem

converges at a rate of
√

N . In particular, if S0 = {x0}, then v̂N

converges to v0 at the same rate as f̂N(x0) converges to f(x0).
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Sample size estimates (by Large Deviations type bounds)
Suppose that |X| < ∞, i.e., the set X is finite, and: (i) for every
x ∈ X the expected value f(x) = E[F (x, ξ)] is finite, (ii) there
are constants σ > 0 and a ∈ (0,+∞] such that

Mx(t) ≤ exp{σ2t2/2}, ∀t ∈ [−a, a], ∀x ∈ X \ Sε,

where Mx(t) is the moment generating function of the random
variable F (u(x), ξ) − F (x, ξ) − E[F (u(x), ξ) − F (x, ξ)] and u(x) is
a point of the optimal set S0. Choose ε > 0, δ ≥ 0 and α ∈ (0,1)
such that 0 < ε− δ ≤ aσ2. Then for sample size

N ≥
2σ2

(ε− δ)2
log

(
|X|
α

)
we are guaranteed, with probability at least 1 − α, that any δ-
optimal solution of the SAA problem is an ε-optimal solution of
the true problem, i.e., Prob(Ŝδ

N ⊂ Sε) ≥ 1− α
(Kleywegt, Shapiro & Homem-de-Mello, 2001).
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Let X = {x1, x2} with f(x2) − f(x1) > ε > 0 and suppose that

random variable F (x2, ξ)− F (x1, ξ) has normal distribution with

mean µ = f(x2) − f(x1) and variance σ2. By solving the corre-

sponding SAA problem we make the correct decision (that x1 is

the minimizer) if f̂N(x2) − f̂N(x1) > 0. Probability of this event

is Φ(µ
√

N/σ). Therefore we need the sample size N > z2
ασ2/ε2

in order for our decision to be correct with probability at least

1− α.

In order to solve the corresponding optimization problem we need

to test H0 : µ ≤ 0 versus Ha : µ > 0. Assuming that σ2 is known,

by Neyman-Pearson Lemma, the uniformly most powerful test is:

“reject H0 if f̂N(x2) − f̂N(x1) is bigger than a specified critical

value”.
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Now let X ⊂ Rn be a set of finite diameter D := supx′,x∈X ‖x′−x‖.
Suppose that: (i) for every x ∈ X the expected value f(x) =
E[F (x, ξ)] is finite, (ii) there is a constant σ > 0 such that

Mx′,x(t) ≤ exp{σ2t2/2}, ∀t ∈ R, ∀x′, x ∈ X,

where Mx′,x(t) is the moment generating function of the random
variable F (x′, ξ)− F (x, ξ)− E[F (x′, ξ)− F (x, ξ)], (iii) there exists
κ : Ξ → R+ such that its moment generating function is finite
valued in a neighborhood of zero and∣∣∣F (x′, ξ)− F (x, ξ)

∣∣∣ ≤ κ(ξ)‖x′ − x‖, ∀ξ ∈ Ξ, ∀x′, x ∈ X.

Choose ε > 0, δ ∈ [0, ε) and α ∈ (0,1). Then for sample size

N ≥
8σ2

(ε− δ)2

[
n log

(
O(1)DL

(ε− δ)2

)
+ log

(
2

α

)]∨[
β−1 log

(
2

α

)]
,

we are guaranteed that Prob
(
Ŝδ

N ⊂ Sε
)
≥ 1− α.
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In particular, if κ(ξ) ≡ L, then the estimate takes the form

N ≥ O(1)
(

LD

ε− δ

)2
[
n log

(
O(1)DL

ε− δ

)
+ log

(
1

α

)]
.

Suppose further that for some c > 0, γ ≥ 1 and ε̄ > ε the following
growth condition holds

f(x) ≥ v0 + c[dist(x, S0)]γ, ∀x ∈ Sε̄,

and that the problem is convex. Then, for δ ∈ [0, ε/2], we have
the following estimate of the required sample size:

N ≥
(

O(1)LD

c1/γε(γ−1)γ

)2 [
n log

(
O(1)D̄L

ε

)
+ log

(
1

α

)]
,

where D̄ is the diameter of Sε̄. In particular, if S0 = {x0} is a
singleton and γ = 1, we have the estimate (independent of ε):

N ≥ O(1)c−2L2
[
n log(O(1)c−1L) + log(α−1)

]
.
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Example Let F (x, ξ) := ‖x‖2k − 2k
(
ξTx

)
, where k ∈ N and

X := {x ∈ Rn : ‖x‖ ≤ 1}.

Suppose, that ξ ∼ N(0, σ2In). Then f(x) = ‖x‖2k, and for ε ∈
[0,1], the set of ε-optimal solutions of the true problem is

{x : ‖x‖2k ≤ ε}.

Let ξ̄N := (ξ1 + ... + ξN)/N . The corresponding sample average

function is

f̂N(x) = ‖x‖2k − 2k
(
ξ̄T
Nx

)
,

and x̂N = ‖ξ̄N‖−γ ξ̄N , where γ := 2k−2
2k−1 if ‖ξ̄N‖ ≤ 1, and γ = 1

if ‖ξ̄N‖ > 1. Therefore, for ε ∈ (0,1), the optimal solution of

the SAA problem is an ε-optimal solution of the true problem iff

‖ξ̄N‖ν ≤ ε, where ν := 2k
2k−1.
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We have that ξ̄N ∼ N(0, σ2N−1In), and hence N‖ξ̄N‖2/σ2 has the

chi-square distribution with n degrees of freedom. Consequently,

the probability that ‖ξ̄N‖ν > ε is equal to the probability

P
(
χ2

n > Nε2/ν/σ2
)

.

Moreover, E[χ2
n] = n and the probability P(χ2

n > n) increases and

tends to 1/2 as n increases. Consequently, for α ∈ (0,0.3) and

ε ∈ (0,1), for example, the sample size N should satisfy

N >
nσ2

ε2/ν
(5)

in order to have the property: “with probability 1−α an (exact)

optimal solution of the SAA problem is an ε-optimal solution of

the true problem”. Note that ν → 1 as k →∞.
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Stochastic Approximation (SA) approach

Suppose that the problem is convex, i.e., the feasible set X is

convex and F (·, ξ) is convex for all ξ ∈ Ξ. Classical SA algorithm

xj+1 = ΠX(xj − γjG(xj, ξ
j)),

where G(x, ξ) ∈ ∂xF (x, ξ) is a calculated gradient, ΠX is the or-

thogonal (Euclidean) projection onto X and γj = θ/j. Theoreti-

cal bound (assuming f(·) is strongly convex and differentiable)

E[f(xj)− v0] = O(j−1),

for an optimal choice of constant θ (recall that v0 is the optimal

value of the true problem). This algorithm is very sensitive to

choice of θ, does not work well in practice.
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Robust SA approach (B. Polyak, 1990). Constant step size vari-
ant: fixed in advance sample size (number of iterations) N and
step size γj ≡ γ, j = 1, ..., N : x̃N = 1

N

∑N
j=1 xj. Theoretical bound

E[f(x̃N)− v0] ≤
D2

X

2γN
+

γM2

2
,

where DX = maxx∈X ‖x− x1‖2 and M2 = maxx∈X E‖G(x, ξ)‖22.
For optimal (up to factor θ) γ = θDX

M
√

N
we have

E
[
f(x̃N)− v0

]
≤

DXM

2θ
√

N
+

θDXM

2
√

N
≤

κDXM√
N

,

where κ = max{θ, θ−1}. By Markov inequality it follows that

Prob
{
f(x̃N)− v0 > ε

}
≤

κDXM

ε
√

N
,

and hence to the sample size estimate N ≥ κ2D2
XM2

ε2α2 .
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Mirror Decent SA method (Nemirovski)

Let ‖·‖ be a norm on Rn and ω(x) be a continuously differentiable

strongly convex on X with respect to ‖ · ‖, i.e., for x, x′ ∈ X:

ω(x′) ≥ ω(x) + (x′ − x)T∇ω(x) + 1
2
c‖x′ − x‖2.

Prox mapping Px : Rn → X:

Px(y) = argmin
z∈X

{
ω(z) + (y −∇ω(x))Tz

}
.

For ω(x) = 1
2
‖x‖2 we have that Px(y) = ΠX(x− y). Set

xj+1 = Pxj(γjG(xj, ξ
j)).
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For constant step size γj = γ, j = 1, ..., N , with optimal

γ =
Dω,X

M∗

√
2c

N
,

where M∗ = maxx∈X E‖G(x, ξ)‖2∗, with dual norm ‖ · ‖∗, and

x̃N = N−1
N∑

j=1

xj

we have

E
[
f(x̃N)− v0

]
≤ Dω,X

√
2M2

∗
cN

,

where

Dω,X =
[
max
z∈X

ω(z)−min
x∈X

ω(x)
]1/2

.

16



Validation analysis
How one can evaluate quality of a given (feasible) solution x̂ ∈ X?
Two basic approaches: (1) Evaluate the gap f(x̂)−v0. (2) Verify
the KKT optimality conditions at x̂.

Statistical test based on estimation of f(x̂) − v0 (Norkin, Pflug
& Ruszczynski 98, Mak, Morton & Wood 99):
(i) Estimate f(x̂) by the sample average f̂N ′(x̂), using sample of
a large size N ′.
(ii) Solve the SAA problem M times using M independent sam-
ples each of size N . Let v̂

(1)
N , ..., v̂

(M)
N be the optimal values of

the corresponding SAA problems. Estimate E[v̂N ] by the average
M−1∑M

j=1 v̂
(j)
N . Note that

E
[
f̂N ′(x̂)−M−1∑M

j=1 v̂
(j)
N

]
=
(
f(x̂)− v0

)
+
(
v0 − E[v̂N ]

)
,

and that v0 − E[v̂N ] > 0.
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The bias v0 − E[v̂N ] is positive and (under mild regularity condi-
tions)

lim
N→∞

N1/2
(
v0 − E[v̂N ]

)
= E

[
max
x∈S0

Y (x)

]
,

where (Y (x1), ..., Y (xk)) has a multivariate normal distribution
with zero mean vector and covariance matrix given by the co-
variance matrix of the random vector (F (x1, ξ), ..., F (xk, ξ)). For
ill-conditioned problems this bias is of order O(N−1/2) and can be
large if the ε-optimal solution set Sε is large for some small ε ≥ 0.

Common random numbers variant: generate a sample (of size N)
and calculate the gap f̂N(x̂)−infx∈X f̂N(x). Repeat this procedure
M times (with independent samples), and calculate the average
of the above gaps. This procedure works well for well conditioned
problems, does not improve the bias problem.
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KKT statistical test Let

X := {x ∈ Rn : ci(x) = 0, i ∈ I, ci(x) ≤ 0, i ∈ J} .

Suppose that the probability distribution is continuous. Then
F (·, ξ) is differentiable at x̂ w.p.1 and ∇f(x̂) = EP [∇xF (x̂, ξ)] .

KKT-optimality conditions at an optimal solution x0 ∈ S0 can
be written as follows: −∇f(x0) ∈ C(x0), where

C(x) :=
{
y =

∑
i∈I∪J(x) λi∇ci(x), λi ≥ 0, i ∈ J(x)

}
,

and J(x) := {i : ci(x) = 0, i ∈ J}. The idea of the KKT test is to
estimate the distance δ(x̂) := dist (−∇f(x̂), C(x̂)) , by using the
sample estimator δ̂N(x̂) := dist

(
−∇f̂N(x̂), C(x̂)

)
. The covariance

matrix of ∇f̂N(x̂) can be estimated (from the same sample), and
hence a confidence region for ∇f(x̂) can be constructed. This
allows a statistical validation of the KKT conditions (Shapiro &
Homem-de-Mello, 98).
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Bounds by Mirror Decent SA method. (Lan, Nemirovski &
Shapiro, 2008). Iterates

xj+1 = Pxj(γjG(xj, ξ
j)).

Consider

fN(x) :=
N∑

j=1

νj[f(xj) + g(xj)
T(x− xj)],

where f(x) = E[F (x, ξ)], g(x) = E[G(x, ξ)] and νj := γj/(
∑N

j=1 γj).
Since g(x) ∈ ∂f(x), it follows that

fN
∗ := min

x∈X
fN(x) ≤ v0.

Also by convexity of f ,

v0 ≤ f(x̃N) ≤ f∗,N :=
N∑

j=1

νjf(xj).
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Computational counterparts:

fN := min
x∈X

N∑
j=1

νj[F (xj, ξj) + G(xj, ξj)
T(x− xj)],

f
N

:=
N∑

j=1

νjF (xj, ξj).



Theorem. Assume that there are positive a constants M2
∗ , Ω2

such that for all x ∈ X:

E
[
(F (x, ξ)− f(x))2

]
≤ Ω2M2

∗ ,

E
[
‖G(x, ξ)‖2∗

]
≤ M2

∗ .

Then

E
[
f∗,N − f

N
]

= 0,

E
{[

f∗,N − f
N
]2}

≤ Ω2M2
∗
∑N

t=1 ν2
t ,

E
[
fN

]
≤ v0,

E
[
|fN − fN

∗ |
]
≤ 12ΩM∗

√∑N
t=1 ν2

t ,

E
[
f∗,N − fN

∗
]
≤ 10ΩM∗

√∑N
t=1 ν2

t +
D2

ω,x+(2α)−1M2
∗
∑N

t=1 γ2
t∑N

t=1 γt
.
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Complexity of multistage stochastic programming
Multistage models Let ξt be a random process. Denote ξ[t] :=
(ξ1, .., ξt) the history of the process ξt up to time t. The values
of the decision vector xt, chosen at stage t, may depend on the
information ξ[t] available up to time t, but not on the future
observations. The decision process has the form

decision(x0) observation(ξ1) decision(x1) 
... observation(ξT ) decision(xT ).

There are several ways how this decision process can be made
precise. Nested formulation of a T -stage stochastic programming
problem:

Min
x1∈X1

F1(x1)+E
{

Min
x1∈X2(x2,ξ2)

F2(x2, ξ2)+· · ·+E
[

Min
xT∈XT (xT−1,ξT )

FT (xT , ξT )
]}

.

In linear case, Ft(xt, ξt) := cT
t xt and

Xt(xt−1, ξt) := {xt : Btxt−1 + Atxt = bt, xt ≥ 0} , t = 2, ..., T.
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The decisions xt = xt(ξ[t]), t = 2, ..., T, are supposed to be func-

tions of the history of the process up to time t. Such decision

process (called a policy) is feasible if

xt(ξ[t]) ∈ Xt(xt−1(ξ[t−1]), ξt) w.p.1.

If the number of realizations (scenarios) of the process ξt is finite,

then the above (linear) problem can be written as one large

(linear) programming problem. In that respect it is convenient

to represent the random process in a form of scenario tree.

Dynamic programming equations. Going recursively backwards

in time. At stage T consider

QT (xT−1, ξT ) := inf
xT∈XT (xT−1,ξT )

FT (xT , ξT ).
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At stages t = T − 1, ...,2, consider

Qt(xt−1, ξ[t]) := inf
xt∈Xt(xt−1,ξt)

Ft(xt, ξt) + E
[
Qt+1(xt, ξ[t+1])

∣∣∣ξ[t]]︸ ︷︷ ︸
Qt+1(xt,ξ[t])

.

At the first stage solve:

Min
x1∈X1

F1(x1) + E[Q2(x1, ξ1)].

A policy x̄t = x̄t(ξ[t]) is optimal iff

x̄t ∈ arg min
xt∈Xt(x̄t−1,ξt)

{
Ft(xt, ξt) + E

[
Qt+1(xt, ξ[t+1])

∣∣∣ξ[t]]} .

If the random process is between stages independent, i.e., ξt+1 is

independent of ξ[t], then Qt+1(xt) = E[Qt+1(xt, ξ[t+1])|ξ[t]] does

not depend on ξ[t].
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Conditional sampling. Let ξi
2, i = 1, ..., N1, be an iid random

sample of ξ2. Conditional on ξ2 = ξi
2, a random sample ξ

ij
3 ,

j = 1, ..., N2, is generated and etc. The obtained scenario tree

is considered as a sample approximation of the true problem.

Note that the total number of scenarios N =
∏T−1

t=1 Nt and each

scenario in the generated tree is considered with the same prob-

ability 1/N . Note also that in the case of between stages in-

dependence of the corresponding random process, we have two

possible strategies. We can generate a different (independent)

sample ξ
ij
3 , j = 1, ..., N2, for every generated node ξi

2, or we can

use the same sample ξ
j
3, j = 1, ..., N2, for every ξi

2. In the second

case we preserve the between stages condition for the generated

scenario tree.
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For T = 3, under certain regularity conditions, for ε > 0 and

α ∈ (0,1), and the sample sizes N1 and N2 satisfying

O(1)
[(

D1L1
ε

)n1
exp

{
− O(1)N1ε2

σ2
1

}
+
(

D2L2
ε

)n2
exp

{
−O(1)N2ε2

σ2
2

} ]
≤ α,

we have that any first-stage ε/2-optimal solution of the SAA

problem is an ε-optimal first-stage solution of the true problem

with probability at least 1− α.

In particular, suppose that N1 = N2 and take L := max{L1, L2},
D := max{D1, D2}, σ2 := max{σ2

1, σ2
2} and n := max{n1, n2}.

Then the required sample size N1 = N2:

N1 ≥
O(1)σ2

ε2

[
n log

(
O(1)DL

ε

)
+ log

(
1

α

)]
,

with total number of scenarios N = N2
1 (Shapiro, 2006).
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