Response Surface Methodology for Simulating Hedging and Trading Strategies

R. Evren Baysal

Barry L. Nelson

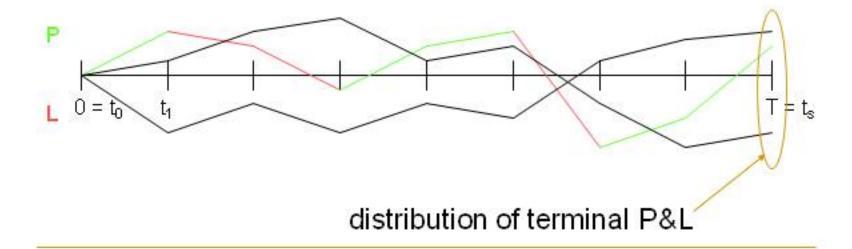
Jeremy Staum

Dept. of Industrial Engineering and Management Sciences
Northwestern University

Made by A-PDF PPT2PDF

Evaluating Portfolio Strategies

- Goal: approximate the distribution of P&L
 - especially at time horizon T
 - especially mean and <u>variance</u>
- Further goal: optimize over strategies.



Simulating Portfolio Strategies

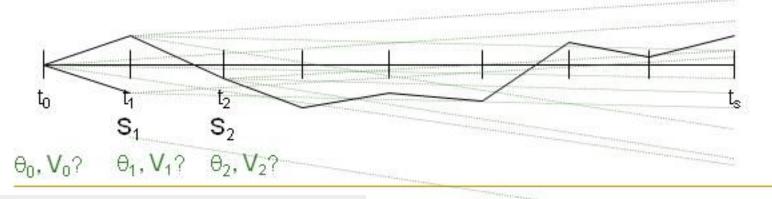
- stochastic model of financial market
 - simulate S₁, ..., S_s using probability measure P
 - □ What will happen? distribution of S_{i+1} given S_i
- rules of our behavior: What will we do?
 - θ_i = step-i decision given S_i (Markov)
- P&L depends on events and decisions:
 - □ P&L incurred at step i: $\theta_{i-1}(V_i V_{i-1})$
 - security value vector V_i = f(t_i,S_i)
 - □ total P&L by step i: $\Pi_i = \theta_i V_i \theta_0 V_0$ (self-financing)

Example: Hedging a Put Option

- stochastic model of stock price S
- securities: put option, stock, bank account
 - \Box bank account $V_{i1} = \exp(r t_i)$
 - stock V_{i2} = S_i
 - \square put option $V_{i0} = f_0(t_i, S_i)$
- portfolio weights (i = 0, 1, ..., s-1)
 - \Box put option θ_{i0} = 1 (no choice)
 - □ stock $\theta_{i2} = -\partial V_{i0}/\partial S_i$ (delta-hedge to reduce risk)
 - \Box bank account $\theta_{i1}V_{i1} = \theta_{i-1,1}V_{i-1,1} + (\theta_{i-1,2} \theta_{i2})V_{i2}$
 - (self-financing) old bank value of stock sold

Nested? Simulation of Hedging

- Black-Scholes model (formulae known):
 - □ option value $V_{i0} = f_0(t_i, S_i) = Black-Scholes formula$
 - □ hedge ratio $\theta_{i2} = g_2(t_i, S_i) = -\partial f_0(t_i, S_i)/\partial S_i = delta$
 - \square simulate S_i, update V_i, Π_i , and θ_i , repeat
- No formulae: for each path, estimate V₀₀, ...,
 V_{s-1.0}, and θ₀₀, ..., θ_{s-1.0} by Monte Carlo.



Review of Nested Simulation

- outer level: sample k risk factors / scenarios
 - □ scenario Z = path of length s
- inner level: estimate value of path
 - sample m replications to estimate each mean
 - for security values and hedge ratios at s steps
- simulation at ks points (t_i, S^j_i)
 - \Box total effort $ksm = 1,000 \times 60 \times 1,000 = 60$ million
- portfolio strategies: path value Π_s(Z) is a function of many means V₀₀, ..., V_{s-1,0} and θ₀₀, ..., θ_{s-1,0} estimated by simulation

Nested Simulation Approaches

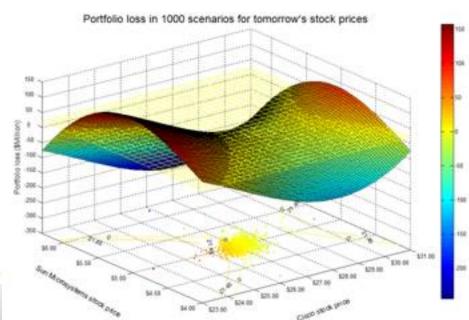
- quantile of conditional expectation (VaR)
 - learn distribution of scenario value E[X|Z]
 - Henderson-Steckley: learn density
- Glynn-Lee-Szechtman and Gordy-Juneja
 - analyze MSE, reduce bias
 - □ allocate k vs. m, variable inner-level sample size
- Lan-Nelson-Staum
 - confidence intervals using ranking-and-selection
 - choose k, variable inner-level sample sizes

How Hard is Nested Simulation?

- say value = E[X|Z], sample X given Z
 - risk management, service level agreements
 - Bayesian approach to input uncertainty
- What functional of the distribution of E[X|Z]?
 - mean: no nesting! E[E[X|Z]] = E[X], pick m=1
 - quantile: inner-level noise can cancel
 - common random numbers: inner- and outer-level add
 - variance: getting Var[E[X|Z]] + E[Var[X|Z]]/m
 - attempt bias correction?

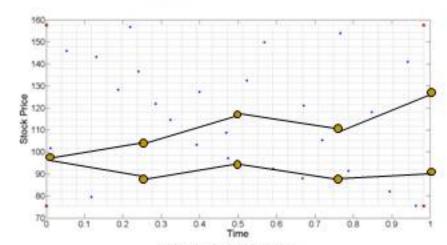
Response Surface Modeling

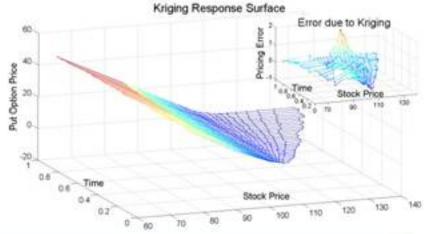
- Idea: exploit "spatial" structure among scenarios to aid in estimating their value
 - \Box V=f(t,S) and θ =g(t,S) are nice functions
 - simulation at (t',S') can yield information about V and θ at (t,S)
- Frye, Shaw: VaR
 - surface = loss vs.scenario
 - basic response surfaces



Response Surface Modeling Procedure

- sample k paths with s steps (ks points)
- choose n << ks design points
 - (n = 404, ks = 60,000)
- sample m payoffs at design points
- build surface by <u>kriging</u>
- estimate V, θ at all points using surface





Kriging

stationary Gaussian random field having spatial correlation

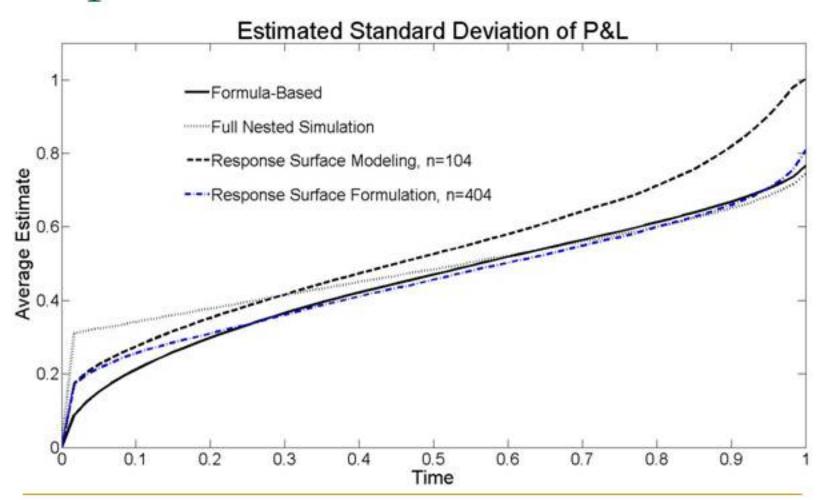
Response surface model:

$$Y(x) = \beta_0 + \beta h(x) + M(x)$$
In linear combination of basis functions ("trend")

- Simulate Y(x₁), ..., Y(x_n) at design points.
- Estimate coefficients of M and β.
- Predict Y(x₀) to be

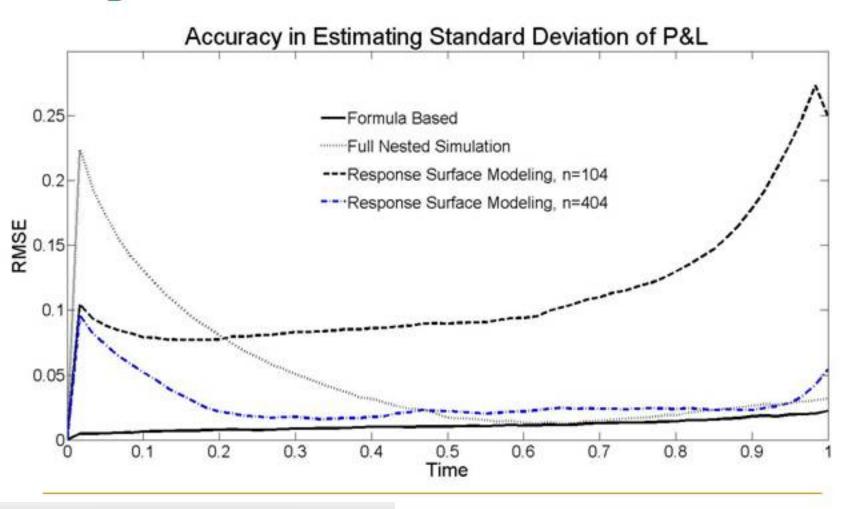
$$\frac{\beta_0 + \beta h(x_0) + \sum w_i(x_0)(Y(x_i) - \beta_0 + \beta h(x_i))}{\text{trend at } x_0 \text{ weight = influence of } x_i \text{ at } x_0 \text{ residual at } x_i}$$

Experimental Results



Made by A-PDF PPT2PDF

Experimental Results



Made by A-PDF PPT2PDF

Ongoing Research: Portfolio Strategies

- higher-dimensional examples
 - 3D: time, stock price, level of stochastic volatility
- regression ("trend") in kriging
 - use related option formulae; improves fit
- experimental design
- stochastic kriging
 - kriging is for deterministic responses
 - incorporate uncertainty about true value after stochastic inner-level simulation

Conclusions

- Response surface modeling speeds up nested simulations:
 - simulation within simulation
 - simulation within optimization
- Nested simulation:
 - can attain high accuracy with great speed
 - it helps to leverage problem structure