

State-Dependent Importance Sampling Schemes via Minimum Cross-Entropy

Thomas Taimre ttaimre@maths.uq.edu.au

Department of Mathematics The University of Queensland Australia

- Introduction
- Minimum Cross-Entropy
- Examples & Numerics
- Discussion

- d-dimensional state space \mathcal{X} .
- Reference density f on \mathcal{X} .
- Performance function $H(\cdot; \gamma) : \mathcal{X} \to \mathbb{R}$.
- Interested in computing

 $\ell = \mathbb{E}_f \left[H(\mathbf{X}; \gamma) \right]$.

- Denote our IS density as g.
- Quantity of interest can be expressed as

$$\ell = \mathbb{E}_g \left[H(\mathbf{X}; \gamma) \frac{f(\mathbf{X})}{g(\mathbf{X})} \right]$$

We will estimate ℓ using the likelihood ratio estimator: Given $\mathbf{X}_1, \dots, \mathbf{X}_N \stackrel{\text{i.i.d.}}{\sim} g$

$$\widehat{\ell}_{\mathrm{LR}} = \frac{1}{N} \sum_{k=1}^{N} H(\mathbf{X}_k; \gamma) \frac{f(\mathbf{X}_k)}{g(\mathbf{X}_k)}.$$

Recall the *minimum variance IS density*:

$$g^*(\mathbf{x}) = \frac{|H(\mathbf{x};\gamma)| f(\mathbf{x})}{\mathbb{E}_f[|H(\mathbf{X};\gamma)|]}.$$

- In this talk, g^* will be the *target* IS density.
- Usually, g^* is unattainable directly.
- Can think of g as our best proxy for g^* .
- Often, g is restricted to some manageable parametric family (cf. Cross–Entropy method).

Generic minimum cross-entropy (MCE) program:

$$\inf_{g} \mathbb{E}_{g} \left[\ln \left(\frac{g(\mathbf{X})}{f(\mathbf{X})} \right) \right]$$

subject to

$$\mathbb{E}_g \left[C_j(\mathbf{X}) \right] = c_j, \ j = 1, 2, \dots, m,$$
$$\mathbb{E}_g \left[C_j(\mathbf{X}) \right] \ge c_j, \ j = m+1, m+2, \dots, M,$$

and

$$\int g(\mathbf{x})\mu(d\mathbf{x}) = 1 \,.$$

Solution given by

$$g(\mathbf{x}) = f(\mathbf{x}) \mathbf{e}^{\lambda_0 + \sum_{i=1}^M \lambda_i C_i(\mathbf{x})},$$

where the $\{\lambda_i\}$ solve the dual program

$$\sup_{\lambda_0,\lambda_1,\dots,\lambda_M} \left[\lambda_0 + \sum_{i=1}^M \lambda_i c_i - e^{\lambda_0} \mathbb{E}_f \left[e^{\sum_{j=1}^M \lambda_j C_j(\mathbf{X})} \right] \right]$$

subject to the constraints $\lambda_j \ge 0$ for $j = m + 1, \dots, M$.

- For certain models f, it is natural to consider
 x = (x₁, x₂,...) as a sequence of states (eg. discrete-time Markov processes).
- In such cases, it is easy to think of g as a sequence of IS densities, each acting on the current state and possibly depending on the entire history.
- Via the chain rule, can write

 $g(\mathbf{x}) = g(\mathbf{x}_1)g(\mathbf{x}_2|\mathbf{x}_1)g(\mathbf{x}_3|\mathbf{x}_2,\mathbf{x}_1)\cdots g(\mathbf{x}_n|\mathbf{x}_{n-1},\ldots,\mathbf{x}_1).$

Now, we obtain this sequence of conditional IS densities via MCE.

- The idea is to sample each state X_k sequentially; and:
- To *re-solve* the MCE program *conditional* on the entire sampling history, $\mathbf{x}_1, \ldots, \mathbf{x}_k$.
- This in turn updates g, given the current sample path.

- Suppose that we have sampled x₁, x₂, ..., x_{k-1}, so that the current state to be realised is X_k.
- We solve the MCE program for
 g(x_k,...,x_n | x_{k-1},...,x₁). Note that the constraints in
 the MCE program now incorporate x_{k-1},...,x₁.
- Via the chain rule,

$$g(\mathbf{x}_k, \dots, \mathbf{x}_n \,|\, \mathbf{x}_{k-1}, \dots, \mathbf{x}_1) = g(\mathbf{x}_k \,|\, \mathbf{x}_{k-1}, \dots, \mathbf{x}_1)$$
$$\times g(\mathbf{x}_{k+1}, \dots, \mathbf{x}_n \,|\, \mathbf{x}_k, \dots, \mathbf{x}_1).$$

• We sample from $g(\mathbf{x}_k | \mathbf{x}_{k-1}, \dots, \mathbf{x}_1)$, and then update the MCE program and repeat the process.

- Let $\{X_k\}$, k = 1, 2, ... be a collection of i.i.d. random variables with common pdf f.
- Define $S_n = \sum_{k=1}^n X_k$ for n = 1, 2, ..., with $S_0 = 0$.
- Problem is to estimate tail probabilities of the form

$$\ell = \mathbb{P}_f(S_n > \alpha n) \,,$$

for *fixed* α and different n.

- In this case $H(\mathbf{X}; n) = I_{\{\sum_{k=1}^{n} X_k > \alpha n\}}$.
- Hence g^* is the density f conditional on $\{S_n > \alpha n\}$.

We will impose a single *inequality* constraint in the MCE program, namely

$$\mathbb{E}_g\left[C(\mathbf{X})\right] \geqslant \alpha n\,,$$

where

$$C(\mathbf{X}) = \sum_{k=1}^{n} X_k \, .$$

Hence, the MCE program finds g as close as possible to fin the Kullback-Leibler CE sense, while ensuring that $\mathbb{E}_{g}[S_{n}] \ge \alpha n.$

Corresponding dual program given by

$$\sup_{\lambda_0,\lambda_1} \left[\lambda_0 + \lambda_1 (\alpha n - s_{k-1}) - e^{\lambda_0} \mathbb{E}_f \left[e^{\lambda_1 (X_k + \dots + X_n)} \right] \right]$$

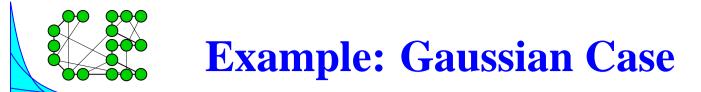
subject to the constraint that $\lambda_1 \ge 0$.

Solution to the MCE program given by

$$g(x_k,\ldots,x_n \mid x_{k-1},\ldots,x_1) = f(x_k,\ldots,x_n) e^{\lambda_0 + \lambda_1 \sum_{j=k}^n x_j}$$

• We will sample from the (ET) conditional

$$g(x_k \mid x_{k-1}, \dots, x_1) = f(x_k) e^{\widetilde{\lambda}_0 + \lambda_1 x_k}$$



If the X_k are i.i.d. $N(\mu, \sigma^2)$ distributed, the MGF of X_k is given by

$$\mathbb{E}_f\left[\mathrm{e}^{\lambda_1 X_k}\right] = \mathrm{e}^{\frac{1}{2}\lambda_1(\lambda_1 \sigma^2 + 2\mu)}$$

Hence the appropriate dual is given by

$$\sup_{\lambda_0,\lambda_1} \left[\lambda_0 + \lambda_1 (\alpha n - s_{k-1}) - e^{\lambda_0} \left(e^{\frac{1}{2}\lambda_1 (\lambda_1 \sigma^2 + 2\mu)} \right)^{n-k+1} \right] ,$$

subject to $\lambda_1 \ge 0$.

Gaussian Case Continued

The solution yields that the conditional distribution corresponding to the next increment, X_k , is Gaussian with mean

$$\begin{cases} \frac{\alpha n - s_{k-1}}{n - k + 1} & \frac{\alpha n - s_{k-1}}{n - k + 1} \geqslant \mu\\ \mu & \text{otherwise} \end{cases}$$

and variance σ^2 .

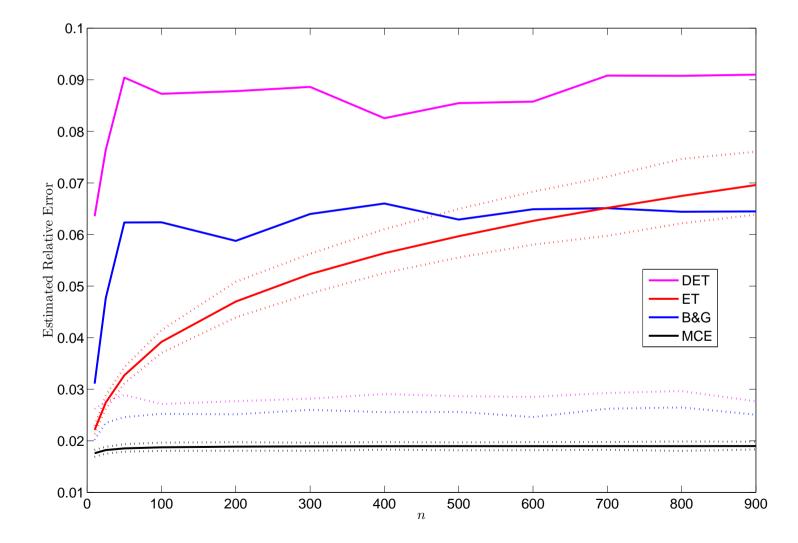
Interpretation: change of measure places next increment's mean on line connecting current state to target level *αn*, *unless* expected trajectory from the current point is already ≥ *αn*, in which case no change of measure is performed.

Gaussian Case: Numerics

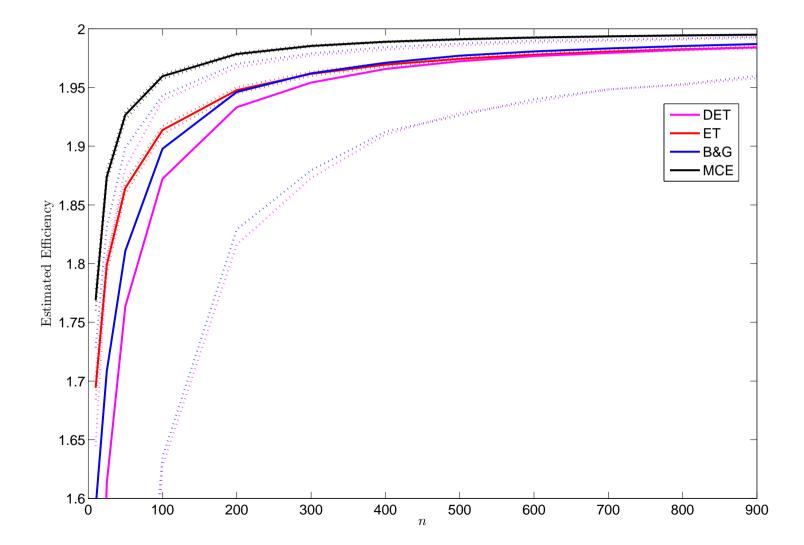
- Suppose X_k under f are standard Normal increments $(\mu = 0, \sigma = 1).$
- Level to be reached: $\alpha = \frac{2}{3}$; so $\ell = \mathbb{P}_f(S_n > \frac{2}{3}n)$.
- Compare sequential MCE with *inequality* constraint to:
 - MCE with *equality* (i.i.d. ET). (Sets $\mathbb{E}_{g}[X_{k}] = \alpha$.)
 - sequential MCE with *equality* constraint (dynamic ET).
 - Algorithm of Blanchet & Glynn (2006) (on next slide).
- Use $N = 5 \cdot 10^3$ samples per LR estimate, $\hat{\ell}_{LR}$.
- Obtain 1,000 independent estimates. Give min, mean, and max statistics for RE and logarithmic efficiency.

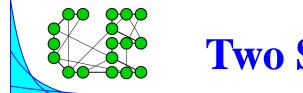
Gaussian Case: Algorithm of B&G

- Blanchet & Glynn (2006) algorithm (for $X_k \sim N(0, 1)$).
 - Set k = 1 and $s_{k-1} = 0$.
 - If k < n, sample X_k from N $\left(\frac{\alpha n s_{k-1}}{n-k}, 1 + \frac{1}{n-k}\right)$. Set $s_k = s_{k-1} + x_k$, k = k + 1, and repeat.
 - Otherwise if k = n, sample directly from the distribution of X_n given $\{X_n + s_{n-1} > \alpha n\}$.
- This was shown to give bounded relative error as $n \to \infty$.
- In contrast, we have not yet shown optimality, despite the following suggestive numerics.



Efficient Monte Carlo: 14–18 July, 2008 - p.18/29





- Let $\{X_k\}, k = 1, 2, ...$ be a collection of i.i.d. random variables with common pdf f.
- Define $S_n = \sum_{k=1}^n X_k$ for n = 1, 2, ..., with $S_0 = 0$.
- Problem is to estimate two-sided probabilities of the form

$$\ell = \mathbb{P}_f(\{S_n \ge \alpha n\} \cup \{S_n \leqslant -(1+\varepsilon)\alpha n\}),\$$

for *fixed* (α, ε) , and varying n.

- Augment the problem with independent $Y \sim \text{Ber}(p)$ (under f).
- Again, we will impose a single inequality constraint in the MCE program:

$$\mathbb{E}_g\left[C(\mathbf{X})\right] \geqslant 0\,,$$

where

$$C(\mathbf{X}) = Y \left(S_n - \alpha n \right) - \left(1 - Y \right) \left(S_n + \left(1 + \varepsilon \right) \alpha n \right) \,.$$

- As before, conditionals $g(x_k | x_{k-1}, \ldots, x_1, y)$ are ET.
- However, here twisting is toward the level determined by outcome of Y.

If p = 1/2, $X_k \sim N(0, 1)$, then under $g, Y \sim Ber(\widetilde{p})$, where

$$\widetilde{p} = (1 + \mathrm{e}^{\varepsilon z^*})^{-1}$$

and z^* solves

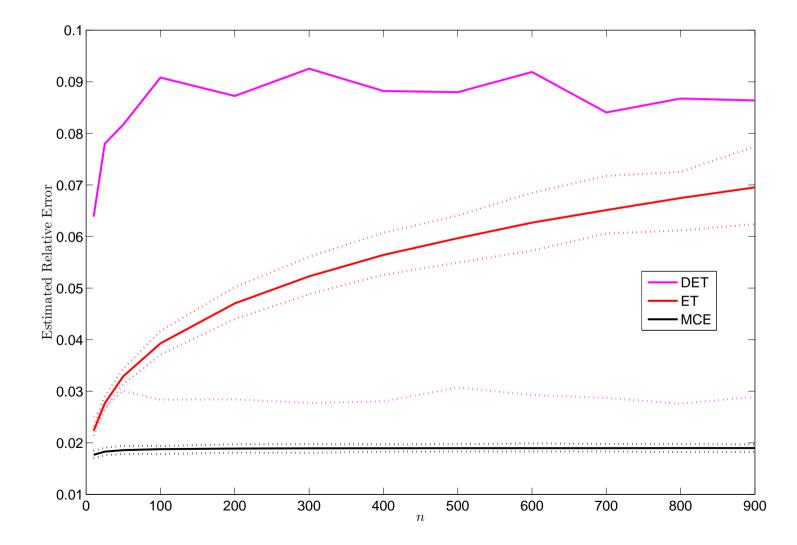
$$(z + (1 + \varepsilon)\alpha^2 n)\mathbf{e}^{\varepsilon z} + (z + \alpha^2 n) = 0.$$

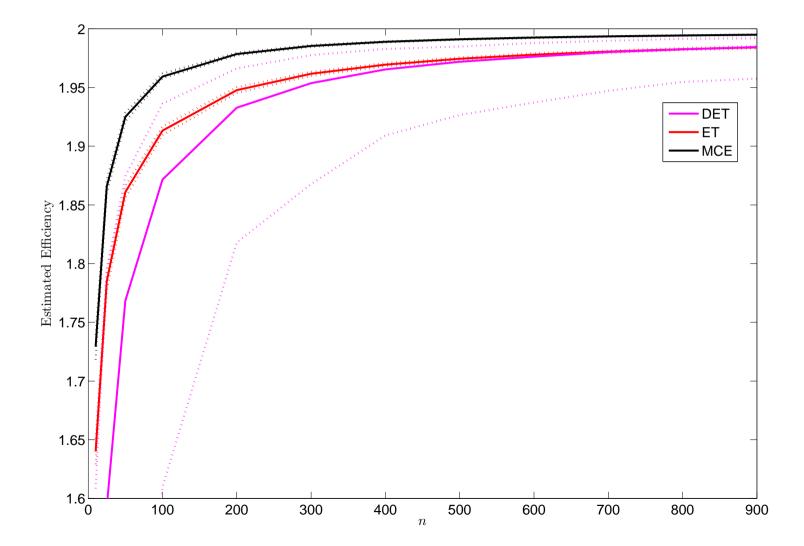
The solution subsequently has: $X_k \sim N(\tilde{\mu}_k, \sigma^2)$, with

$$\widetilde{\mu}_{k} = \begin{cases} \frac{\alpha n - s_{k-1}}{n - k + 1} & y = 1, \ \frac{\alpha n - s_{k-1}}{(n - k + 1)} \geqslant \mu \\ -\frac{(1 + \varepsilon)\alpha n + s_{k-1}}{n - k + 1} & y = 0, \ -\frac{(1 + \varepsilon)\alpha n + s_{k-1}}{n - k + 1} \leqslant \mu \\ \mu & \text{otherwise} \,. \end{cases}$$

Gaussian Numerics II

- Again, take X_k as standard Normal ($\mu = 0, \sigma = 1$).
- Levels: $\alpha = \frac{2}{3}$, and $\varepsilon = 0.05$.
- Compare sequential MCE with *inequality* constraint to:
 - MCE with *equality* (mixture of i.i.d. ET).
 - sequential MCE with *equality* constraint (mixture of dynamic ET).
- Use $N = 5 \cdot 10^3$ samples per LR estimate, $\hat{\ell}_{LR}$.
- Obtain 1,000 independent estimates. Give min, mean, and max statistics for RE and logarithmic efficiency.





This MCE scheme only applies in cases where

 $\mathbb{E}_f\left[\mathrm{e}^{\lambda_k C_k(\mathbf{X})}\right]$

is defined for all constraints C_k for some corresponding λ_k .

- In particular, with $C(\mathbf{X}) = \sum_{k=1}^{n} X_k$ as in the examples, the program is only applicable when f is light-tailed, since the above involves the MGFs of the increments under f.
 - To overcome this, one could modify the constraints (eg. hazard rate twisting); or
 - Change the divergence measure from KL to some other.

- Solving the sequence of MCE programs gives a structured way to obtain state- and time-dependent IS schemes.
- Further, the use of inequality constraints ensures that each constraint is only imposed when necessary.

- Ad Ridder, Zdravko Botev, Dirk Kroese.
- ARC Centre of Excellence for Mathematics and Statistics of Complex Systems, and the Commonwealth Government of Australia, for funding.

- Blanchet, J. and Glynn, P. (2006) Strongly Efficient Estimators for Light-tailed Sums *Proc. Valuetools06*.
- de Boer, P. T. (2000) Analysis and Efficient Simulation of Queueing Models of Telecommunication Systems. PhD Thesis, Universiteit Twente, October 2000.
- Dupuis, P. and Wang, H. (2005) Dynamic Importance Sampling for Uniformly Recurrent Markov Chains. *Ann. Appl. Probab.* 15, 1–38.
- Rubinstein, R. Y. (2005) A Stochastic Minimum Cross-Entropy Method for Combinatorial Optimization and Rare-event Estimation. *Meth. Comp. Appl. Prob.* 7, 5–50.