
Inference for the jump part of quadratic
variation of Itô semimartingales
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Introduction

General framework

Model: Continuous–time stochastic processes (Itô
semimartingales) which allow for stochastic
volatility, jumps and leverage effect;

Aims: Learning about volatility and testing for jumps;
Methodology: Non–parametric;

Impacts: Risk management, portfolio selection, option
pricing.

Aim of the study

Aim: Inference on jump part of quadratic variation.
Implications: Jump tests.
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Model assumptions

The log-price X = (Xt )t≥0 is an Itô semimartingale on a
probability space (Ω,A, (Ft )t≥0,P) of the form

Xt = X0 +

∫ t

0
bsds +

∫ t

0
σsdWs + Jt ,

where
I W is a Brownian motion,
I J is a jump process satisfying some weak regularity

assumptions,
I b is predictable, and
I σ is càdlàg and satisfies some weak regularity

assumptions.



Discrete returns and realised variance

Discrete returns
Assume that we observe the process X over an interval [0, t ] at
times i∆n for ∆n > 0 and i = 1, . . . , [t/∆n]. So for its discretely
observed increments we write

∆n
i X = Xi∆n − X(i−1)∆n .

Realised variance
The realised variance (RV) is defined by

RV n
t =

[t/∆n]∑
i=1

(
∆n

i X
)2
.



Realised variance and quadratic variation
I RV estimates quadratic variation consistently, i.e.

RV n
t =

[t/∆n]∑
i=1

(
∆n

i X
)2 ucp−→ [X ]t , as n →∞,

where the convergence is uniformly on compacts in
probability (ucp).

I Since Xt = X0 +
∫ t

0 bsds +
∫ t

0 σsdWs + Jt , we have

[X ]t =

∫ t

0
σ2

s ds +
∑

0≤s≤t

(∆Js)2 .

I Aim: Estimation and inference on the jump part of QV:∑
0≤s≤t

(∆Js)2 .



Realised bipower variation

Barndorff-Nielsen & Shephard (2006) showed that realised
bipower variation is a consistent estimator of the continuous
part of the quadratic variation, i.e.

µ−2
1

[t/∆n]∑
i=1

|∆n
i X ||∆n

i+1X | ucp−→
∫ t

0
σ2

s ds, as n→∞,

where µr = E(|U|r ) for r > 0, U ∼ N(0,1). Jacod (2006) proved
the robustness towards jumps.



Realised multipower variation

Barndorff-Nielsen & Shephard (2006), Barndorff-Nielsen et al.
(2006), Woerner (2006), Jacod (2006) studied realised
multipower variation: Let I ≥ 2 denote an integer and

RMPV (2; I)n
t =

[t/∆n]

[t/∆n]− I
µ−I

2/I

[t/∆n]−I∑
i=1

I∏
j=1

|∆n
i+j−1X |2/I .

Then

RMPV (2; I)n
t

ucp−→
∫ t

0
σ2

s ds, as n→∞.



A consistent estimator for the jump part of quadratic
variation

Clearly, for an integer I ≥ 2, we get, as n→∞:
I Linear test statistic

RV n
t − RMPV (2; I)n

t
ucp−→ [Y ]dt =

∑
0≤s≤t

(∆Js)2 .

I Ratio test statistic

RMPV (2; I)n
t

RV n
t

− 1
ucp−→ −

[Y ]ct
[Y ]t

(Barndorff-Nielsen & Shephard (2006)).



Towards a central limit theorem: The concept of stable
convergence

I Let (Ω,A,P) denote a probability space endowed with a
sequence Xn of random variables taking their values in a
Polish space (U,U).

I If there is a probability measure µ defined on the extended
space (Ω× U,A⊗ U) such that for every bounded
A-measurable random variable Z and for every bounded
and continuous function g on U we have

E (Zg(Xn))→
∫

Z (ω)g(x)µ(dω,dx), as n→∞,

then we say that Xn converges stably in law. (See e.g.
Jacod & Shiryaev (2003)).



A central limit theorem for realised variance

Barndorff-Nielsen and Shephard (2002) proved a central limit
theorem in the absence of jumps. Jacod (2007) generalised
this result by proving that, as n→∞,

1√
∆n

(
RV n

t − [X ]∆n[t/∆n]

)
−→ Zt + Yt , (1)

where the convergence is stably in law as a process and

Yt =
√

2
∫ t

0
σ2

udW u, (2)

Zt = 2
∑

p: Tp≤t

∆XTp

(
σTp−

√
ξp Up + σTp

√
1− ξp U ′p

)
, (3)

for a Brownian motion W , U,U ′ ∼ N(0,1) and ξ ∼ U[0,1] (all
independent) and (Tp) is a sequence of stopping times
increasing to +∞.



A central limit theorem for realised multipower variation

Barndorff-Nielsen & Shephard (2006) proved a CLT in the
absence of jumps. Woerner (2006) and Jacod (2006) derived a
CLT in the presence of jumps:
We need a stronger assumption on the jumps of X : Let β
denote the generalised Blumenthal-Getoor of X . Assume that
β < 1 and β

2−β <
2
I < 1. Then, as n→∞,

1√
∆n

(
RMPV (2; I)n

t − [X ]ct
)
−→ Ỹt , (4)

where the convergence is stably in law as a process and

Ỹt = ωIµ
−I
I/2

∫ t

0
σ2

udW̃u, (5)

for an independent Brownian motion W̃ and a known constant
ωI .



Main result: A bivariate central limit theorem

Let β be the BG index of X . Assume that β < 1, σt > 0 ∀t , and
let β

2−β <
2
I < 1. Then

1√
∆n

(
RV n

t − [X ]∆n[t/∆n]

RMPV (2; I)n
t −

∫ t
0 σ

2
udu

)
stably in law−→( √

2
∫ t

0 σ
2
udW u + 2

∑
p: Tp≤t ∆XTp

(√
ξpUpσTp− +

√
1− ξp U ′pσTp

)
√

2
∫ t

0 |σu||r|dW u +
√
θr
∫ t

0 |σu||r|dW̃u

)
,

where the convergence is stable in law as a process and
θr = (µ−1

r
√

A(r))2 − 2.
If σ and X do not jump together, the first component is the sum
of two independent martingales which have (conditional on A)
Gaussian law. Note that in that case σTp− = σTp since Tp are
the jump times of X .



Corollary

Let β be the BG index of X . Assume that β < 1, σt > 0 ∀t , and
let β

2−β <
2
I < 1, and assume that X and σ have no common

jumps. For I ∈ N with 2 < I < 2
β (2− β) we obtain:

1√
∆n

(RV n
t − RMPV (2; I)n

t − [X ]d∆n[t/∆n])
stably in law−→ Lt , (6)

where Lt has (conditionally on A), Gaussian law with zero
mean and variance given by

θI

∫ t

0
σ4

udu + 4
∑

p: TP≤t

σ2
Tp

(
∆XTp

)2
.

Note: This central limit theorem is infeasible.



A consistent estimator for the continuous part of the
asymptotic variance

Recall that

RMPV (4; Ĩ) =
[t/∆n]

[t/∆n]− Ĩ
µ−̃I

4/̃I

[t/∆n]−̃I∑
i=1

Ĩ∏
j=1

|∆n
i+j−1X |4/̃I

is a consistent estimator of
∫ t

0 σ
4
s ds in the presence of jumps of

X when Ĩ ≥ 3. Hence,

θIRMPV (4; Ĩ)
ucp−→ θI

∫ t

0
σ4

s ds, as n→∞.



A consistent estimator for the jump part of the
asymptotic variance

In the following we always assume that X and σ have no
common jumps.
We want to estimate:

4
∑

p:Tp≤t

σ2
Tp

(
∆XTp

)2
.

We replace σ2 by σ̂2 and show that

4
[t/∆n]∑

i=1

σ̂2
(i−1)∆n

(
∆n

i X
)2 P−→ 4

∑
p:Tp≤t

σ2
Tp

(
∆XTp

)2
, as n→∞.



A consistent estimator for the spot variance
I E. g. one can use the local volatility estimator based on

locally averaged realised bipower variation or locally
averaged truncated realised variance.

I Let Kn > 0 such that Kn →∞ and Kn∆n → 0 as n→∞.
I Locally averaged realised bipower variation:

σ̂2
(i−1)∆n

=
1

Kn − 2

i−1∑
j=i−Kn+2

∣∣∣∆n
j X
∣∣∣ ∣∣∣∆n

j−1X
∣∣∣ ,

as studied by Lee & Mykland (2006).
I Locally averaged truncated realised variance:

1
Kn

i−1∑
j=i−Kn

(
∆n

j X
)2

1I{|∆n
i X |≤α∆ω

n },

where α > 0 and ω ∈ (0,1/2) as studied by Ait-Sahalia &
Jacod (2006)



Results: Consistent estimators for the asymptotic
variance

Lemma

[t/n]∑
i=1

σ̂2
(i−1)∆n

(
∆n

i X
)2 P−→

∫ t

0
σ2

s d [X ]s, as n→∞, (7)

where ∫ t

0
σ2

s d [X ]s =

∫ t

0
σ4

s ds +
∑

0≤s≤t

σ2
s (∆Xs)2 .

Hence we get

[t/n]∑
i=1

σ̂2
(i−1)∆n

(
∆n

i X
)2 − RMPV (4; Ĩ) P−→

∑
0≤s≤t

σ2
s (∆Xs)2



Finite sample correction

Since the estimator above can be negative in finite samples we
choose Σ̂n

t = Σ̂n
t (I, Ĩ) for integers I, Ĩ ≥ 3 and

Σ̂n
t = max

4
[t/∆n]∑

i=1

σ̂2
(i−1)∆n

(
∆n

i X
)2

−(4− θI)RMPV (4; Ĩ), θIRMPV (4; Ĩ)
}

(8)

as estimator for the asymptotic variance.
Hence,

Σ̂n
t

P−→ θI

∫ t

0
σ4

s ds + 4
∑

0≤s≤t

σ2
s (∆Xs)2, as n→∞.



A feasible central limit theorem

Let β be the Blumenthal–Getoor index of X . Assume that
β < 1, σt > 0 ∀t , and let β

2−β <
2
I < 1, and assume that X and

σ have no common jumps. For I ∈ N with 2 < I < 2
s (2− s) we

obtain:

(RV n
t − RMPV (2; I)n

t − [X ]d∆n[t/∆n])√
∆nΣ̂n

t

stably in law−→ N(0,1),

as n→∞.



A quick look at some of the simulation results I

Stochastic volatility jump diffusion

dXt = µdt + exp(β0 + β1vt )dW X
t + dLJ

t ,

dvt = αv vtdt + dW v
t ,

where W X , W v are standard Brownian motions with
Corr(dW X ,dW v ) = ρ, vt is the stochastic volatility factor, LJ

t
compound Poisson process with constant jump intensity λ and
jump size distribution N(0, σ2

jmp). Choice of parameters:
µ = 0.03, β0 = 0, β1 = 0.125, ρ = −0.62, αv = −0.1,
λ = 0.118, σjmp = 1.5 (see Huang & Tauchen (2005)).



A quick look at some of the simulation results II
Linear test

[1/∆n] I Mean S.D. Cove.
(Kn)

39 3 -0.09 0.96 0.966
(7) 4 -0.05 0.98 0.966

10 0 1.11 0.927
78 3 -0.08 0.93 0.969
(9) 4 -0.05 0.95 0.966

10 0 1.02 0.945
390 3 -0.05 0.96 0.962
(20) 4 -0.02 0.96 0.963

10 0.01 0.98 0.958
1560 3 -0.05 0.96 0.957
(40) 4 -0.02 0.96 0.958

10 -0.01 0.98 0.952
23400 3 -0.02 0.99 0.953
(153) 4 0 0.99 0.953

10 0 0.98 0.954

Table: Simulation results for the stochastic volatility jump diffusion
model. We simulate data for 5000 days and compute the mean,
standard deviation and coverage of the feasible linear test statistic.



Summary and future work

Aim of the study:

Inference on the jump part of quadratic variation.

Methodology:

I Difference of realised variance and realised multipower
variation from tripower onwards

Future work:

I Multivariate extension (Work in progress with O.
Barndorff-Nielsen and N. Shephard)
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