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Stochastics in Turbulence and Finance

The set-up

We are interested in the semimartingale property of processes (Xt )t≥0 on the form

Xt =

∫ t

−∞

Kt (s) dWs, t ≥ 0, (1)

where (Wt)t∈R is a (two-sided) Brownian motion and K = Kt (s) is a deterministic
kernel such that the integral exists.

Andreas Basse Gaussian Semimartingales and Moving Averages



Stochastics in Turbulence and Finance

The set-up

We are interested in the semimartingale property of processes (Xt )t≥0 on the form

Xt =

∫ t

−∞

Kt (s) dWs, t ≥ 0, (1)

where (Wt)t∈R is a (two-sided) Brownian motion and K = Kt (s) is a deterministic
kernel such that the integral exists.

Two observations:

If Kt (s) does not depend on t, then (Xt )t≥0 is a martingale.

If Kt (s) = 1[0,1](t − s), then Xt = Wt − Wt−1, which is not a semimartingale.
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Moving average processes

In the case where Kt (s) = ϕ(t − s) − ψ(−s), that is

Xt =

∫ t

−∞

ϕ(t − s) − ψ(−s) dWs, t ∈ R, (2)

(Xt )t∈R is called a moving average process.
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Moving average processes

In the case where Kt (s) = ϕ(t − s) − ψ(−s), that is

Xt =

∫ t

−∞

ϕ(t − s) − ψ(−s) dWs, t ∈ R, (2)

(Xt )t∈R is called a moving average process.

Some examples:

The OU process, in this case ψ = 0 and ϕ(t) = e−βt 1[0,∞)(t) (this is a
semimartingale).

The fBm with Hurst parameter H ∈ (0, 1), in this case ψ(t) = ϕ(t) = (t ∨ 0)H−1/2

(this is not a semimartingale for H 6= 1/2).

The model for the turbulent velocity field by Barndorff-Nielsen and Schmiegel in
the special case of constant intermittency (σt )t∈R reduces to a moving average
process.
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Definitions and notation

We will use the following notation: For each process (Yt )t∈R, we let (FY
t )t≥0 denote

the filtration given by FY
t = σ(Yr : r ∈ [0, t]) and let (FY ,∞

t )t≥0 denote the filtration

given by FY ,∞
t = σ(Yr : r ∈ (−∞, t]).

Let (Ft )t≥0 denote a filtration. Then (Yt )t≥0 is said to be an (Ft )t≥0-semimartingale if
it can be written as

Yt = Y0 + Mt + At , t ≥ 0,

where (Mt )t≥0 is a càdlàg (Ft )t≥0 local martingale, (At )t≥0 is an (Ft )t≥0-adapted
càdlàg process of bounded variation and X0 is F0-measurable.

As seen from the definition, the semimartingale property is very filtration dependent.
We have the following relation: Let (Gt )t≥0 and (Ft )t≥0 denote two filtrations satisfying
Gt ⊆ Ft for all t ≥ 0. Moreover, let (Yt )t≥0 denote an (Ft )t≥0-semimartingale which is
(Gt )t≥0-adapted then (Yt )t≥0 is also a (Gt )t≥0-semimartingale.
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Overview over results

Let (Xt )t≥0 be given by (1). In this talk we consider the semimartingale property of
(Xt )t≥0 in the following three filtrations:

(FX
t )t≥0, (FX ,∞

t )t≥0 and (FW ,∞
t )t≥0.
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Overview over results

Let (Xt )t≥0 be given by (1). In this talk we consider the semimartingale property of
(Xt )t≥0 in the following three filtrations:

(FX
t )t≥0, (FX ,∞

t )t≥0 and (FW ,∞
t )t≥0.

In Basse(a) we let (Xt )t≥0 given by (1). In the filtrations (FX
t )t≥0 and (FW ,∞

t )t≥0
we derive necessary and sufficient conditions on the kernel K for (Xt )t≥0 to be a
semimartingale.

In Basse(b) we let (Xt )t∈R be a moving average process given by (2). We obtain
necessary and sufficient conditions on ϕ and ψ for (Xt )t≥0 to be an

(FX ,∞
t )t≥0-semimartingale. We also characterize the spectral measure of a

general Gaussian process (Xt )t∈R with stationary increments which is an
(FX ,∞

t )t≥0-semimartingale.

In Basse(c) we study general Gaussian semimartingale. We derive a
representation result for them and use it to obtain necessary and sufficient
conditions on the covariance function for a Gaussian process to be an
(FX

t )t≥0-semimartingale.
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A generalisation of F. Knight’s result

The following result is due to F. Knight:
Let (Xt )t≥0 be a moving average process given by (2). Then (Xt )t≥0 is an

(FW ,∞
t )t≥0-semimartingale if and only if

ϕ(t) = α+

∫ t

0
h(r) dr , t ≥ 0,

where α ∈ R and h ∈ L2(λ).
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A generalisation of F. Knight’s result

The following result is due to F. Knight:
Let (Xt )t≥0 be a moving average process given by (2). Then (Xt )t≥0 is an

(FW ,∞
t )t≥0-semimartingale if and only if

ϕ(t) = α+

∫ t

0
h(r) dr , t ≥ 0,

where α ∈ R and h ∈ L2(λ). Let us rewrite this result:
Let (Xt )t≥0 be given by (1) and assume Kt (s) = ϕ(t − s) − ϕ(−s). Then (Xt )t≥0 is an

(FW ,∞
t )t≥0-semimartingale if and only if

Kt (s) = α1[0,∞)(s) +

∫ t

0
h(r + s) dr , s ≤ t,

where α ∈ R and h ∈ L2(λ) is 0 on (−∞, 0).
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A generalisation of F. Knight’s result

Let (Xt )t≥0 be given by (1) and assume Kt (s) = ϕ(t − s) − ϕ(−s). Then (Xt )t≥0 is an

(FW ,∞
t )t≥0-semimartingale if and only if

Kt (s) = α1[0,∞)(s) +

∫ t

0
h(r + s) dr , s ≤ t,

where α ∈ R and h ∈ L2(λ) is 0 on (−∞, 0).
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A generalisation of F. Knight’s result

Let (Xt )t≥0 be given by (1) and assume Kt (s) = ϕ(t − s) − ϕ(−s). Then (Xt )t≥0 is an

(FW ,∞
t )t≥0-semimartingale if and only if

Kt (s) = α1[0,∞)(s) +

∫ t

0
h(r + s) dr , s ≤ t,

where α ∈ R and h ∈ L2(λ) is 0 on (−∞, 0).

Theorem: Let (Xt )t≥0 be given by (1). Then (Xt )t≥0 is an (FW ,∞
t )t≥0-semimartingale

if and only if

Kt (s) = g(s) +

∫ t

0
Ψr (s)µ(dr), s ≤ t,

where g : R→ R is square integrable on (−∞, t] for all t ≥ 0, µ is a Radon measure
on R+ and (t, s) 7→ Ψr (s) is a measurable mapping such that ‖Ψr‖L2(µ) = 1 for all
r ≥ 0 and Ψt(s) = 0 if t ≥ s.
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Semimartingales w.r.t. (FX ,∞
t )t≥0

Let S1 := {z ∈ C : |z| = 1} and for each measurable function f : R→ S1 satisfying
f = f (−·), let f̃ : R→ R be given by

f̃ (t) =

∫ ∞

−∞

eits − 1[−1,1](s)

is
f (s) ds, t ∈ R.

Theorem: Let (Xt )t∈R denote a moving average process given by (2) with ϕ = ψ.

Then (Xt )t≥0 is an (FX ,∞
t )t≥0-semimartingale if and only if ϕ is on the form

ϕ(t) = β + αf̃ (t) +

∫ t

0
f̂ ĥ(s) ds, t ∈ R,

where α, β ∈ R, h ∈ L2(λ) and f : R→ S1 is measurable and satisfies f = f (−·). If
α 6= 0, h is 0 on (0,∞).
Moreover, (Xt )t≥0 is of bounded variation if and only if α = 0 and (Xt )t≥0 is an

(FX ,∞
t )t≥0-martingale if and only if h = 0.
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Some applications

Let (Xt )t∈R be a moving average process given by

Xt =

∫
ϕ(t − s) − ϕ(−s) dWs, t ∈ R.

Then (Xt )t∈R is a (two-sided) Brownian motion if and only if

ϕ(t) = β + αf̃ (t)

for some f : R→ S1 satisfying f = f (−·).
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Some applications

Let (Xt )t∈R be a moving average process given by

Xt =

∫
ϕ(t − s) − ϕ(−s) dWs, t ∈ R.

Then (Xt )t∈R is a (two-sided) Brownian motion if and only if

ϕ(t) = β + αf̃ (t)

for some f : R→ S1 satisfying f = f (−·).

Setting f (t) = (t + i)(t − i)−1 we obtain f̃ equals ϕ : t 7→ (e−t − 1/2)1R+ (t). Thus

Xt =

∫ t

−∞

ϕ(t − s) − ϕ(−s) dWs, t ≥ 0,

is a Brownian motion.
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Some applications

Let (Xt )t∈R be a moving average process given by

Xt =

∫
ϕ(t − s) − ϕ(−s) dWs, t ∈ R.

Then (Xt )t∈R is a (two-sided) Brownian motion if and only if

ϕ(t) = β + αf̃ (t)

for some f : R→ S1 satisfying f = f (−·).

Setting f (t) = (t + i)(t − i)−1 we obtain f̃ equals ϕ : t 7→ (e−t − 1/2)1R+ (t). Thus

Xt =

∫ t

−∞

ϕ(t − s) − ϕ(−s) dWs, t ≥ 0,

is a Brownian motion. Another way of putting this is:
Let (Xt )t≥0 be the stationary OU-process given by

Xt = X0 −

∫ t

0
Xs ds + Wt , t ≥ 0,

with X0
D
= N(0, 1/2) independent of the Brownian motion (Wt)t≥0. Then (Yt )t≥0, given

by

Yt = Wt − 2
∫ t

0
Xs ds, t ≥ 0,

is a Brownian motion.
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(FX
t )t≥0-semimartingales vs. (FX ,∞

t )t≥0-semimartingales

For each Gaussian process (At )t≥0 which is right-continuous and bounded variation
we let µA denote the Lebesgue-Stieltjes measure satisfying µA((0, t]) = E[V[0,t](A)] for
all t ≥ 0.
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(FX
t )t≥0-semimartingales vs. (FX ,∞

t )t≥0-semimartingales

For each Gaussian process (At )t≥0 which is right-continuous and bounded variation
we let µA denote the Lebesgue-Stieltjes measure satisfying µA((0, t]) = E[V[0,t](A)] for
all t ≥ 0.
Theorem: Let (Xt )t∈R be a Gaussian process which either is stationary or has
stationary increments and X0 = 0. Assume (Xt )t≥0 is an (FX

t )t≥0-semimartingale with
canonical decomposition given by Xt = X0 + Mt + At . Then (Mt )t≥0 is a Brownian
motion and µA is absolutely continuous with increasing density. Moreover, (Xt )t≥0 is an

(FX ,∞
t )t≥0-semimartingale if and only if µA has a bounded density.
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Representation of Gaussian semimartingales

In the following we are going to study general Gaussian processes. The following
generalizes a result of Stricker to general Gaussian semimartingales:
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Representation of Gaussian semimartingales

In the following we are going to study general Gaussian processes. The following
generalizes a result of Stricker to general Gaussian semimartingales:
Theorem: A process (Xt )t≥0 is a Gaussian (FX

t )t≥0-semimartingale if and only if it
admits the following representation

Xt = X0 + Mt +
( ∫ t

0

( ∫
Ψr (s) dMs

)
µ(dr) +

∫ t

0
Yr µ(dr)

)
,

where µ is a Radon measure, (Mt )t≥0 is a Gaussian martingale starting at 0, (Yt )t≥0

is a measurable process which is bounded in L2(P) and satisfies {Yt ,X0 : t ≥ 0} is
Gaussian and independent of (Mt )t≥0, (s, r) 7→ Ψr (s) is measurable and satisfies
(Ψr )r≥0 is bounded in L2(µM ) and Ψt(s) = 0 for µM ⊗ µ-a.a. (s, t) with s ≥ t.
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The covariance function of Gaussian semimartingales

A measurable mapping R2
+ 3 (t, s) 7→ Ψt (s) ∈ R is said to be a Volterra type kernel if

Ψt (s) = 0 for all s > t. By 1 we denote the Volterra type kernel given by1t (s) = 1[0,t](s). Based on the previous decomposition we derive the following new
characterisation of the covariance function of a Gaussian semimartingale.
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The covariance function of Gaussian semimartingales

A measurable mapping R2
+ 3 (t, s) 7→ Ψt (s) ∈ R is said to be a Volterra type kernel if

Ψt (s) = 0 for all s > t. By 1 we denote the Volterra type kernel given by1t (s) = 1[0,t](s). Based on the previous decomposition we derive the following new
characterisation of the covariance function of a Gaussian semimartingale.
Theorem: A centered Gaussian process (Xt )t≥0 is an (FX

t )t≥0-semimartingale if and
only if

ΓX (t, u) = G(t, u) +

∫
Φt (s)Φu(s)µ(ds), u, t ≥ 0,

for a Radon measure µ on R+, a Volterra type kernel Φ such thatR+ 3 t 7→ Φt − 1t ∈ L2(µ) is right-continuous and of bounded variation and finally a
covariance function G satisfying

√
G(t, t) + G(s, s) − 2G(s, t) ≤ g(t) − g(s), 0 ≤ s < t,

for some right-continuous and increasing function g.

Andreas Basse Gaussian Semimartingales and Moving Averages



Stochastics in Turbulence and Finance

A corollary

Corollary: Let (Xt )t≥0 denote a Gaussian semimartingale with stationary increments.
Then

(Xt )t≥0 is of bounded variation if and only if (s, t) 7→ ΓX (s, t) is absolutely
continuous.

(Xt )t≥0 is a martingale if and only if (s, t) 7→ ΓX (s, t) is singular.

Let (Xt )t≥0 denote a fBm with Hurst parameter H ∈ (0, 1) \ {1/2}. We will show that
(Xt )t≥0 is not a semimartingale. Assume it is. Since (s, t) 7→ ΓX (s, t) is absolutely
continuous it follows by the above result that (Xt )t≥0 is of bounded variation which is
clearly not true.
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Gaussian processes with stationary increments

Let (Xt )t∈R be a centered Gaussian process with stationary increments such that
X0 = 0. Moreover, let µ denote the spectral measure of (Xt )t∈R, that is µ is a
symmetric meausure which integrates t 7→ (1 + t2)−1 and satisfies

E[Xt Xu ] =

∫
(eits − 1)(e−ius − 1)

s2
µ(ds), t, u ∈ R.

Decompose µ as µ = µs + f dλ.
Theorem: (Xt )t≥0 is an (FX ,∞

t )t≥0-semimartingale if and only if µs is finite and

f = |α+ ĥ|2, where α ∈ R and h ∈ L2(λ) is 0 on (−∞, 0) if α 6= 0.

Let us apply this result on the fBm: Let (Xt )t∈R denote a fBm with Hurst parameter H.
Then µ(ds) = cH |s|1−2H . Assume (Xt )t≥0 is an (FX ,∞

t )t≥0-semimartingale. Then

cH |s|1−2H = |α+ ĥ(s)|2, however this can only be satisfied for H = 1/2. Thus we
have reproved that (Xt )t≥0 is not an (FX ,∞

t )t≥0-semimartingale for H 6= 1/2.
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