## Gaussian Semimartingales and Moving Averages

#### Andreas Basse

Thiele Centre, University of Aarhus, Denmark.

Stochastics in Turbulence and Finance



#### The set-up

We are interested in the semimartingale property of processes  $(X_t)_{t\geq 0}$  on the form

$$X_t = \int_{-\infty}^t K_t(s) \, dW_s, \qquad t \ge 0, \tag{1}$$

where  $(W_t)_{t \in \mathbb{R}}$  is a (two-sided) Brownian motion and  $K = K_t(s)$  is a deterministic kernel such that the integral exists.



F CENTRE

We are interested in the semimartingale property of processes  $(X_t)_{t>0}$  on the form

$$X_t = \int_{-\infty}^t K_t(s) \, dW_s, \qquad t \ge 0, \tag{1}$$

where  $(W_t)_{t \in \mathbb{R}}$  is a (two-sided) Brownian motion and  $K = K_t(s)$  is a deterministic kernel such that the integral exists.

Two observations:

- If  $K_t(s)$  does not depend on *t*, then  $(X_t)_{t>0}$  is a martingale.
- If  $K_t(s) = 1_{[0,1]}(t-s)$ , then  $X_t = W_t W_{t-1}$ , which is not a semimartingale.

< □ > < 同 > < 三 > < 三 >

#### Moving average processes

In the case where  $K_t(s) = \varphi(t - s) - \psi(-s)$ , that is

$$X_t = \int_{-\infty}^t \varphi(t-\mathbf{s}) - \psi(-\mathbf{s}) \, dW_s, \qquad t \in \mathbb{R},$$
(2)

 $(X_t)_{t \in \mathbb{R}}$  is called a moving average process.



THIELE CENTRE

#### Moving average processes

In the case where  $K_t(s) = \varphi(t - s) - \psi(-s)$ , that is

$$X_t = \int_{-\infty}^t \varphi(t-s) - \psi(-s) \, dW_s, \qquad t \in \mathbb{R},$$
(2)

 $(X_t)_{t \in \mathbb{R}}$  is called a moving average process.

Some examples:

- The OU process, in this case ψ = 0 and φ(t) = e<sup>-βt</sup>1<sub>[0,∞)</sub>(t) (this is a semimartingale).
- The fBm with Hurst parameter  $H \in (0, 1)$ , in this case  $\psi(t) = \varphi(t) = (t \vee 0)^{H-1/2}$  (this is not a semimartingale for  $H \neq 1/2$ ).
- The model for the turbulent velocity field by Barndorff-Nielsen and Schmiegel in the special case of constant intermittency  $(\sigma_t)_{t \in \mathbb{R}}$  reduces to a moving average process.

#### Definitions and notation

We will use the following notation: For each process  $(Y_t)_{t \in \mathbb{R}}$ , we let  $(\mathcal{F}_t^Y)_{t \ge 0}$  denote the filtration given by  $\mathcal{F}_t^Y = \sigma(Y_r : r \in [0, t])$  and let  $(\mathcal{F}_t^{Y, \infty})_{t \ge 0}$  denote the filtration given by  $\mathcal{F}_t^{Y, \infty} = \sigma(Y_r : r \in (-\infty, t])$ .

Let  $(\mathcal{F}_t)_{t\geq 0}$  denote a filtration. Then  $(Y_t)_{t\geq 0}$  is said to be an  $(\mathcal{F}_t)_{t\geq 0}$ -semimartingale if it can be written as

$$Y_t = Y_0 + M_t + A_t, \qquad t \ge 0,$$

where  $(M_t)_{t\geq 0}$  is a càdlàg  $(\mathcal{F}_t)_{t\geq 0}$  local martingale,  $(A_t)_{t\geq 0}$  is an  $(\mathcal{F}_t)_{t\geq 0}$ -adapted càdlàg process of bounded variation and  $X_0$  is  $\mathcal{F}_0$ -measurable.

As seen from the definition, the semimartingale property is *very* filtration dependent. We have the following relation: Let  $(\mathcal{G}_t)_{t\geq 0}$  and  $(\mathcal{F}_t)_{t\geq 0}$  denote two filtrations satisfying  $\mathcal{G}_t \subseteq \mathcal{F}_t$  for all  $t \geq 0$ . Moreover, let  $(Y_t)_{t\geq 0}$  denote an  $(\mathcal{F}_t)_{t\geq 0}$ -semimartingale which is  $(\mathcal{G}_t)_{t>0}$ -adapted then  $(Y_t)_{t>0}$  is also a  $(\overline{\mathcal{G}}_t)_{t>0}$ -semimartingale.

ヘロット 全部 マイロット

#### Overview over results

Let  $(X_t)_{t\geq 0}$  be given by (1). In this talk we consider the semimartingale property of  $(X_t)_{t\geq 0}$  in the following three filtrations:

$$(\mathcal{F}_t^X)_{t\geq 0}, \quad (\mathcal{F}_t^{X,\infty})_{t\geq 0} \quad \text{and} \quad (\mathcal{F}_t^{W,\infty})_{t\geq 0}.$$



THIELE CENTRE

#### Overview over results

Let  $(X_t)_{t\geq 0}$  be given by (1). In this talk we consider the semimartingale property of  $(X_t)_{t\geq 0}$  in the following three filtrations:

$$(\mathcal{F}_t^{X})_{t\geq 0}, \quad (\mathcal{F}_t^{X,\infty})_{t\geq 0} \quad \text{and} \quad (\mathcal{F}_t^{W,\infty})_{t\geq 0}$$

- In *Basse(a)* we let  $(X_t)_{t\geq 0}$  given by (1). In the filtrations  $(\mathcal{F}_t^X)_{t\geq 0}$  and  $(\mathcal{F}_t^{W,\infty})_{t\geq 0}$  we derive necessary and sufficient conditions on the kernel *K* for  $(X_t)_{t\geq 0}$  to be a semimartingale.
- In Basse(b) we let (X<sub>t</sub>)<sub>t∈ℝ</sub> be a moving average process given by (2). We obtain necessary and sufficient conditions on φ and ψ for (X<sub>t</sub>)<sub>t≥0</sub> to be an (F<sup>X,∞</sup><sub>t≥0</sub>-semimartingale. We also characterize the spectral measure of a general Gaussian process (X<sub>t</sub>)<sub>t∈ℝ</sub> with stationary increments which is an (F<sup>X,∞</sup><sub>t≥0</sub>-semimartingale.
- In Basse(c) we study general Gaussian semimartingale. We derive a representation result for them and use it to obtain necessary and sufficient conditions on the covariance function for a Gaussian process to be an  $(\mathcal{F}_t^{\chi})_{t\geq 0}$ -semimartingale.

4 D N 4 A N 4 B N 4 B

The following result is due to F. Knight:

Let  $(X_t)_{t>0}$  be a moving average process given by (2). Then  $(X_t)_{t>0}$  is an

 $(\mathcal{F}_{t}^{W,\infty})_{t\geq 0}$ -semimartingale if and only if

$$arphi(t) = lpha + \int_0^t h(r) \, dr, \qquad t \ge 0,$$

where  $\alpha \in \mathbb{R}$  and  $h \in L^2(\lambda)$ .

A (10) > A (10) > A (10)

THIFLE CENTRE

The following result is due to F. Knight:

Let  $(X_t)_{t \ge 0}$  be a moving average process given by (2). Then  $(X_t)_{t \ge 0}$  is an

 $(\mathcal{F}_t^{W,\infty})_{t>0}$ -semimartingale if and only if

$$\varphi(t) = \alpha + \int_0^t h(r) \, dr, \qquad t \ge 0,$$

where  $\alpha \in \mathbb{R}$  and  $h \in L^2(\lambda)$ . Let us rewrite this result: Let  $(X_t)_{t\geq 0}$  be given by (1) and assume  $K_t(s) = \varphi(t-s) - \varphi(-s)$ . Then  $(X_t)_{t\geq 0}$  is an  $(\mathcal{F}_t^{W,\infty})_{t\geq 0}$ -semimartingale if and only if

$$\mathcal{K}_t(\mathbf{s}) = \alpha \mathbf{1}_{[0,\infty)}(\mathbf{s}) + \int_0^t h(r+\mathbf{s}) \, dr, \qquad \mathbf{s} \le t,$$

where  $\alpha \in \mathbb{R}$  and  $h \in L^2(\lambda)$  is 0 on  $(-\infty, 0)$ .

Let  $(X_t)_{t\geq 0}$  be given by (1) and assume  $K_t(s) = \varphi(t-s) - \varphi(-s)$ . Then  $(X_t)_{t\geq 0}$  is an  $(\mathcal{F}_t^{W,\infty})_{t\geq 0}$ -semimartingale if and only if

$$\mathcal{K}_t(s) = \alpha \mathbf{1}_{[0,\infty)}(s) + \int_0^t h(r+s) \, dr, \qquad s \leq t,$$

where  $\alpha \in \mathbb{R}$  and  $h \in L^2(\lambda)$  is 0 on  $(-\infty, 0)$ .

Let  $(X_t)_{t\geq 0}$  be given by (1) and assume  $K_t(s) = \varphi(t-s) - \varphi(-s)$ . Then  $(X_t)_{t\geq 0}$  is an  $(\mathcal{F}_t^{W,\infty})_{t\geq 0}$ -semimartingale if and only if

$$\mathcal{K}_t(\mathbf{s}) = \alpha \mathbf{1}_{[0,\infty)}(\mathbf{s}) + \int_0^t h(r+\mathbf{s}) \, dr, \qquad \mathbf{s} \leq t,$$

where  $\alpha \in \mathbb{R}$  and  $h \in L^2(\lambda)$  is 0 on  $(-\infty, 0)$ .

**Theorem:** Let  $(X_t)_{t\geq 0}$  be given by (1). Then  $(X_t)_{t\geq 0}$  is an  $(\mathcal{F}_t^{W,\infty})_{t\geq 0}$ -semimartingale if and only if

$$\mathcal{K}_t(s) = g(s) + \int_0^t \Psi_r(s) \, \mu(dr), \qquad s \leq t,$$

where  $g: \mathbb{R} \to \mathbb{R}$  is square integrable on  $(-\infty, t]$  for all  $t \ge 0, \mu$  is a Radon measure on  $\mathbb{R}_+$  and  $(t, s) \mapsto \Psi_r(s)$  is a measurable mapping such that  $\|\Psi_r\|_{L^2(\mu)} = 1$  for all  $r \ge 0$  and  $\Psi_t(s) = 0$  if  $t \ge s$ .

# Semimartingales w.r.t. $(\mathcal{F}_t^{\chi,\infty})_{t>0}$

Let  $S^1 := \{z \in \mathbb{C} : |z| = 1\}$  and for each measurable function  $f : \mathbb{R} \to S^1$  satisfying  $\overline{f} = f(-\cdot)$ , let  $\tilde{f} : \mathbb{R} \to \mathbb{R}$  be given by

$$\widetilde{f}(t) = \int_{-\infty}^{\infty} \frac{e^{its} - \mathbf{1}_{[-1,1]}(s)}{is} f(s) \, ds, \qquad t \in \mathbb{R}.$$

**Theorem:** Let  $(X_t)_{t \in \mathbb{R}}$  denote a moving average process given by (2) with  $\varphi = \psi$ . Then  $(X_t)_{t \geq 0}$  is an  $(\mathcal{F}_t^{X,\infty})_{t \geq 0}$ -semimartingale if and only if  $\varphi$  is on the form

$$\varphi(t) = \beta + \alpha \tilde{f}(t) + \int_0^t \widehat{fh}(s) \, ds, \qquad t \in \mathbb{R},$$

where  $\alpha, \beta \in \mathbb{R}, h \in L^2(\lambda)$  and  $f \colon \mathbb{R} \to S^1$  is measurable and satisfies  $\overline{f} = f(-\cdot)$ . If  $\alpha \neq 0, h$  is 0 on  $(0, \infty)$ . Moreover,  $(X_t)_{t \geq 0}$  is of bounded variation if and only if  $\alpha = 0$  and  $(X_t)_{t \geq 0}$  is an  $(\mathcal{F}_t^{X,\infty})_{t \geq 0}$ -martingale if and only if h = 0.

### Some applications

Let  $(X_t)_{t \in \mathbb{R}}$  be a moving average process given by

$$X_t = \int arphi(t-\mathbf{s}) - arphi(-\mathbf{s}) \, dW_{\mathbf{s}}, \qquad t \in \mathbb{R}.$$

Then  $(X_t)_{t \in \mathbb{R}}$  is a (two-sided) Brownian motion if and only if

$$\varphi(t) = \beta + \alpha \tilde{f}(t)$$

for some  $f : \mathbb{R} \to S^1$  satisfying  $\overline{f} = f(-\cdot)$ .

CENTRE

### Some applications

Let  $(X_t)_{t \in \mathbb{R}}$  be a moving average process given by

$$X_t = \int arphi(t-s) - arphi(-s) \, dW_s, \qquad t \in \mathbb{R}.$$

Then  $(X_t)_{t \in \mathbb{R}}$  is a (two-sided) Brownian motion if and only if

$$\varphi(t) = \beta + \alpha \tilde{f}(t)$$

for some  $f : \mathbb{R} \to S^1$  satisfying  $\overline{f} = f(-\cdot)$ . Setting  $f(t) = (t+i)(t-i)^{-1}$  we obtain  $\tilde{f}$  equals  $\varphi : t \mapsto (e^{-t} - 1/2)\mathbf{1}_{\mathbb{R}_+}(t)$ . Thus

$$X_t = \int_{-\infty}^t \varphi(t-s) - \varphi(-s) \, dW_s, \qquad t \ge 0,$$

is a Brownian motion.

#### Some applications

Let  $(X_t)_{t \in \mathbb{R}}$  be a moving average process given by

$$X_t = \int arphi(t-\mathbf{s}) - arphi(-\mathbf{s}) \, dW_{\mathbf{s}}, \qquad t \in \mathbb{R}.$$

Then  $(X_t)_{t \in \mathbb{R}}$  is a (two-sided) Brownian motion if and only if

$$\varphi(t) = \beta + \alpha \tilde{f}(t)$$

for some  $f : \mathbb{R} \to S^1$  satisfying  $\overline{f} = f(-\cdot)$ . Setting  $f(t) = (t+i)(t-i)^{-1}$  we obtain  $\tilde{f}$  equals  $\varphi : t \mapsto (e^{-t} - 1/2)\mathbf{1}_{\mathbb{R}_+}(t)$ . Thus

$$X_t = \int_{-\infty}^t \varphi(t-s) - \varphi(-s) \, dW_s, \qquad t \ge 0,$$

is a Brownian motion. Another way of putting this is: Let  $(X_t)_{t>0}$  be the stationary OU-process given by

$$X_t = X_0 - \int_0^t X_s \, ds + W_t, \qquad t \ge 0,$$

with  $X_0 \stackrel{\mathcal{D}}{=} N(0, 1/2)$  independent of the Brownian motion  $(W_t)_{t \ge 0}$ . Then  $(Y_t)_{t \ge 0}$ , given by

$$Y_t = W_t - 2\int_0^t X_s \, ds, \qquad t \ge 0,$$

is a Brownian motion.



For each Gaussian process  $(A_t)_{t\geq 0}$  which is right-continuous and bounded variation we let  $\mu_A$  denote the Lebesgue-Stieltjes measure satisfying  $\mu_A((0, t]) = E[V_{[0, t]}(A)]$  for all  $t \ge 0$ .



 $(\mathcal{F}_t^{\chi})_{t\geq 0}$ -semimartingales vs.  $(\mathcal{F}_t^{\chi})_{t\geq 0}$ 

For each Gaussian process  $(A_t)_{t \ge 0}$  which is right-continuous and bounded variation we let  $\mu_A$  denote the Lebesgue-Stieltjes measure satisfying  $\mu_A((0, t]) = E[V_{[0, t]}(A)]$  for all  $t \ge 0$ .

**Theorem:** Let  $(X_t)_{t \in \mathbb{R}}$  be a Gaussian process which either is stationary or has stationary increments and  $X_0 = 0$ . Assume  $(X_t)_{t \ge 0}$  is an  $(\mathcal{F}_t^X)_{t \ge 0}$ -semimartingale with canonical decomposition given by  $X_t = X_0 + M_t + A_t$ . Then  $(M_t)_{t \ge 0}$  is a Brownian motion and  $\mu_A$  is absolutely continuous with increasing density. Moreover,  $(X_t)_{t \ge 0}$  is an  $(\mathcal{F}_t^{X,\infty})_{t \ge 0}$ -semimartingale if and only if  $\mu_A$  has a bounded density.

### Representation of Gaussian semimartingales

In the following we are going to study general Gaussian processes. The following generalizes a result of Stricker to general Gaussian semimartingales:



< □ > < □ > < □ > < □ > < □ </pre>

F CENTRE

### Representation of Gaussian semimartingales

In the following we are going to study general Gaussian processes. The following generalizes a result of Stricker to general Gaussian semimartingales:

**Theorem:** A process  $(X_t)_{t \ge 0}$  is a Gaussian  $(\mathcal{F}_t^X)_{t \ge 0}$ -semimartingale if and only if it admits the following representation

$$X_t = X_0 + M_t + \Big(\int_0^t \Big(\int \Psi_r(s) \, dM_s\Big) \mu(dr) + \int_0^t Y_r \, \mu(dr)\Big),$$

where  $\mu$  is a Radon measure,  $(M_t)_{t\geq 0}$  is a Gaussian martingale starting at 0,  $(Y_t)_{t\geq 0}$  is a measurable process which is bounded in  $L^2(P)$  and satisfies  $\{Y_t, X_0 : t \geq 0\}$  is Gaussian and independent of  $(M_t)_{t\geq 0}$ ,  $(s, r) \mapsto \Psi_r(s)$  is measurable and satisfies  $(\Psi_r)_{r>0}$  is bounded in  $L^2(\mu_M)$  and  $\Psi_t(s) = 0$  for  $\mu_M \otimes \mu$ -a.a. (s, t) with  $s \geq t$ .

### The covariance function of Gaussian semimartingales

A measurable mapping  $\mathbb{R}^2_+ \ni (t, s) \mapsto \Psi_t(s) \in \mathbb{R}$  is said to be a Volterra type kernel if  $\Psi_t(s) = 0$  for all s > t. By 1 we denote the Volterra type kernel given by  $\mathbb{1}_t(s) = 1_{[0,t]}(s)$ . Based on the previous decomposition we derive the following new characterisation of the covariance function of a Gaussian semimartingale.

#### The covariance function of Gaussian semimartingales

A measurable mapping  $\mathbb{R}^2_+ \ni (t, s) \mapsto \Psi_t(s) \in \mathbb{R}$  is said to be a Volterra type kernel if  $\Psi_t(s) = 0$  for all s > t. By 1 we denote the Volterra type kernel given by 1  $_t(s) = 1_{[0,t]}(s)$ . Based on the previous decomposition we derive the following new characterisation of the covariance function of a Gaussian semimartingale. **Theorem:** A centered Gaussian process  $(X_t)_{t\geq 0}$  is an  $(\mathcal{F}^X_t)_{t\geq 0}$ -semimartingale if and only if

$$\Gamma_X(t,u) = G(t,u) + \int \Phi_t(s)\Phi_u(s)\,\mu(ds), \qquad u,t\geq 0,$$

for a Radon measure  $\mu$  on  $\mathbb{R}_+$ , a Volterra type kernel  $\Phi$  such that  $\mathbb{R}_+ \ni t \mapsto \Phi_t - \mathbb{1}_t \in L^2(\mu)$  is right-continuous and of bounded variation and finally a covariance function *G* satisfying

$$\sqrt{\mathsf{G}(t,t) + \mathsf{G}(\mathsf{s},\mathsf{s}) - 2\mathsf{G}(\mathsf{s},t)} \le g(t) - g(\mathsf{s}), \qquad 0 \le \mathsf{s} < t,$$

for some right-continuous and increasing function g.

**Corollary:** Let  $(X_t)_{t \ge 0}$  denote a Gaussian semimartingale with stationary increments. Then

- (X<sub>t</sub>)<sub>t≥0</sub> is of bounded variation if and only if (s, t) → Γ<sub>X</sub>(s, t) is absolutely continuous.
- $(X_t)_{t\geq 0}$  is a martingale if and only if  $(s, t) \mapsto \Gamma_X(s, t)$  is singular.

Let  $(X_t)_{t\geq 0}$  denote a fBm with Hurst parameter  $H \in (0, 1) \setminus \{1/2\}$ . We will show that  $(X_t)_{t\geq 0}$  is not a semimartingale. Assume it is. Since  $(s, t) \mapsto \Gamma_X(s, t)$  is absolutely continuous it follows by the above result that  $(X_t)_{t\geq 0}$  is of bounded variation which is clearly not true.

THIFLE CENTRE

#### Gaussian processes with stationary increments

Let  $(X_t)_{t \in \mathbb{R}}$  be a centered Gaussian process with stationary increments such that  $X_0 = 0$ . Moreover, let  $\mu$  denote the spectral measure of  $(X_t)_{t \in \mathbb{R}}$ , that is  $\mu$  is a symmetric measure which integrates  $t \mapsto (1 + t^2)^{-1}$  and satisfies

$$E[X_t X_u] = \int \frac{(e^{its} - 1)(e^{-ius} - 1)}{s^2} \mu(ds), \qquad t, u \in \mathbb{R}.$$

Decompose  $\mu$  as  $\mu = \mu_s + f d\lambda$ . **Theorem:**  $(X_t)_{t \ge 0}$  is an  $(\mathcal{F}_t^{X,\infty})_{t \ge 0}$ -semimartingale if and only if  $\mu_s$  is finite and  $f = |\alpha + \hat{h}|^2$ , where  $\alpha \in \mathbb{R}$  and  $h \in L^2(\lambda)$  is 0 on  $(-\infty, 0)$  if  $\alpha \neq 0$ .

Let us apply this result on the fBm: Let  $(X_t)_{t \in \mathbb{R}}$  denote a fBm with Hurst parameter H. Then  $\mu(ds) = c_H |s|^{1-2H}$ . Assume  $(X_t)_{t \ge 0}$  is an  $(\mathcal{F}_t^{X,\infty})_{t \ge 0}$ -semimartingale. Then  $c_H |s|^{1-2H} = |\alpha + \hat{h}(s)|^2$ , however this can only be satisfied for H = 1/2. Thus we have reproved that  $(X_t)_{t \ge 0}$  is not an  $(\mathcal{F}_t^{X,\infty})_{t \ge 0}$ -semimartingale for  $H \neq 1/2$ .

#### Articles



#### Basse, A. (2007a).

Gaussian moving averages and semimartingales. *Preprint*.



#### Basse, A. (2007b).

Representation of Gaussian semimartingales with application to the covariance function. *Preprint*.



#### Basse, A. (2007c).

Spectral representation of Gaussian semimartingales. *Preprint*.



#### Emery, M. (1982).

Covariance des semimartingales gaussiennes. C. R. Acad. Sci. Paris Sér. I Math. 295(12), 703–705.



#### Jeulin, T. and M. Yor (1993).

Moyennes mobiles et semimartingales. Séminaire de Probabilités XXVII(1557), 53-77.



#### Knight, F. B. (1992).

Foundations of the prediction process, Volume 1 of Oxford Studies in Probability. New York: The Clarendon Press Oxford University Press. Oxford Science Publications.



#### Stricker, C. (1983).

Semimartingales gaussiennes—application au problème de l'innovation. Z. Wahrsch. Verw. Gebiete 64(3), 303–312.

THIFLE CENTRE