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Modelling framework: in Finance

The basic framework for stochastic volatility modeling in �nance is
that of Brownian semimartingales

Yt = Y0+
Z t

0
σsdBs+

Z t

0
asds

where σ and a are cadlag processes and B is Brownian motion,
with σ expressing the volatility. In general, Y, σ, B and a will be
multidimensional.
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Modelling framework: Turbulence (Phenomenological approach)

Whereas Brownian semimartingales are 'cumulative' in nature, for
free turbulence it is physically natural to model timewise velocity dy-
namics by stationary processes:

At time t and at a �xed position x in the turbulent �eld, the velocity
vector is speci�ed as Vt = µ+Yt with
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Yt (x) =
Z t

�∞

Z
R3

g(t� s, x� ξ)σs (ξ)W (dξds)

+
Z t

�∞

Z
R3

q(t� s, x� ξ)as (ξ)dξds.

where W is white noise, with σ expressing the intermittency (=
volatility). In general, Y, g, σ, W, q, and a will be multidimensional.



THIELE CENTRE
for applied mathematics in natural science

Introduction

Volatility Modulated Volterra Processes, page 6 of 72

Multipower Variations For any stochastic process Y = fYtgt�0
(or Y = fYtgt2R) the quadratic variation (QV) process [Y] and
the bipower variation (BV) process fYg are, respectively, the lim-
its in probability, when they exist, of the realised quadratic variation
(RQV) [Yδ] and the realised bipower variation (RBV) fYδg.

To de�ne RVR and RBP, for any δ > 0 let Yδ denote the δ-discretisation
of Y, i.e. (Yδ)t = Ybt/δcδ, and recall that for a standard normal vari-
able u we have

µ1 = E fjujg =
p

2/π.

Furthermore, for positive integers n and δ = n�1, let
∆n

j Y = Yjδ�Y(j�1)δ.
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Then RVR and RBP are given, respectively, by

[Yδ]t =
bntc
∑
j=1

�
∆n

j Y
�2

and
fYδgt =

π

2
[Yδ]

[1,1]
t

with

[Yδ]
[1,1]
t =

bt/nc
∑
j=2

���∆n
j�1Y

��� ���∆n
j Y
��� .



THIELE CENTRE
for applied mathematics in natural science

Introduction

Volatility Modulated Volterra Processes, page 8 of 72

General multipower: n
Y[r]δ

o
t
= cr [Yδ]

[r]
t

where

[Yδ]
[r]
t =

bntc
∑

j=k+1

���∆n
j�kY

���rk � � �
���∆n

j Y
���r0

.

More generally,
bntc
∑

j=k+1
f1

�
∆n

j�kY
�
� � � fk

�
∆n

j Y
�
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Applications In Finance

δ�
1
2

�
[Yδ]t� σ2+

t , fYδgt� σ2+
t

� L�stably! N2

�
(0, 0) , 2

�
1 1
1 1+ ϑ

�
σ4+

t

�

where ϑ = π2/4+ π � 5 ( .
= 0.609).

Feasible results.
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Applications in Turbulence
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Brownian Volterra processes (BVP):

Yt =
Z ∞

�∞
Kt (s)dBs+

Z ∞

�∞
Qt (s)ds,

Here K and Q are deterministic functions, suf�ciently regular to give
suitable meaning to the integrals.

Backward type:

Yt =
Z t

�∞
Kt (s)dBs+

Z t

�∞
Qt (s)ds.
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Lévy Volterra processes (LVP):

Yt =
Z ∞

�∞
Kt (s)dLs+

Z ∞

�∞
Qt (s)ds

Here L denotes a Lévy process onR and K and Q are deterministic
kernels, satisfying certain regularity conditions.

Backward type:

Yt =
Z t

�∞
Kt (s)dLs+

Z t

�∞
Qt (s)ds.
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Stochastic integration in this kind of setting is discussed for BVP
in [Hu03], [Dec05], [DecSa06] and for LVP in [BeMar07].

When is Y a semimartingale? In that case what is the character
of its spectral representation?

Andreas Basse [Bas07a], [Bas07b], [Bas07c], for Brownian case.
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Tempo-spatial Volterra processes:

Yt (x) =
Z ∞

�∞

Z
Ξ

Kt (ξ, s; x) L# (dξds) +
Z ∞

�∞

Z
Ξ

Qt (ξ, s; x)dξds

Here K and Q are deterministic functions, Ξ is a region in Rd and
L# is a homogeneous Lévy basis on Ξ�R.

Backward type:

Yt (x) =
Z t

�∞

Z
Ξ

Kt (ξ, s; x) L# (dξds) +
Z t

�∞

Z
Ξ

Qt (ξ, s; x)dξds
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Volatility modulated Volterra Processes (VMVP):

Yt (x) =
Z ∞

�∞

Z
Ξ

Kt (ξ, s; x) σs (ξ) L# (dξds)+
Z ∞

�∞

Z
Ξ

Qt (ξ, s; x) as (ξ)dξds

where σ is a positive stochastic process, embodying the volatility or
intermittency. (K and Q deterministic, σ and a stochastic.)

Backwards moving average type:

Yt (x) =
Z t

�∞

Z
Ξ

g (ξ � x, t� s) σs (ξ) L# (dξds)

+
Z t

�∞

Z
Ξ

q (ξ � x, t� s) as (ξ)dξds
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A central issue in these settings is how to draw inference on the
volatility process σ.

In cases where the processes are semimartingales, the theory of
multipower variations provides effective tools for this. ([BNGJPS07],
[BNGJS06] and references given there)

However, VMVP processes are generally not of semimartingale
type and the question of how to proceed then is largely unsolved
and poses mathematically challenging problems.
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It is further of interest to consider cases where processes express-
ing possible jumps or noise in the dynamics are added.

Some of these problems are presently under study in joint work
with Jose-Manuel Corcuera, Neil Shephard, Jürgen Schmiegel and
Mark Podolski.
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Ambit processes: ([BNSch07a])

Yt (x) = µ+
Z

At(σ)
g (t� s, jξ � xj) σs (ξ)W (dξ, ds)

+
Z

Dt(σ)
q (t� s, jξ � xj) as (ξ)dξds

Here At (σ) and Dt (σ) are termed ambit sets.
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(t(w), σ(w))Xw

At(w)(σ(w))

@

�
�

�

Ambit processes
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t

t
′

σ

•

σ
′

•

-

6

Two overlappng ambit sets
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Recall: Modelling time series by stochastic processes of the form
V = µ+Y with

Yt =
Z t

�∞
g (t� u) σudBu+

Z t

�∞
h(t� u)asdu. (1)

Here B is Brownian motion, the kernels h and g are determinis-
tic, positive and square integrable functions on (0, ∞), presumed
known, and σ is a stationary process which expresses the time-
dependent variation or volatility of the process Y.

Moreover, a and σ are stochastic processes satisfying the same as-
sumptions as are usual for Brownian semimartingales; in particular,
σ is square integrable.
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Concretely we (BN+Schmiegel) think of this as a modelling frame-
work for the time-wise behaviour of the main component of the ve-
locity vector (i.e. the component in the mean direction of the �uid
motion) in a turbulent �eld.

Question: To what extent is the integral of the squared volatility
over the interval [0, t], i.e.

σ2+
t =

Z t

0
σ2

udu,

consistently estimable by a suitably normalised version of the re-
alised quadratic variation of Y when the limiting scheme consid-
ered is that Y is observed at the time points jδ, j = 1, ..., n, where
δ = t/n, and n ! ∞ with t �xed?
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Conjecture: (of work in progress by BN+Corcuera+Podolskij)

The theory of multipower variation can be extended to processes of
the form (1) under conditions on g of which the essential one is that
the function

R (t) =
Z ∞

0
g (t+ u) g (u)du

satis�es the following (given on next slide) three assumptions (A1)-
(A3) where R̄ = 2

�
kgk2� R

�
and 0 < γ < 5

4:

Note The conjecture holds true for power variation when σ is a
constant, as follows from [GuyLe89].
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(A1) R̄ (t) = tγL0 (t) for some slowly varying (at 0) function L0,
which is continuous on (0, ∞).

(A2) R̄00 (t) = tγ�2L2 (t) for some slowly varying (at 0) function L2,
which is continuous on (0, ∞).

(A3) There exists a b 2 (0, 1) with

lim sup
x!0

sup
y2[x,xb]

����L2 (y)
L0 (x)

���� < ∞.
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Recall:

Yt =
Z t

�∞
g (t� u) σudBu+

Z t

�∞
h(t� u)asdu.

The in�uence of the `drift term', that is the second integral, will dis-
appear under the limiting procedure we have in mind, so henceforth
that term is assumed not to be present, and we write the expression
for Y brie�y as

Y = g � σ � B.
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To ensure that Y is well de�ned we assume that g (t� u) σu is
square integrable with respect to u on (�∞, t], for all t 2 R.

Furthermore, we suppose that g is differentiable on (0, ∞) and that
for any ε > 0 and any t the integral

R t�ε
�∞ ġ2(t� u)σ2

udu exists and g
is Lipschitz of order 2 on [ε, ∞).
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Suppose for the moment that σ = 1 identically. Then Y = g � B and this
process has autocovariance and autocorrelation functions

R (t) =
Z ∞

0
g(t+ u)g (u)du

and
r (t) =

Z ∞

0
ḡ(t+ u)ḡ (u)du

where ḡ = g/ kgk and

kgk2 =
Z ∞

0
g2 (u)du.

We let
r̄ (t) = 1� r (t) and R̄ (t) = 2 kgk2 r̄ (t) .
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Let ∆n
j Y = Yjδ � Y(j�1)δ and for any q > 0, let V(Y, q)nt be the

realised q-th order power variation of Y, i.e.

V(Y, q)nt = nq/2�1
n

∑
j=1

���∆n
j Y
���q .

For q = 2 this is the realised quadratic variation, which will be the
basis for estimating σ2+

t .

We let
V̄(Y, 2)nt =

δ

2 kgk2 r̄ (δ)
V(Y, 2)nt .
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Special restrictive setting: We suppose that the process σ is
independent of the Brownian motion B, and we will argue condi-
tionally on σ.

Remark: Under (A1)-(A3) the variance of V̄(Y, 2)nt will go to 0 as
δ ! 0. What remains in order to establish consistency is then that

E fV̄(Y, 2)nt jσg
p! σ2+

t



THIELE CENTRE
for applied mathematics in natural science

Quadratic variation of Y = g � σ � B

Volatility Modulated Volterra Processes, page 30 of 72

Behaviour of E fV(Y, 2)nt jσg

Note that

Yt+δ�Yt =
Z t+δ

t
g (δ+ t� u) σudBu

+
Z t

�∞
(g (δ+ t� u)� g (t� u)) σudBu.

Hence, for arbitrary ε > 0,

δE fV(Y, 2)nt jσg =
Z δ

0
δ

n

∑
j=1

σ2
jδ�vg2 (v)dv

+
Z ∞

0
δ

n

∑
j=1

σ2
(j�1)δ�v (g (δ+ v)� g (v))2 dv
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After some calculation we �nd (key relation)

E fV̄(Y, 2)nt jσg = σ2+
t + R̄ (δ)�1 A(δ)

where

A (δ) = A0 (δ) + A1 (δ; ε) + A2 (δ; ε)

with
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A0 (δ) =
Z δ

0

0@δ
n

∑
j=1

σ2
jδ�v� σ2+

t

1A g2 (v)dv

and, for any ε > 0,

A1 (δ; ε) =
Z ε

0

0@δ
n

∑
j=1

σ2
(j�1)δ�v� σ2+

t

1A (g (δ+ v)� g (v))2 dv

A2 (δ; ε) =
Z ∞

ε

0@δ
n

∑
j=1

σ2
(j�1)δ�v� σ2+

t

1A (g (δ+ v)� g (v))2 dv.
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Let

c0 (δ) =
Z δ

0
g2 (v)dv and c (δ) =

Z ∞

0
(g (δ+ v)� g (v))2 dv.

and note that c0 (δ) + c (δ) = R̄ (δ).

Furthermore, let

σ̂2+
sjt = δ

n

∑
j=1

σ2
(j�1)δ�s

and note that
σ̂2+

sjt !
Z t�s

�s
σ2

udu.
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It follows that for any ε > 0

jE fV̄(Y, 2)nt jσg � σ2+
t j � sup

0�v�δ

jσ̂2+
vjt � σ2+

t jc0 (δ)

R̄ (δ)

+ sup
0�v�ε

jσ̂2+
vjt � σ2+

t j c (δ)
R̄ (δ)

+ sup
ε<v<∞

jσ̂2+
vjt � σ2+

t jC (ε) δ2

R̄ (δ)
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The upshot of these considerations is that if c0 (δ) and c (δ) are of
the same asymptotic order as δ ! 0, with this common order being
smaller than that of δ2, then

V̄(Y, 2)nt
p! σ2+

t .

More boldly, one may surmise that it will be possible to derive a
feasible asymptotic normal limit result for inference on σ2+

t under
some additional assumption on the behaviour of g at 0.
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Particular case: Suppose that σ = 1 and

g (t) = tν�1e�αt (3)

with ν > 1
2 and α > 0.

Remark The derivative ġ of g is not square integrable if 1
2 < ν < 1

or 1 < ν � 3
2; hence, in these cases Y is not a semimartingale.

For ν = 1 the process Y is a semimartingale, in fact a modulated
version of the Gaussian Ornstein-Uhlenbeck process. Note also
that when ν > 3

2 then Y is of �nite variation and hence, trivially, a
semimartingale.
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Remark Suppose that the volatility process is constant, σt = σ.
In this case ([GuyLe89])

V̄(Y, 2)nt
p
! t σ2.

In fact, considerably more is true: [GuyLe89] derived associated
(nonfeasible) limit law results

It follows from those results that the limit distribution is normal if
1
2 < ν < 5

4, with rate δ�3/2r̄ (δ), while it belongs to the second order
Wiener chaos, with rate δ2ν�3, for 5

4 < ν < 3
2.

Extension to the power variations V(Y, q)nt , q > 0, are also given in
[GuyLe89].
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The following analysis uses a number of, mostly well known, prop-
erties of modi�ed Bessel functions of the third type Kν (not given
explicitly here).

Steps in analysis:
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(i) Properties of the autocorrelation function r of Y = g � B: Exact
formulae for the autocorrelation function r and its derivatives.

(ii) Asymptotic properties of r̄ (t) = 1� r (t) for t ! 0.

(iii) Veri�cation that (A1)-(A3) are satis�ed

(iv) Asymptotics of c0 (δ) and c (δ) for δ ! 0

(v) Example illustrating the asymptotics of E fV(Y, 2)nt g for a very
special choice of σt that allows explicit calculations.
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Formulae for r and its derivatives

The autocorrelation function r of Y = g � B has the form

r (t) =
(2α)2ν�1

Γ (2ν� 1)
e�αt

Z ∞

0
(t+ u)ν�1 uν�1e�2αudt.

By formulae for the Bessel functions of type K we �nd

r (t) = Ǩν�1
2
(αt) .
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Suppose for notational simplicity that α = 1, and let

c (ν) = 2�ν+1Γ (ν)�1 .

Then, we �nd, for ν 2
�

1
2, 3

2

�
we �nd

r̄0 (t) = �
c
�

ν� 1
2

�
c
�3

2 � ν
� t2ν�2Ǩ3

2�ν (t)

r̄00 (t) = c
�

ν� 1
2

�
t2ν�3

n
K̄5

2�ν (t)� K̄3
2�ν (t)

o
r̄000 (t) = �c

�
ν� 1

2

�
t2ν�4

n
K̄7

2�ν (t)� 3K̄5
2�ν(t)

o
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Behaviour of r̄ = 1� r near 0

Using formulae for the Bessel functions of type K we �nd that for
t ! 0 the complementarry autocorrelation function r̄ (t) = 1� r (t)
behaves as

2�2ν+1Γ(3
2�ν)

Γ(ν+1
2)
(αt)2ν�1+O

�
t2� for 1

2 < ν < 3
2

r̄ (t) � 1
2 (αt)2 j log tj for ν = 3

2

1
4(ν�3

2)
(αt)2+O

�
t2ν�1� for 3

2 < ν
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Veri�cation of assumptions (A1)-(A3):

Conditions (A1)-(A3) are satis�ed (with γ = 2ν� 1 and ν 2
�

1
2, 3

2

�
, i.e.

γ 2 (0, 2))
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On (A1): The complementary autocorrelation function r̄ is of the
form

r̄(t) = t2ν�1L0 (t)
with

L0 (t) = t�2ν+1
�

1� Ǩν�1
2
(αt)

�
and

L0 (t)! 2�2ν+1 Γ
�3

2 � ν
�

Γ
�

ν+ 1
2

� for t ! 0.

It follows that L0 is slowly varying at 0, and hence assumption (A1)
is met.
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On (A2): Note that

r̄00(t) = t2ν�3L2(t)

with
L2 (t) = c

�
ν� 1

2

�n
K̄5

2�ν (t)� K̄3
2�ν (t)

o
,

where L2 is slowly varying at 0 with

L2 (t)! �23 (ν� 1)
Γ
�3

2 � ν
�

Γ
�

ν� 1
2

� for t ! 0.
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The latter follows from the rewrite

r̄00 (t) = t2ν�3c
�

ν� 1
2

�
c
�

3
2
� ν

��1 n
(3� 2ν) Ǩ5

2�ν (t)� Ǩ3
2�ν (t)

o
= t2ν�322 Γ

�3
2 � ν

�
Γ
�

ν� 1
2

� n(3� 2ν) Ǩ5
2�ν (t)� Ǩ3

2�ν (t)
o

.

Thus (A2) holds.
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On (A3): Finally, we �nd

L02 (t) = c
�

ν� 1
2

�n
K̄05

2�ν
(t)� K̄03

2�ν
(t)
o

= c
�

ν� 1
2

�
t
n

K̄1
2�ν (t)� K̄3

2�ν (t)
o

= c
�

ν� 1
2

�
t
n

t�2ν+1K̄ν�1
2
(t)� K̄3

2�ν (t)
o

= c
�

ν� 1
2

�
t�2ν+2

�
�

c(ν� 1
2
)�1t�2ν+1Ǩν�1

2
(t)� c(ν� 3

2
)�1t2ν�1Ǩ3

2�ν (t)
�

Hence (for ν 2
�

1
2, 3

2

�
) L2 (t) is increasing near 0. Consequently
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lim sup
x!0

sup
y2[x,xb]

����L2 (y)
L0 (x)

���� � lim sup
x!0

�������
L2

�
xb
�

L0 (x)

������� ;

Here, as x ! 0,

L0 (x)! 2�2ν+1 Γ
�3

2 � ν
�

Γ
�

ν+ 1
2

�.

while

L2

�
xb
�
! c

�
ν� 1

2

�(
c
�

5
2
� ν

��1
� c

�
3
2
� ν

��1
)

.

Therefore also condition (A3) is satis�ed.
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Asymptotic behaviour of c0 (δ) and c (δ), taking α = 1,

c0 (δ) =
1

2ν� 1
δ2ν�1+O

�
δ2ν+n�1

�

1
2ν�1

�
2�2(ν�1)Γ(ν)Γ(3

2�ν)
Γ(1

2)
� 1

�
δ2ν�1+O

�
δ2
�
for 1

2 < ν < 3
2

c (δ) � 1
2δ2j log δj for ν = 3

2

2�2ν Γ(2ν�1)
ν�3

2
δ2+O

�
δ2ν�1

�
for 3

2 < ν
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Key Example

Consider now the special case where σ is given by

σu = e(ψ�1)u.

This particular choice allows explicit calculation of E fV(Y, 2)nt g. Af-
ter some calculation one �nds
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δ

2 kgk2 r̄ (δ)
E fV(Y, 2)nt g =

0@δ
bt/δc
∑
j=1

e�2(1�ψ)jδ

1Aψ�(2ν�1)A (δ)

� ψ�(2ν�1)A (δ) σ2+
t

where

A (δ) = e�(1�ψ)δ r̄ (ψδ)

r̄ (δ)
+

�
1� e�(1�ψ)δ

�2

r̄ (δ)
.
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When 1
2 < ν � 3

2 we have

A (δ) � ψ2ν�1+O
�

δ2
�

and hence
δ

2 kgk2 r̄ (δ)
E fV(Y, 2)nt g ! σ2+

t .

On the other hand, if ν > 3
2 we obtain

δ

2 kgk2 r̄ (δ)
E fV(Y, 2)nt g ! ψ�2

�
ψ�2ν+1+ 4

�
ν� 3

2

�
(1� ψ)2

�
σ2+

t .



THIELE CENTRE
for applied mathematics in natural science

A class of moving average models

Volatility Modulated Volterra Processes, page 53 of 72

Remark For the concrete model considered here, i.e.

Yt =
Z t

�∞
(t� u)ν�1 e�α(t�u)σudBu,

let
Xt =

Z t

�∞
eαs (t� s)1�ν Ysds.

Then (Fubini!?), for 1
2 < ν < 3

2,

Xt =
Z t

�∞
eαs (t� s)1�ν

Z s

�∞
(s� u)ν�1 e�α(s�u)σudBuds

=
Z t

�∞
eαuσudBu

Z t

u
(t� s)1�ν (s� u)ν�1 ds

= B (1� ν, ν)
Z t

�∞
eαuσudBu.
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Recall that RVR and RBP are given, respectively, by

[Yδ]t =
bntc
∑
j=1

�
∆n

j Y
�2

and fYδgt =
π
2 [Yδ]

[1,1]
t with

[Yδ]
[1,1]
t =

bt/nc
∑
j=2

���∆n
j�1Y

��� ���∆n
j Y
��� .
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Let
[Yδ]

0 =
n

∑
j=2

�
∆n

j�1Y
�2

, and [Yδ]
00 =

n

∑
j=2

�
∆n

j Y
�2

.

and de�ne the realised variation ratio (RVR) by

fYδ] =
fYδg

[Yδ]
0+[Yδ]

00

2

.

The probability limit of this ratio, when it exists, is the variation ratio
VR), denoted fY], i.e.

fY] = p- limfYδ].
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The RVR as a diagnostic tool for model checking.
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Note The variation ratio may well exist even in cases where the
quadratic variation and the bipower variation are both in�nite or both
zero. This is the case, in particular, for Y = g � σ � B with g (t) =
tν�1e�αt, in�nite occurring for 1

2 < ν < 1 and zero for 1 < ν < 3
2.

(Another simple example of this is Yt = t or Yt = 1 for then fYg =
[Y] = 0 while fY] = π

2 .)
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We have

fYδg =
π

4

�
[Yδ]

0+ [Yδ]
00
�
� π

4

n

∑
j=2

����∆n
j Y
���� ���∆n

j�1Y
����2

.

From this equation it follows that

0 � fYδ] �
π

2
and hence 0 � fY] � π

2
.
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It also follows that RVR is close to π
2 if the correlation between

cor
n���∆n

j�1Y
��� ,
���∆n

j Y
���o is close to 1 for all j. This, in turn, holds if

cor
n

∆n
j�1Y, ∆n

j Y
o
is close to 1 or �1 for all j.
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To see the latter, recall that for arbitrary standard normal variables
u and v with correlation coef�cient ρ

E fjuvjg = 2
π

�
ρ arcsin ρ+

q
1� ρ2

�
.

It follows that

cor fjuj , jvjg = 2
π

�
ρ arcsin ρ+

q
1� ρ2� 1

�
. (4)

Note that cor fjuj , jvjg does not depend on the sign of ρ and that it
is an increasing function of jρj.
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Under certain conditions we will have that, for δ ! 0,

fYδ] �
E ffYδgg

E
n
[Yδ]

0+[Yδ]
00

2

o.

Suppose in particular that Y = g � σ � B with g (t) = tν�1e�αt. Then

fYδ] � ρ (δ) arcsin ρ (δ) +

q
1� ρ (δ)2

with
ρ (δ) =

r̄ (2δ)

2r̄ (δ)
� 1.
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Example Suppose that r̄ is of the form
r̄ (t) = cγtγ+ o (tγ)

for t ! 0 and some γ 6= 1, and where cγ is a positive constants (i.e.
as is the case for g (t) = tν�1e�αt with 1

2 < ν < 3
2 and γ = 2ν� 1).

Then

fYδ] �
cγ2γδγ+ o (tγ)

2cγδγ+ o (tγ)
� 1

= 2γ�1� 1+ o (1) .
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