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 Incompressible Navier-Stokes on a periodic domain

D = [−L, L]3, L > 0
∂v

∂t
+ v ·∇v = ν∆v −∇p + g

∇ · v = 0, v(x, 0) = v0(x), x ∈ D

v = (v1, v2, v3), x = (x1, x2, x3)



 Incompressible Navier-Stokes on a periodic domain

∇ · v = 0 ⇒ v ·∇v → ∇(v ⊗ v)
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REGULARIZATION
 WHAT & WHY ?

• SPATIAL FILTER

• MATHEMATICAL 
TECHNIQUE: Leray 
existence theory for NS.

• COMPUTATIONAL 
TECHNIQUE: Flow 
structure may exist below 
grid in high Reynolds NS.

u
∂v

∂t
+ ·∇v = ν∆v −∇p + g

u = G ∗ v



Gallavotti Principle:  Maintain Kelvin Circulation Theorem 

Foias, Holm, Titi (2002) DERIVED LANSalpha

Time rate of change of momentum (per unit mass) 
around a closed material loop moving with the 

regularized fluid velocity  should be an integral over 
viscous and external forces acting on the fluid.

 Leray’s regularization did not satisfy this principle.

d

dt

∮
γ(u)

v · dx =

∮
γ(u)

(ν∆v + g)dx



 Incompressible LANSalpha on a periodic domain

D = [−L, L]3, L > 0

In this paper we develop a mix of probabilistic and analytic approaches to these problems.

The basic objective is to introduce and explore the multiplicative branching random walk

cascade within the context of LANSα. From a probabilistic perspective it is noteworthy

that solutions to all of the LANSα equations (for α ≥ 0) can be accommodated by a single

probability model (branching random walk cascade), distinguished entirely by the (determin-

istic) α-dependent multiplicative factors used in the expected value representation. This may

have advantages for Monte-Carlo simulation approaches; see [14] for illustrative Monte-Carlo

numerical applications of the branching random walk cascade to Burgers equation.

From the theoretical point of view, probabilistic considerations lead to natural function

spaces for which one has representations of unique global solutions to LANSα (with periodic

boundary) for each α ≥ 0 as an expected value of a stochastic cascade defined on a common

probability space. In particular, this includes the limiting α = 0 case of incompressible

Navier-Stokes equations with periodic boundary. Within this function space we then obtain

a rate on a mixed L1 − L2 space-time norm in which LANSα solutions converge to those of

Navier-Stokes.

2 The Mild LANSα Equations

Recall that the LANSα equations on a periodic domain D = [−L, L]3, L > 0 in R3, can be

written as

∂v(α)

∂t
+∇·(u(α) ⊗ v(α)) + (∇u(α))Tv(α) = ν∆v(α) −∇p + g

∇·v(α) = 0, (1− α2∆)u(α) = v(α)

with initial data v(α)(x, 0) = v0(x). Here v(α) = (v(α)
1 , v(α)

2 , v(α)
3 ) denotes the velocity field, p

the pressure, ν is a positive constant representing the viscosity, and g represents an external

body force, respectively. The superscript T denotes matrix transpose. The initial velocity

v0(x) does not depend on α and we assume, without loss of generality, that both it and g are

3

α ≥ 0LANSalpha

u = G ∗ v = (I − α
2∆)−1

v
AVERAGING
OPERATOR



CURRENT THEORY 
(BRIEF SURVEY)

• Foias, Holm, Titi (2002), Marsden, Shkoller 
(2003): Existence and regularity theory 
based on energy estimates.

• Kolmogorov Scaling and Attractor 
Dimension Estimates.

• Foias, Holm,Titi (2002),Linshutz, Titi (2007): 
Convergence of subsequences as            .

• Computational numerical experiments.

α ↓ 0



v(x, t) =
∑

k∈Z3

v̂(k, t)eiβk·x

Fourier Expansion:

β =
2π

2L
Aspect Ratio:



v(x, t) =
∑

k∈Z3

v̂(k, t)eiβk·x

Fourier Expansion:

β =
2π

2L
Aspect Ratio:

= −ν|βk|2v̂ − iβkp̂(k, t) + ĝ.
WHERE

û(k, t) =
v̂(k, t)

1 + α2|βk|2

∂v̂(k, t)

∂t
+ iβ

(

k
∑

l

û(l, t) ⊗ v̂(k − l, t) +
∑

l

lû(l, t) · v̂(k − l, t)

)



dv

dt
= ∆v + g

∂v̂

∂t
= −|k|2v̂ + ĝ

v̂(k, t) = v̂0(k)e−|k|2t +

∫ t

0

|k|2e−|k|2s ĝ(k, t − s)

|k|2
ds

v̂(k, t) = v̂0(k)e−|k|2t +

∫ t

0

e−|k|2sĝ(k, t − s)ds

A SIMPLER PROBABILISTIC DRESS 
- FOR ILLUSTRATION -

X(k, t) =

{

v̂0(k) if S > t
ĝ(k,t−S)

|k|2 if S ≤ t

P (S > t) = e
−|k|2t



the equation reduces to the following equivalent form:

χ(k, t) = exp[−ν|βk|2t]χ0(k)

+
2∑

l=0

ql

∫ t

0
ν|βk|2 exp[−ν|βk|2s]

∑

j,n
m(α)

l (j, n)Ql(χ(j, t− s), χ(n, t− s); j, n)W (j, n; k) ds

+ q3

∫ t

0
ν|βk|2 exp[−ν|βk|2s] ϕ(k, t− s)ds (2.12)

The probabilistic interpretation of this equation given in the next section is made possible by

observing that W (j, n; k) (for fixed k) is a probability mass functions with support contained

in the set {(j, n) ∈ Z3×Z3 : j+n = k}. In particular, these will provide transition probabilities

for which a wavenumber k will branch into a pair of wavenumbers j, k− j. This view of the

underlying equations will be exploited in the next section to obtain conditions for global

existence, uniqueness, and convergence.

3 Stochastic Cascade Representation: Global exis-
tence, uniqueness and convergence

Equation (2.12) can be interpreted in terms of an expected value of a multiplicative functional

defined on a branching binary tree. Indeed, each of the terms of this equation has been

weighted to explicitly reflect this form. For example, if one considers a random variable S∅

with an exponential distribution with parameter ν|βk|2, the first term in this equation can

be written as

E [χ0(k)1[S∅ > t]] .

On the other hand, if S∅ < t one thinks of either terminating the process at time t − S∅

with probability q3, or branching into two particles (j, n) chosen according to the probability

mass function W (j, n; k), and (independently) assigned multipliers m(α)
l (j, n) with probability

ql(l = 0, 1, 2). The process then continues with each branch following the same process

independently of each other.
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+ q0(2L)−3
∫ t

0
ν|βk|2 exp[−ν|βk|2s]

∑

j

[
h ∗ h(k)|βk|

ν|βk|2h(k)(1 + α2|βj|2)
1

q0

]

[
(ek · v̂(j, t− s))(πkv̂(k− j, t− s))

i h(j)h(k− j)

]
h(j)h(k− j)

h ∗ h(k)
ds

+ q1(2L)−3
∫ t

0
ν|βk|2 exp[−ν|βk|2s]

∑

j

[
α2h ∗ h(k)|βk|2

2ν|βk|2h(k)

1

q1

|βj|
(1 + α2|βj|2)(1 + α2|βk− βj|2)

]

[

πk(ej)
v̂(j, t− s) · v̂(k− j, t− s)

i h(j)h(k− j)

] [
h(j)h(k− j)

h ∗ h(k)

]

ds

+ q2(2L)−3
∫ t

0
ν|βk|2 exp[−ν|βk|2s]

∑

j

[
α2h ∗ h(k)|βk|

ν|βk|2h(k)

|βj|2

(1 + α2|βj|2)(1 + α2|βk− βj|2)
1

q2

]

[

πk(ej)(ek · ej)
i v̂(j, t− s) · v̂(k− j, t− s)

h(j)h(k− j)

]
h(j)h(k− j)

h ∗ h(k)
ds

+ q3

∫ t

0
ν|βk|2 exp[−ν|βk|2s]

[
ĝ(k, t− s)

ν|βk|2h(k)

1

q3

]

ds. (2.5)

To simplify this expression let

m(k) =
h ∗ h(k)

h(k)(2L)3ν|βk| , W (j, n; k) =
h(j)h(n)

h ∗ h(k)
δk(j, n), (2.6)

where δk(j, n) = 1 if j + n = k, and vanishes otherwise. Define, with k = j + n,

m(α)
0 (j, n) = m(k)

1

q0(1 + α2|βj|2) ≤
m(k)

q0
, (2.7)

and for l = 1, 2,

m(α)
l (j, n) = m(k)

α2|βj|l|βk
2 |2−l

(1 + α2|βj|2)(1 + α2|βn|2ql
. (2.8)

Also, for j and n in Z3, and with k = j + n, define the bilinear forms on Z3 × Z3

Q0(a, b; j, n) = −i(ek·a)πk(b), Q1(a, b; j, n) = −iπk(en)(a·b), Q2(a, b; j, n) = iπk(en)(ej·en)(a·b).

(2.9)

It should be noted that

|Ql(a, b; j, n)| ≤ |a||b|. (2.10)

Introducing the re-scaled Fourier coefficients

χ(k, t) =
v̂(k, t)

h(k)
, ϕ(k, t) =

ĝ(k, t)

ν|βk|2h(k)q3
(2.11)
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Multipliers: m
(α)
l

(j, n)

MAIN INGREDIENTS

Wave Number Transition Probabilities:

(Branching) Quadratic Forms: Ql(·, ·)

W (j, n : k)

Offspring Type Probabilities: ql



To provide the details of this construction, let V denote the vertex of a complete binary

tree rooted at ∅,

V = ∪∞
j=0{1, 2}j = {∅, 〈1〉, 〈2〉, 〈11〉, 〈12〉, ...}.

As standard, a vertex 〈v〉 = 〈v1, v2, ....vk〉 of the binary tree is said to be of length |〈v〉| = k,

with |∅| = 0. For l = 1, 2, denote by 〈vl〉 = 〈v1, v2, ..., vk, l〉 the vertex of length k+1 obtained

from 〈v〉 by concatenating the value l.

Let {κ〈v〉 : 〈v〉 ∈ V} be a collection of independent and identically distributed random

variables with

P(κ〈v〉 = l) = ql, l = 0, 1, 2, 3.

Let {S〈v〉 : 〈v〉 ∈ V} be a collection of i.i.d. mean-one exponentially distributed random vari-

ables, and independent of {κ〈v〉 : 〈v〉 ∈ V}. Then for each 〈v〉 ∈ V and nonzero wavenumber

k〈v〉,

S〈v〉 =
1

ν|βk〈v〉|2
S〈v〉

is a random variable, independent of {κ〈v〉 : 〈v〉 ∈ V}, having an exponential distribution

with parameter ν|βk〈v〉|2. Finally, conditioned on k〈v〉 and κ〈v〉 = l for l &= 3, the ordered pair

(k〈v1〉, k〈v2〉) is chosen according to the probability mass function W (j, n; k〈v〉). The resulting

family of wavenumbers {k〈v〉 : 〈v〉 ∈ V} defines a tree-indexed Markov chain starting at

k∅ = k whose distribution does not depend on α.

Next we recursively define the cascade functional by

〉〈(α)(k〈v〉, t) =






χ0(k〈v〉) if S〈v〉 ≥ t

ϕ(k〈v〉, t− S〈v〉) if S〈v〉 < t, and κ〈v〉 = 3

m(α)
l (k〈v1〉, k〈v2〉)Ql

(
〉〈(α)(k〈v1〉, t− S〈v〉), 〉〈(α)(k〈v2〉, t− S〈v〉); k〈v1〉, k〈v2〉

)

if S〈v〉 < t, and κ〈v〉 = l &= 3.

(3.13)

Note that with q3 = 1/2, the expected number of branches at any given vertex equals 1.

Consequently, the recursion is well defined, since with probability one it terminates after a

finite number of branchings.
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EXPECTED VALUE OF WHAT ?



This recursion provides a stochastic representation of the solution of equation (2.12) ac-

cording to the following theorem.

Theorem 3.1 Assume that v̂0(k), ĝ(k, s) and h(k) are such that E(|〉〈(α)(k, t)|) is finite for

all k ∈ Z3, 0 ≤ t ≤ T. Then v̂(α)(k, t) = h(k)E(〉〈(α)(k, t)) is a mild solution of the LANSα

equation.

Proof: It suffices to show that χ(k, t) = v̂(k, t)/h(k) satisfies equation (2.12). Under the

assumption of finite expectation, one has

E(〉〈(α)(k, t)) = E(〉〈(α)(k, t)1[S∅ ≥ t]) +
3∑

l=0

qlE(〉〈(α)(k, t)1[S∅ < t]|κ∅ = l)

= P(S∅ ≥ t)χ0(k) + q3

∫ t

0
ν|βk|2 exp[−ν|βk|2s]ϕ(k, t− s)ds

+
2∑

l=0

ql

∫ t

0
ν|βk|2 exp[−ν|βk|2s]

E
[
m(α)

l (k〈1〉, k〈2〉)Ql(〉〈(α)(k〈1〉, t− s), 〉〈(α)(k〈2〉, t− s); k〈1〉, k〈2〉)|κ〈v〉 = l
]
ds

The theorem follows since by construction,

E
[
Ql(〉〈(α)(k〈1〉, t− s), 〉〈(α)(k〈2〉, t− s); k〈1〉, k〈2〉)|κ∅ = l

]

=
∑

j+n=k
Ql(〉〈(α)(j, t− s), 〉〈(α)(n, t− s); j, n)W (j, n; k)

!

Theorem 3.1 provides the basis for the determination of function spaces appropriate to

this theory by considering conditions on the initial data and forcing such that the hypothesis

hold. Consider the function space Fh given by

Fh = {v ∈ L2(T 3) : ||v||h ≡ sup
0≤t≤T ,k %=0

|v(k, t)|
h(k)

< ∞}, (3.14)

for majorizing kernels h. Such function spaces can be viewed as a generalization of Besov

spaces; see [1].
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Fh,T =

{

v ∈ L2 : sup
0≤t≤T,k"=0

|v̂(k, t)|

h(k)
< ∞

}

SLEDGE HAMMER APPROACH:   MAKE

(α)(k, t) ≤|X             |       1       



+ q0(2L)−3
∫ t

0
ν|βk|2 exp[−ν|βk|2s]

∑

j

[
h ∗ h(k)|βk|

ν|βk|2h(k)(1 + α2|βj|2)
1

q0

]

[
(ek · v̂(j, t− s))(πkv̂(k− j, t− s))

i h(j)h(k− j)

]
h(j)h(k− j)

h ∗ h(k)
ds

+ q1(2L)−3
∫ t

0
ν|βk|2 exp[−ν|βk|2s]

∑

j

[
α2h ∗ h(k)|βk|2

2ν|βk|2h(k)

1

q1

|βj|
(1 + α2|βj|2)(1 + α2|βk− βj|2)

]

[

πk(ej)
v̂(j, t− s) · v̂(k− j, t− s)

i h(j)h(k− j)

] [
h(j)h(k− j)

h ∗ h(k)

]

ds

+ q2(2L)−3
∫ t

0
ν|βk|2 exp[−ν|βk|2s]

∑

j

[
α2h ∗ h(k)|βk|

ν|βk|2h(k)

|βj|2

(1 + α2|βj|2)(1 + α2|βk− βj|2)
1

q2

]

[

πk(ej)(ek · ej)
i v̂(j, t− s) · v̂(k− j, t− s)

h(j)h(k− j)

]
h(j)h(k− j)

h ∗ h(k)
ds

+ q3

∫ t

0
ν|βk|2 exp[−ν|βk|2s]

[
ĝ(k, t− s)

ν|βk|2h(k)

1

q3

]

ds. (2.5)

To simplify this expression let

m(k) =
h ∗ h(k)

h(k)(2L)3ν|βk| , W (j, n; k) =
h(j)h(n)

h ∗ h(k)
δk(j, n), (2.6)

where δk(j, n) = 1 if j + n = k, and vanishes otherwise. Define, with k = j + n,

m(α)
0 (j, n) = m(k)

1

q0(1 + α2|βj|2) ≤
m(k)

q0
, (2.7)

and for l = 1, 2,

m(α)
l (j, n) = m(k)

α2|βj|l|βk
2 |2−l

(1 + α2|βj|2)(1 + α2|βn|2ql
. (2.8)

Also, for j and n in Z3, and with k = j + n, define the bilinear forms on Z3 × Z3

Q0(a, b; j, n) = −i(ek·a)πk(b), Q1(a, b; j, n) = −iπk(en)(a·b), Q2(a, b; j, n) = iπk(en)(ej·en)(a·b).

(2.9)

It should be noted that

|Ql(a, b; j, n)| ≤ |a||b|. (2.10)

Introducing the re-scaled Fourier coefficients

χ(k, t) =
v̂(k, t)

h(k)
, ϕ(k, t) =

ĝ(k, t)

ν|βk|2h(k)q3
(2.11)
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[
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0
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1
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0
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Observe for any positive constant c > 0 that,

Fh = Fch, ||v||ch =
1

c
||v||h. (3.15)

In particular results may be stated for standardized kernels in defining Fh. On the other

hand, such constants are reflected in the size of the ball in the space Fh for which the global

existence/uniqueness/convergence results are obtained. In particular, suppose that h(k) is

a standardized majorizing kernel. Choose R > 0 such that in the stochastic representation

defined by Rh one has

m(α)
l (k, j) ≤ 1, l = 0, 1, 2.

If the initial data v0 ∈ Fh(= FRh), and forcing are such that

|v̂0(k)| ≤ Rh(k), |ĝ(k, t)| ≤ ν|βk|2Rh(k)q3,

then one obtains
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In particular, the hypothesis of Theorem 3.1 are trivially satisfied. One may note that

the condition on the forcing may be equivalently expressed by a condition on the inverse

Laplacian of g (noting the role of β in the definition of the Fourier coefficients):

∆−1g ∈ Bq3νR.

The following lemma will be used for the determination of the radius R in the proof of

the theorem to follow.

Lemma 3.1 The following inequality holds for any α, β > 0 and k ∈ Z3.

α2|βk||βj|
(1 + α2|βj|2)(1 + α2|βk− βj|2) ≤ 1.
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LEMMA

m(k) =
h ∗ h(k)

h(k)ν|βk|
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0
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q0

]
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∫ t
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]

[
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q3
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m(k)

q0
, (2.7)
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m(α)
l (j, n) = m(k)

α2|βj|l|βk
2 |2−l
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. (2.8)
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, W (j, n; k) =
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δk(j + n)
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SMALL BALL APPROACH:  CHOOSE A RADIUS R:

NOTE ON ROLE OF MAJORIZING CONSTANTS: 

Fh = Fch, c > 0

 MAJORIZING KERNEL: h ∗ h(k) ≤ C|k|h(k)

|| · ||ch =
1

c

|| · ||h

ch ∗ ch(k) ≤ cC|k|ch(k)



Observe for any positive constant c > 0 that,

Fh = Fch, ||v||ch =
1

c
||v||h. (3.15)

In particular results may be stated for standardized kernels in defining Fh. On the other

hand, such constants are reflected in the size of the ball in the space Fh for which the global

existence/uniqueness/convergence results are obtained. In particular, suppose that h(k) is

a standardized majorizing kernel. Choose R > 0 such that in the stochastic representation

defined by Rh one has

m(α)
l (k, j) ≤ 1, l = 0, 1, 2.

If the initial data v0 ∈ Fh(= FRh), and forcing are such that

|v̂0(k)| ≤ Rh(k), |ĝ(k, t)| ≤ ν|βk|2Rh(k)q3,

then one obtains

|〉〈(α)(k, t)| ≤ 1.

In particular, the hypothesis of Theorem 3.1 are trivially satisfied. One may note that

the condition on the forcing may be equivalently expressed by a condition on the inverse

Laplacian of g (noting the role of β in the definition of the Fourier coefficients):

∆−1g ∈ Bq3νR.

The following lemma will be used for the determination of the radius R in the proof of

the theorem to follow.

Lemma 3.1 The following inequality holds for any α, β > 0 and k ∈ Z3.

α2|βk||βj|
(1 + α2|βj|2)(1 + α2|βk− βj|2) ≤ 1.
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Fh = Fch, c > 0
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h ∗ h(k)

h(k)ν|βk|

|| · ||ch =
1

c

|| · ||h
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Proof: Introducing a new variable γ = αβ > 0 we need only prove the following:

|j|
(1 + γ2|j|2)(1 + γ2|k− j|2) −

1

γ2|k| ≤ 0

Consider two cases |j| ≥ |k| and |j| < |k| for a given k. For the first case we simply find

|j|
(1 + γ2|j|2)(1 + γ2|k− j|2) ≤

|j|
1 + γ2|j|2 ≤

1

γ2|j| ≤
1

γ2|k|

and done. For the second case, using the fact |k− j|2 ≥ (|k|− |j|)2 we will show, for 0 ≤ t ≤ a,

t

(1 + γ2t2)(1 + γ2(t− a)2)
≤ 1

γ2a
.

But by the substitution u = γt, v = γ(a − t), this is equivalent to another inequality for

0 ≤ u ≤ γa,
u(u + v)

(1 + u2)(1 + v2)
≤ 1.

which, if expanded, is the same as

(uv)2 − uv + v2 + 1 = (uv − 1

2
)2 + v2 +

3

4
> 0.

Thus the proof is complete

!

.

Conditions for global existence, uniqueness and convergence of mild solutions (as α ↓ 0)

may now be expressed in terms of an appropriate ball in the space Fh as follows.

Theorem 3.2 Let h be a standardized majorizing kernel. Take q3 = 1
2 , and q0 = q1 = q2 = 1

6 .

Let BR ⊆ Fh denote the ball of radius R centered at 0, where R = (2L)3νβ
6 . If the v0 ∈ BR

and ∆−1g ∈ B νR
2

then the solution of each LANSα, v̂α(k, t) exists and is unique for all t > 0.

Moreover, for each k ∈ Z3 one has

lim
α→0

v(α)(k, t) = v(0)(k, t).

11

RECALL SLEDGE HAMMER CONDITION
(FOLLOWING IS A COROLLARY)



RATE OF CONVERGENCE

where

C(t) = M∗e
M∗2π

ν t
∫ t

0
(eγs +

1√
ν
c(s))ds.

!

We are now in a position to prove the main theorem in which we obtain convergence at

a rate of order α in a mixed L1-norm in time of the spatial (energy) L2-norm.

Theorem 5.1 Let h ∈ l1(Z3) be a standardized majorizing kernel satisfying the following

further moment conditions:

∑

j
|j|h(j) <∞,

∑

j
|j|lh(j)h(k− j) <∞, k ∈ Z3, l = 2, 3.

Take q0 = q1 = q2 = 1
6 and q3 = 1

2 . Let γ = νβ2

2 . Let R = νβ
6 and suppose v0 ∈ BR,

∆−1g ∈ B νR
2
. Then LANSα has a unique global solution for all α ≥ 0. Moreover, there is a

positive constant A(T ), not depending on α, such that

∫ T

0
||v(α)(·, t)− v(0)(·, t)||L2(T 3)dt ≤ A(T )α.

Proof: The global existence and uniqueness follow from the representation Theorem 3.2.

Observe that for v0 ∈ BR one has

|v̂(α)(k, t)| ≤ Rh(k), α ≥ 0.

Also, using the Plancherel identity, Cauchy-Schwarz inequality and this bound, one has

∫ T

0
||v(α)(·, s)− v(0)(·, s)||L2(T 3)ds

=
∫ T

0
e−

γs
2 e

γs
2 ||v̂(α)(·, s)− v̂(0)(·, s)||

l2(Z3
)
ds

≤
(∫ T

0
e−γs

) 1
2

(
∫ T

0
eγs sup

k
|v̂(α)(k, s)− v̂(0)(k, s)|

∑

k

∣∣∣v̂(α)(k, s)− v̂(0)(k, s)
∣∣∣)ds)

1
2

≤
√

1− e−γT

γ

(

2R
∫ T

0
eγs∆(s)ds

) 1
2

≤ α

√

2RC(T )
1− e−γT

γ
= αA(T ),

22



!

Remark The special notations for convolution (∗c, ∗d) introduced in the lemma will dropped

when the meaning of ∗ is clear from the context.

As an application it follows that

Corollary 4.1 The function

h(k) =
e−|k|

|k| , k ∈ Z3, k #= 0, h(0) = 0,

defines a majorizing kernel. In fact, h ∈ l1 is normalizable to a probability.

The majorizing kernel provided by Corollary 4.1 is significant in providing an example of

a majorizing kernel satisfying the moment conditions under which rates of convergence will

be obtained in the last section of this paper. As noted in [1], the continuous version of this

kernel implicitly appears in the analysis in [10]. Also, one may check that the lattice potential

it is asymptotically equivalent to a three-dimensional Bessel potential on {k ∈ Z : |k| ≥ 1}.

However, the regularity and uniqueness, and (full) convergence of solutions as α → 0 can

be obtained for a larger class of majorizing kernels. So we include general approaches to the

construction of such functions in the remainder of this section. This is largely an extension

of ideas developed in [1] to the (lattice) case for periodic boundary conditions.

We first note the following.

Lemma 4.1 Let g1, g2 : Zd → R+. Assume that g1(k) ∼ g2(k) for large k. Then there exists

c > 0, C > 0 such that for all k ∈ Zd

cg2(k) ≤ g1(k) ≤ Cg2(k)

Proof From the asymptotic behavior, it follows that there exists M such that |k| > M ,

(1/2)g2(k) ≤ g1(k) ≤ 2g2(k). Since the gj(k) are assumed to be strictly positive, the lemma

follows by taking c = min{1/2, g1(k)/g2(k), |k| ≤ M}, and C = max{2, g1(k)/g2(k), |k| ≤ M}.
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From the point of view of analysis it is occasionally more convenient to obtain majorizing

kernels for integral convolutions. The following proposition firms up a useful connection.

Proposition 4.1 For measurable h : R3 → [0,∞), define

h ∗c h(ξ) :=
∫

Rd h(ξ − η)h(η)dη, ξ ∈ R3,

and

h ∗d h(k) :=
∑

k∈Z3

h(k− j)h(j), k ∈ Z3.

Suppose

h ∗c h(ξ) ≤ c|ξ|h(ξ), ξ ∈ R3.

Let Qk(1) denote the unit cube centered at k ∈ Z3. If there are constants c1, c2 such that

c2h(k) ≤ h(η) ≤ c1h(k), ∀η ∈ Qk(1),

then

c2
2h ∗d h(k) ≤ h ∗c h(k) ≤ c2

1h ∗d h(k), k ∈ Z3.

In particular,

h ∗d h(k) ≤ c

c2
2

|k|h(k), k (= 0.

Proof: Use the l1-norm on R3 to get for η ∈ Qj(1), and k ∈ Z that k− η ∈ Qk−j. Therefore,

h ∗c h(k) =
∫

R
h(η)h(k− η)dη

=
∑

j∈Z

∫

Qj(1)
h(η)h(k− η)dη

≥
∑

j∈Z

∫

Qj(1)
c2
2h(j)h(k− j)dη = h ∗d h(k). (4.17)

The upper bound is proved in the same way. From the majorizing property one obtains

h ∗d h(k) ≤ 1

c2
2

h ∗c h(k) ≤ c

c2
2

|k|h(k).
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APPROACH TO RATES:
Gronwall inequality to an integral equation for the difference

Having identified natural function spaces for this problem, we will analyze the evolution

of the differences denoted by

δ(k, t) = v(α)(k, t)− v(0)(k, t), k ∈ Z3, ∆(t) := sup
k

|δ(k, t)|, t ≥ 0.

Note that the forcing term ĝ will cancel in this difference. In particular one has

Proposition 5.1 Let h ∈ l1(Z3) be a standardized majorizing kernel satisfying the following

further moment conditions:

∑

j
|j|h(j) <∞,

∑

j
|j|lh(j)h(k− j) <∞, k ∈ Z3, l = 2, 3.

Let γ = νβ2

2 . If ||v0||h ≤M then there is a constant C(T ) > 0, not depending on α, such that

∫ T

0
eγs∆(s)ds ≤ C(T )α2.

Proof: Using the definitions one may write

(−i)(2L)3δ(k, t)

=
∫ t

0

∑

j
{βk · δ(j, t− s)πkv((α)(k− j, t− s)

+βk · δ(j, t− s)πkv(0)(k− j, t− s)} 1

1 + α2|βj|2 e−ν|βk|2sds

−
∫ t

0
e−ν|βk|2s

∑

j

α2|βj|2

1 + α2|βj|2βk · v(0)(j, t− s)πkv(0)(k− j, t− s)ds

+
1

2

∫ t

0
e−ν|βk|2s

∑

j
D(α)(j, k){δ(j, t− s)v(α)(k− j, t− s) + v(0)(j, t− s) · δ(k− j, t− s)

+v(0)(j, t− s)v(0)(k− j, t− s)}ds, (5.18)

where

D(α)(j, k) = πk(βj)

[
1

1 + α2|βj|2 −
1

1 + α2|β(k− j)|2

]

.

Suppose that

|v(0)(k)| ≤Mh(k), k &= 0.
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where

M∗ = max{M2β

ν
(m2 + m3), 2Mm1β, 2Mm0}.

It is convenient to consider

∆̃(t) = eγt∆(t), t ≥ 0.

Then

∆̃(t) ≤M∗



α2eγt +
∫ t

0

∆̃(s)ds
√

ν(t− s)



 , t ≥ 0. (5.25)

The special “square-root” case of the Abel transform term appearing in this inequality is

“invertible” by multiplying (5.25) by 1√
u−t

and integrating over (0, u), say, to obtain

∫ u

0

∆̃(t)√
u− t

dt ≤ α2M∗
∫ u

0

eγt

√
u− t

dt +
M∗
√

ν

∫ u

0

∫ t

0

∆̃(s)
√

(u− t)(t− s)
dsdt

= α2M∗
∫ u

0

eγt

√
u− t

dt +
M∗
√

ν

∫ u

0

∫ u

s

∆̃(s)
√

(u− t)(t− s)
dtds

= α2M∗eγu
∫ u

0

e−γt

√
t

dt +
M∗
√

ν

∫ u

0
∆̃(s)

∫ 1

0

1
√

τ(1− τ)
dτds

= α2c(u) +
M∗π√

ν

∫ u

0
∆̃(s)ds, (5.26)

where

c(u) = M∗eγu
∫ u

0

e−γt

√
t

dt.

Substituting this bound into (5.25) yields

∆̃(t) ≤ α2M∗
(

eγt +
1√
ν
c(t)

)

+
M∗2π

ν

∫ t

0
∆̃(s)ds. (5.27)

Thus, viewed as a differential inequality for I(t) =
∫ t
0 ∆̃(s)ds, one may introduce the appro-

priate integrating factor (or apply a trivial version of Gronwall’s inequality), to obtain

∫ t

0
eγs∆(s)ds =

∫ t

0
∆̃(s)ds ≤ α2C(t), (5.28)

where

C(t) = M∗e
M∗2π

ν t
∫ t

0
(eγs +

1√
ν
c(s))ds.
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