Brownian motion based versus fractional Brownian motion based models

Jeannette Woerner University of Göttingen

- Comparison of models based on
 - -Brownian motion
 - -Brownian motion with iid noise
 - -fractional Brownian motion
- Identification of jump components
- Applications to financial and climate data

Motivation

Daimler Chrysler 26th January 2005

3 N (K 3)

Motivation

discrete data $X_{t_{n,0}}, \cdots, X_{t_{n,n}}$ $t_{n,n} = t =$ fixed, $\Delta_{n,i} \to 0$ as $n \to \infty$ Assume stochastic volatility model

$$X_t = Y_t + \int_0^t \sigma_s dB_s + \delta Z_t$$

$$X_t = Y_t + \int_0^t \sigma_s dL_s + \delta Z_t$$

$$X_t = Y_t + \int_0^t \sigma_s dB_s^H + \delta Z_t.$$

Aim:

Determine which model is suitable for a specific data set. Estimate $\int_0^t \sigma_s^2 ds$.

イロト イヨト イヨト

How can we infer $\int_0^t \sigma_s^2 ds$

First we consider **Brownian motion based models**. Use the concept of **quadratic variation**, i.e. realized volatility

$$\sum_{i} |Y_{t_i} - Y_{t_{i-1}} + \int_{t_{i-1}}^{t_i} \sigma_s dB_s|^2 \xrightarrow{p} \int_0^t \sigma_s^2 ds$$

Advantages:

- almost model free, only need some Brownian motion based model
- very simple to compute
- distributional theory is known and Gaussian

伺下 イヨト イヨー

Empirical studies versus theoretical results

Statistical principle:

Use all available data.

Problem:

For tick-by-tick data realized volatility increases. **Possible Explanation:**

Market microstructure or market friction

i.e. effects due to bid-ask bounces, discreteness of prices, liquidity problems, asymmetric information,...

Model with iid noise

(cf. Ait-Sahalia, Mykland and Zhang (2006))

$$X_t = \int_0^t \sigma_s dB_s + \epsilon_t,$$

where ϵ denotes iid noise.

Then the realized volatility is of the order

$$2\Delta^{-1}E(\epsilon^2),$$

hence the noise term leads to a bias with dominates the quadratic variation estimate for small Δ .

6 / 40

超す イヨト イヨト

3rd-31st January 2005

log(1/#transactions per day)

ヨト くヨト

< □ > < A > >

Infineon 3rd-31st January 2005

< ロト < 同ト < ヨト < ヨト

Non-normed and normed power variation

$$V_{p}^{n}\left(\int_{0}^{t} \sigma_{s} dB_{s}\right) =$$

$$\sum_{i} \left|\int_{t_{i-1}}^{t_{i}} \sigma_{s} dB_{s}\right|^{p} \xrightarrow{p} \begin{cases} 0 : p > 2\\ \int_{0}^{t} \sigma_{s}^{2} ds : p = 2\\ \infty : p < 2 \end{cases}$$

$$\Delta^{1-p/2} V_p^n (\int_0^t \sigma_s dB_s) \xrightarrow{p} \mu_p \int_0^t \sigma_s^p ds,$$

as $n \to \infty$, where $\mu_p = E(|u|^p)$ with $u \sim N(0,1)$ and $\Delta = t_i - t_{i-1}$. (cf. Barndorff-Nielsen and Shephard (2003))

<ロト < 団ト < 団ト < 団ト

Power variation for the model with iid noise

Using Minkowski's inequality with p > 1 we obtain

$$(\sum |\epsilon_{t_i} - \epsilon_{t_{i-1}}|^p)^{1/p} - (\sum |\int_{t_{i-1}}^{t_i} \sigma_s dB_s|^p)^{1/p} \le (\sum |X_{t_i} - X_{t_{i-1}}|^p)^{1/p}$$
$$\le (\sum |\epsilon_{t_i} - \epsilon_{t_{i-1}}|^p)^{1/p} + (\sum |\int_{t_i}^{t_i} \sigma_s dB_s|^p)^{1/p}$$

$$\leq (\sum |\epsilon_{t_i} - \epsilon_{t_{i-1}}|^p)^{1/p} + (\sum |\int_{t_{i-1}}^{t_i} \sigma_s dB_s|^p)^{1/p}$$

Hence if $E|\epsilon|^p < \infty$ for some p > 2, then

$$\sum |X_{t_i} - X_{t_{i-1}}|^p \to \infty,$$

which does not coincide with empirical findings.

10 / 40

< ロト < 同ト < ヨト < ヨト

3rd-31st January 2005

X

ヨト くヨト

-8,50E+000

-8,00E+000

-7,50E+000

-7,00E+000

log(1/#transactions per day)

-6,50E+000

-6,00E+000

< 口 > < 同

Infineon 3rd -31st January 2005

average over 21 trading days

Infineon 3rd-31st January 2005

< ロト < 同ト < ヨト < ヨト

Fractional Brownian Motion

A fractional Brownian motion (fBm) with **Hurst parameter** $H \in (0, 1)$, $B^{H} = \{B_{t}^{H}, t \geq 0\}$ is a zero mean Gaussian process with the covariance function

$$E(B_t^H B_s^H) = rac{1}{2}(t^{2H} + s^{2H} - |t-s|^{2H}), \quad s,t \ge 0.$$

The fBm is a **self-similar** process, that is, for any constant a > 0, the processes

 $\{a^{-H}B_{at}^{H}, t \ge 0\}$ and $\{B_{t}^{H}, t \ge 0\}$ have the same distribution. For $H = \frac{1}{2}$, B^{H} coincides with the classical Brownian motion. For $H \in (\frac{1}{2}, 1)$ the process possesses **long memory** and for $H \in (0, \frac{1}{2})$ the behaviour is chaotic.

(ロ) (部) (目) (日) (日)

Non-normed Power Variation for fractional Brownian motion

$$\sum_{i} |\int_{t_{i-1}}^{t_{i}} \sigma_{s} dB_{s}^{H}|^{p} \xrightarrow{p} \begin{cases} 0 : p > 1/H \\ \mu_{1/H} \int_{0}^{t} \sigma_{s}^{1/H} ds : p = 1/H \\ \infty : p < 1/H \end{cases},$$

The integral is a **pathwise Riemann-Stieltjes integral** and we need that σ is a stochastic process with paths of finite *q*-variation, $q < \frac{1}{1-H}$. **Idea:** Empirical behaviour of tick-by-tick data may also be explained by fBB with H < 0.5.

14 / 40

< ロト < 同ト < ヨト < ヨ)

Consistency

joint with J.M. Corcuera and D. Nualart (2006)

Theorem

Suppose that σ_t is a stochastic process with finite q-variation, where $q < \frac{1}{1-H}$. Set

$$Z_t = \int_0^t \sigma_s dB_s^H.$$

Then,

$$\Delta^{1-\rho H}V_{p}^{n}(Z) \xrightarrow{P} \mu_{p} \int_{0}^{T} |\sigma_{s}|^{p} ds,$$

as $n \to \infty$.

イロト イヨト イヨト イヨト

Estimate for quadratic variation

We can explain the empirical findings by considering

$$\sum_{i} |X_{t_i} - X_{t_{i-1}}|^2 = \Delta^{2H-1} (\Delta^{1-2H} \sum_{i} |X_{t_i} - X_{t_{i-1}}|^2),$$

where

$$\Delta^{1-2H}\sum_{i}|X_{t_{i}}-X_{t_{i-1}}|^{2} \xrightarrow{p} \int_{0}^{t} \sigma_{s}^{2} ds$$

and $\Delta^{2H-1} \rightarrow \infty$ for H < 0.5.

(本部) (本語) (本語)

More details:

We look at the test statistics:

$$S = \frac{\sum_{i=1}^{[nT]-1} (X_{\frac{i+1}{n}} - X_{\frac{i}{n}}) (X_{\frac{i}{n}} - X_{\frac{i-1}{n}})}{\sum_{i=1}^{[nT]} (X_{\frac{i}{n}} - X_{\frac{i-1}{n}})^2}$$

model based on Brownian motion: 0 model based on Brownian motion with iid noise: -1/2model based on fractional Brownian motion: $\frac{1}{2}(2^{2H}-2)$ confidence interval:

$$\left[-c_{\gamma}\sqrt{\frac{\sum_{i=1}^{[nt]}|X_{\frac{i}{n}}-X_{\frac{i-1}{n}}|^{4}}{3\left(\sum_{i=1}^{[nt]}|X_{\frac{i}{n}}-X_{\frac{i-1}{n}}|^{2}\right)^{2}}},c_{\gamma}\sqrt{\frac{\sum_{i=1}^{[nt]}|X_{\frac{i}{n}}-X_{\frac{i-1}{n}}|^{4}}{3\left(\sum_{i=1}^{[nt]}|X_{\frac{i}{n}}-X_{\frac{i-1}{n}}|^{2}\right)^{2}}}\right],$$

where c_{γ} denotes the γ -quantile of a N(0,1)-distributed random varia

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Daimler Chrysler, January 3rd-31st 2005, 1% level

# transactions	mean distance	S	I. bound BM
66140	7s	-0.1061	-0.0796
33070	14s	-0.1606	-0.1094
22046	21s	-0.1574	-0.1244
16535	28s	-0.1192	-0.1295
13228	35s	-0.1156	-0.1367
# transactions	mean distance	R	I. bound BM
66140	7s	-0.424	-0.0357
33070	14s	-0.4411	-0.0405
22046	21s	-0.3837	-0.0622
16535	28s	-0.2744	-0.0467
13228	35s	-0.2532	-0.0518
11023	42s	-0.2202	-0.0597
9448	49s	-0.1749	-0.0601
8267	56s	-0.1117	-0.0675
7348	63s	-0.1336	-0.0623
6614	70s	-0.0972	-0.0702

Model with market microstructure

, ,	,	, .	
# transactions	mean distance	S	u. bound iid
66140	7s	-0.1061	-0.3621
33070	14s	-0.1606	-0.3106
22046	21s	-0.1574	-0.2845
16535	28s	-0.1192	-0.2758
13228	35s	-0.1156	-0.2632
11023	42s	-0.0994	-0.2413
9448	49s	-0.0827	-0.2354
8267	56s	-0.0542	-0.2472
7348	63s	-0.0608	-0.2134
6614	70s	-0.0487	-0.2285

Daimler Chrysler, January 3rd-31st 2005, 1% level

< 注入 < 注入

What are the effects of these results?

Risk induced by model misspecification

We look at Daimler Chrysler data of 12.1.2005: Assuming a model based on **Brownian motion**:

 $\int_0^T \sigma_s^2 ds = 0.000309$

Assuming a model based on fractional Brownian motion with H = 0.4:

$$\int_0^T \sigma_s^2 ds = 0.000059$$

イロト イヨト イヨト

All Singapore Shares

< ∃⇒

▲ @ ▶ ▲ ∃ ▶

What are the effects of these results?

Risk induced by model misspecification

We look at index data from Singapore: Assuming a model based on **Brownian motion**:

$$\int_0^T \sigma_s^2 ds = 0.319$$

Assuming a model based on fractional Brownian motion with H = 0.6:

$$\int_0^T \sigma_s^2 ds = 1.595$$

超す イヨト イヨト

A measure for the **activity** of the jump component of a Lévy process is the **Blumenthal-Getoor** index β ,

$$eta = \inf\{\delta > 0: \int (1 \wedge |x|^{\delta})
u(dx) < \infty\}.$$

This index ensures, that for $p > \beta$ the sum of the *p*-th power of jumps will be finite.

< ロ > < 同 > < 回 > < 回 > < 回

Comparison of non-normed power variation

$$\sum_{i} \left| \int_{t_{i-1}}^{t_{i}} \sigma_{s} dB_{s} \right|^{p} \xrightarrow{p} \begin{cases} 0 & : \quad p > 2\\ \int_{0}^{t} \sigma_{s}^{2} ds & : \quad p = 2\\ \infty & : \quad p < 2 \end{cases}$$

and the case for the Lévy model

$$\sum_{i} |\int_{t_{i-1}}^{t_{i}} \sigma_{s} dL_{s}|^{p}$$
$$\xrightarrow{p} \left\{ \sum_{i=1}^{\infty} (|\int_{u-}^{u} \sigma_{s} dL_{s}|^{p} : 0 < u \leq t) : p > \beta \\ \infty : p < \beta \right\}$$

under appropriate regularity conditions, where β denotes the Blumenthal-Getoor index of *L*.

Non-normed Power Variation for fractional Brownian motion

$$\sum_{i} |\int_{t_{i-1}}^{t_{i}} \sigma_{s} dB_{s}^{H}|^{p} \xrightarrow{p} \begin{cases} 0 : p > 1/H \\ \mu_{1/H} \int_{0}^{t} \sigma_{s}^{1/H} ds : p = 1/H \\ \infty : p < 1/H \end{cases},$$

where H > 1/2. The integral is a **pathwise Riemann-Stieltjes integral** and we need that σ is a stochastic process with paths of finite *q*-variation, $q < \frac{1}{1-H}$. Hence one over the **Hurst exponent** plays a similar role as the

Blumenthal-Getoor index.

< ロト < 同ト < ヨト < ヨ)

Log-Power Variation Estimators

Theorem

Assume that for some $k \in \mathbf{R}$ and $p \in (a, b)$, s.t. $1 - pk \neq 0$

$$\Delta^{1-pk} V_p^n(X) \xrightarrow{p} C, \qquad (1$$

with $0 < C < \infty$, then

$$\frac{\ln(\Delta V_p^n(X))}{p\ln\Delta} \xrightarrow{p} k \tag{2}$$

holds as $n \to \infty$, if on the other hand

$$V_{\rho}^{n}(X) \xrightarrow{\rho} C, \tag{3}$$

with $0 < C < \infty$, then as $n \to \infty$

$$\frac{\ln(\Delta V_p^n(X))}{p\ln\Delta} \xrightarrow{p} \frac{1}{p}.$$

(4)

Question:

When is condition (1) or (3) satisfied

The definition of the Blumenthal-Getoor index for $p > \beta$ yields (3).

(1) has been considered in the framework of estimating the $\ensuremath{\text{integrated}}$ volatility for many models :

- classical stochastic volatility models based on Brownian motion with general mean process and additional jump component.

- models based on fractional Brownian motion.
- models based on Lévy processes.

<ロト < 圖ト < 国ト < 国ト

Purely continuous model

• • = • • = •

Pure jump model

(ロ) (部) (目) (日) (日)

Mixed model

・ロト ・聞ト ・ヨト ・ヨト

How to determine a jump component

Look at the behaviour of the **second derivative** of the log-power variation in p.

Example 1: Daimler Chrysler data 12th January 2005: 3960 transactions 26th January 2005: 3328 transactions

Example 2: Infineon data 12th January 2005: 2806 transactions 26th January 2005: 1977 transactions

Example 3: daily index data of Singapore All Shares 6.1.1986-31.12.1997: 3128 transactions

э

3,25 3,5 3,75

р

3

4,25 4,5 4,75

5

4

Daimler Chrysler 26th January 2005

1,75

1,5

2,25 2,5 2,75

2

э

Image: A matched block of the second seco

- - E - I

(1) (1)

Image: A match a ma

Singapore All Shares

Modelling of transitions between climate states

Calcium concentration in ice cores is proportional to one over the temperature.

suggested model: dynamical system with a Lévy component

$$dX_t^{\epsilon} = -U'(X_t^{\epsilon})dt + \epsilon dL_t.$$

(cf. Ditlevsen (1999), Imkeller and Pavlyukevich (2006)) However we get H = 0.36.

- 4 同 ト 4 ヨ ト 4 ヨ ト

log-Ca Concentration

- E - D

Temperature data

no jumps

• H=0.35

 \mathbf{Q}

J.H.C. Woerner (Universität Göttingen)

Conclusion:

- Increasing limits in quadratic variation for data may be explained by fractional Brownian motion with H < 0.5.
- This approach may be applied to financial and climate data.
- log-power variation may be used to detect jump components in both Brownian and fractional Brownian motion based models.

ト 4 注入 4 注入