ForWind 9

- new insights into turbulence with excursion to finance -

Stephan Lück,	in cooperation with
Malte Siefert,	
Robert Stresing	Bernard Castaing
Andreas Nawroth	Benoit Chabaud
Anne Laupichler,	Rudolf Friedrich
Matthias Wächter,	David Kleinhans,
	Antoine Naert

Joachim Peinke

lokal isotrope turbulence - experiment

- at least we can measure the turbulence

turbulence

open question: to understand the correlations of the disorder of the turbulent field

$$
\left\langle u_{i}^{\alpha}(x) \cdot u_{j}^{\beta}(x+r)\right\rangle
$$

for $r=>0$ Reynolds stress
alternatively increments for spatial correlations

$$
\vec{u}_{r}(x)=\vec{u}(x+r)-\vec{u}(x)
$$

with u_{r} longitudinal and v_{r} transversal increments

statistics of turbulence

challenge to know - general n -scale statistics

$$
\begin{aligned}
& p\left(\vec{u}_{1}, r_{1} ; \vec{u}_{2}, r_{2} ; \ldots ; \vec{u}_{n}, r_{n}\right) \\
& \left\langle\vec{u}_{1}^{\alpha_{1}} \cdot \vec{u}_{2}^{\alpha_{2}} \ldots \vec{u}_{n}^{\alpha_{n}}\right\rangle
\end{aligned}
$$

Known is
Kolmogorov $\left\langle u_{r}^{3}\right\rangle=-\frac{4}{5} \varepsilon r+6 v \frac{\partial}{\partial r}\left\langle u_{r}^{2}\right\rangle$

$$
\left\langle u_{r}(x)^{n}\right\rangle \propto C_{n} r^{\xi_{n}}
$$

Karman

$$
-r \frac{\partial}{\partial r}\left\langle u_{r}^{2}\right\rangle=2\left\langle u_{r}^{2}\right\rangle-2\left\langle v_{r}^{2}\right\rangle
$$

statistics of turbulence

n-scale statistics

$$
p\left(\vec{u}_{1}, r_{1} ; \vec{u}_{2}, r_{2} ; \ldots ; \vec{u}_{n}, r_{n}\right)
$$

what are possible simplifications?
all increments at the same location

$$
u_{r_{i}}=: u_{i}=u\left(x+r_{i}\right)-u(x)
$$

statistics of turbulence -2-

n -scale statistics

$$
p\left(\vec{u}_{1}, r_{1} ; \vec{u}_{2}, r_{2} ; \ldots ; \vec{u}_{n}, r_{n}\right)
$$

what are possible simplifications?
formula of Bayes
$p\left(\vec{u}_{1}, r_{1} ; \ldots ; \vec{u}_{n}, r_{n}\right)=$
$p\left(\vec{u}_{1}, r_{1} \mid \vec{u}_{2}, r_{2} ; \ldots ; \vec{u}_{n}, r_{n}\right) p\left(\vec{u}_{2}, r_{2} ; \ldots ; \vec{u}_{n}, r_{n}\right)$
simplification if:

$$
p\left(\vec{u}_{1}, r_{1} \mid \vec{u}_{2}, r_{2} ; \ldots ; \vec{u}_{n}, r_{n}\right)=p\left(\vec{u}_{1}, r_{1} \mid \vec{u}_{2}, r_{2}\right)
$$

or

$$
p\left(\vec{u}_{1}, r_{1} \mid \vec{u}_{2}, r_{2} ; \ldots ; \vec{u}_{n}, r_{n}\right)=p\left(\vec{u}_{1}, r_{1}\right)
$$

statistics of turbulence -3-

simplification
(I)

$$
p\left(\vec{u}_{1}, r_{1} \mid \vec{u}_{2}, r_{2} ; \ldots ; \vec{u}_{n}, r_{n}\right)=p\left(\vec{u}_{1}, r_{1} \mid \vec{u}_{2}, r_{2}\right)
$$

(2) $p\left(\vec{u}_{1}, r_{1} \mid \vec{u}_{2}, r_{2} ; \ldots ; \vec{u}_{n}, r_{n}\right)=p\left(\vec{u}_{1}, r_{1}\right)$
experimental test

experimental result:

$$
p\left(u_{1} \mid u_{2}, u_{3}\right)=p\left(u_{1} \mid u_{2}\right)
$$

(I) holds
(2) not

ForWind

statistics of turbulence -4-

general n -scale statistics can be expressed by
$p\left(\vec{u}_{1}, r_{1} ; \ldots ; \vec{u}_{n}, r_{n}\right)=p\left(\vec{u}_{1}, r_{1} \mid \vec{u}_{2}, r_{2}\right) p\left(\vec{u}_{2}, r_{2} \mid \vec{u}_{3}, r_{3}\right) \ldots p\left(\vec{u}_{n-1} \mid \vec{u}_{n}\right) p\left(\vec{u}_{n}, r_{n}\right)$
and not
$p\left(\vec{u}_{1}, r_{1} ; \ldots ; \vec{u}_{n}, r_{n}\right) \neq p\left(\vec{u}_{1}, r_{1}\right) p\left(\vec{u}_{2}, r_{2}\right) \ldots p\left(\vec{u}_{n}, r_{n}\right)$
with cascades picture

Cascade a Markov process

stochastic cascade process

idea of a turbulent cascade:
large vortices are generating small ones

$$
\partial_{r} u_{r}
$$

$\partial_{r} p_{r}\left(u_{r}\right)$
$=>$ stochastic cascade process evolving in r

stochastic cascade process - 2 -

summary: characterization of the disorder by joint n -scale statistics by a stochastic process,
I. proof of Markov properties

$$
p\left(\vec{u}_{1}, r_{1} \mid \vec{u}_{2}, r_{2} ; \ldots ; \vec{u}_{n}, r_{n}\right)=p\left(\vec{u}_{1}, r_{1} \mid \vec{u}_{2}, r_{2}\right)
$$

2. estimation of the Kramers Moyal coefficients results in simplification:

$$
D^{(n)}(u, r)=\lim _{\Delta r \rightarrow 0} \frac{1}{n!\cdot \Delta r} \int(\tilde{u}-u)^{n} p(\tilde{u}, r-\Delta r \mid u, r) d \tilde{u}
$$

3. obtain information for the n -scale statistics by process equation (Fokker-Planck or Kolomogorov equation)

$$
-\frac{\partial}{\partial r} p\left(u, r \mid u_{0}, r_{0}\right)=\left[-\frac{\partial}{\partial u} D^{(1)}(u, r)+\frac{\partial^{2}}{\partial u^{2}} D^{(2)}(u, r)\right] \cdot p\left(u, r \mid u_{0}, r_{0}\right)
$$

stochastic cascade process -3-

I. property of a Markov process:

- evidence by conditional
probability densities

$$
p\left(u_{1} \mid u_{2}, \ldots, u_{N}\right)=p\left(u_{1} \mid u_{2}\right)
$$

- experimental result:

$$
p\left(u_{1} \mid u_{2}, u_{3}\right)=p\left(u_{1} \mid u_{2}\right)
$$

stochastic cascade process -4-

2. measured: $D^{(I)}(u, r)$ and $D^{(2)}(u, r)$

$$
\begin{aligned}
& D^{(1)}(u, r) \cong \gamma(r) u(r) \\
& D^{(2)}(u, r) \cong \alpha(r)+\delta(r) u(r)+\beta(r) u^{2}(r)
\end{aligned}
$$

with the definition of (after Kol. I93I)

$$
\begin{aligned}
& D^{(k)}(u, r)=\lim _{\Delta r \rightarrow 0} \frac{r}{k!\Delta r} M^{(k)}(u, r, \Delta r), \\
& M^{(k)}(u, r, \Delta r)=\int_{-\infty}^{+\infty}(\tilde{u}-u)^{k} p(\tilde{u}, r-\Delta r \mid u, r) d \tilde{u}
\end{aligned}
$$

stochastic cascade process -5-

measured Fokker-Planck equation

$$
-\frac{\partial}{\partial r}\left\langle u_{r}^{n}\right\rangle=n \cdot\left\langle u_{r}^{n-1} D^{(1)}\left(u_{r}, r\right)\right\rangle+n \cdot(n-1)\left\langle u_{r}^{n-2} D^{(2)}\left(u_{r}, r\right)\right\rangle
$$

- closed equation for structure functions if
$D^{(1)}(u, r) \cong \gamma(r) u(r)$
$D^{(2)}(u, r) \cong \alpha(r)+\delta(r) u(r)+\beta(r) u^{2}(r)$

stochastic cascade process -6-

3.Verification of the measured Fokker-Planck equation

- numerical solution compared with experimental results
- => n-scale statistics

$$
p\left(u_{r}, r \mid u_{r_{0}}, r_{0}\right)
$$

Journal of Fluid Mechanics 433 (2001)
Phys. Rev E 76, 056I02 (2007)

stochastic cascade process

Kolmogorov Obukhov 4I:

$$
\partial_{r} u_{r}=\frac{1}{3} \frac{u_{r}}{r}
$$

Kolmogorov Obukhov 62

$$
\begin{aligned}
& \partial_{r} u_{r}=\gamma \frac{u_{r}}{r}+\sqrt{Q \frac{u_{r}^{2}}{r}} \eta(r) \\
& \gamma=2 Q-1 / 3 ; Q=\frac{\mu}{18}
\end{aligned}
$$

PHYSICAL REVIEW E 71, 027101 (2005)

Langevin equations from time series

E. Racca

Dipartimento di Idraulica, Trasporti e Infrastrutture Civili, Politecnico di Torino, Torino, Italy

A. Porporato*

Department of Civil and Environmental Engineering, Duke University, Durham, North Carolina 27708, USA

after Pope and Ching

S. B. Pope and E. S. C. Ching, Phys. Fluids A 5, 1529 (1993).
$p(x)=\frac{N^{\prime}}{\left\langle\left\langle\dot{x}^{2} \mid x\right\rangle\right\rangle} \exp \left[\int_{x} \frac{\langle\langle\ddot{x} \mid u\rangle\rangle}{\left\langle\left\langle\dot{x}^{2} \mid u\right\rangle\right\rangle} d u\right]$,
Stat. Solution of Fokker Planck

$$
\begin{aligned}
& \frac{\partial p(x, t)}{\partial t}=-\frac{\partial}{\partial x}[A(x) p(x, t)]+\frac{1}{2} \frac{\partial^{2}}{\partial x^{2}}[B(x) p(x, t)], \\
& p(x)=\frac{N}{B(x)} \exp \left[2 \int_{x} \frac{A(u)}{B(u)} d u\right],
\end{aligned}
$$

FIG. 3. Comparison among the estimated values of the ratio $\langle\langle\ddot{x} \mid x\rangle\rangle\rangle\left\langle\left\langle\dot{x}^{2} \mid x\right\rangle\right\rangle$ using Sokolov's formulas (open circles), the ratio of the estimated drift and diffusion terms, $\langle\Delta x\rangle /\left\langle\Delta x^{2}\right\rangle$, using Eqs. (4) and (5) (solid diamonds), and the theoretical value, $A(x) / B(x)$ (solid line), for the pitchfork bifurcation process

complexity of turbulence

thermodynamical (nonequilibrium) interpretation

- the Fokker- Planck or Kolmogov equation gives access
ideal gas
state vector

$$
\vec{q}=\binom{\vec{x}}{\vec{p}}
$$

n - particle description

$$
p\left(q_{1}, q_{2}, \ldots, q_{n}\right)
$$

single particle approximation

$$
p\left(q_{1}, \ldots, q_{n}\right)=p\left(q_{1}\right)^{*} \ldots * p\left(q_{n}\right)
$$

Boltzmann equation

$$
\partial_{t} p\left(q_{i}\right)=\ldots
$$

isotropic turbulence

state vector u_{r}
n - scale statistics

$$
p\left(u_{r} 0, u_{r} 1, \ldots, u_{r n}\right)
$$

Markov property

$$
\begin{gathered}
p\left(u_{r} 0, ., u_{r n}\right)=p\left(u_{r} \mid u_{r l}\right)^{*} \ldots . . \\
{ }^{*} p\left(u_{r n-1} \mid u_{r n}\right) p\left(u_{r n}\right)
\end{gathered}
$$

Fokker-Planck equation

$$
-r \partial_{r} p\left(u_{r} \mid u_{r 0}\right)=L_{F P} p\left(u_{r} \mid u_{r 0}\right)
$$

turbulence: new insights

Einstein- Markov-length - a coherence length
statistics of longitudinal and transversal increments universality of turbulence:
role of transfered energy e_{r} :
fusion rules $r_{i}=>r_{i+l}$ (Davoudi, Tabar 2000; L'vov, Procaccia 1996)
passive scalar (Tutkun, Mydlarski 2004)

turbulent length scales

turbulent cascade: larger Re larger cascade range

turbulent length scales

from grid experiments

Einstein-Markov length

Einstein-Markov-length - a coherence length $l_{\text {mar }}$

$$
p\left(\vec{u}_{1}, r_{1} \mid \vec{u}_{2}, r_{2} ; \ldots ; \vec{u}_{n}, r_{n}\right)=p\left(\vec{u}_{1}, r_{1} \mid \vec{u}_{2}, r_{2}\right)
$$

$\ln p\left(v_{1} \mid v_{2}=-\sigma_{\infty}\right)$

$$
r_{2}-r_{1}<l_{m a r}
$$

Einstein-Markov length -2-

 stochastic Wilcoxon test defines $l_{\text {mav }}$

Einstein-Markov length -3-

Einstein-Markov length $l_{\text {mar }}$
a new coherence length

- is about the Taylor length
- is like the maximal dissipation length proposed by Yakhot
- dissipation causes memory
- degree of freedom $L / l_{\text {mar }}$ like $R e^{1 / 2}$

Markov-Einstein Length

A. Einstein Ann. Phys. I7, 549 (1905)

5. Über die von der molekularkinetischen Theorie der Warme geforderte Bewegung von in ruhenden
Flüssigkeiten suspendierten Teilchen;
von A. Einstein.

§4. Über die ungeordnete Bewegung von in einer Flüssigkeit suspendierten Teilchen und deren Beziehung zur Diffusion.

Wir gehen nun dazu über, die ungeordneten Bewegungen genauer zu untersuchen, welche, von der Molekularbewegung der Wärme hervorgerufen, Anlab zu der im letzten Paragraphen untersuchten Diffusion geben.

Es muß offenbar angenommen werden, daß jedes einzelne Teilchen eine Bewegung ausführe, welche unabhängig ist von der Bewegung aller anderen Teilchen; es werden auch die Bewegungen eines und desselben Teilchens in verschiedenen Zeitintervallen als voneinander unabhängige Vorgänge aufzufassen sein, solange wir diese Zeitintervalle nicht zu klein gewählt denken.

Wir führen ein Zeitintervall τ in die Betrachtung ein, welches sehr klein sei gegen die beobachtbaren Zeitintervalle, aber doch so groß, daB die in zwei aufeinanderfolgenden Zeitintervallen τ von einem Teilchen ausgeführten Bewegungen als voneinander unabhängige Ereignisse aufzufassen sind.

Einstein-Markov length - for seismic data

Einstein-Markov length - for seismic data

Saravan, 13/03/2005, Ms=5.4 Baladeh, Iran, 28/05/2004, M=6.4

M.R.R. Tabar, et.al. Lecture Notes in Physics , Vol. 705, (Springer, 2006) 281-301.

turbulence: further results

spatial correlation in different directions

Quantities

- longitudinal increment

$$
u_{r}(x)=[\vec{u}(\vec{x}+\vec{r})-\vec{u}(\vec{x})] \cdot \hat{r}
$$

- transversal increment

$$
v_{r}(x)=|[\vec{u}(\vec{x}+\vec{r})-\vec{u}(\vec{x})] \times \hat{r}|
$$

turbulence: long/transversal -2-

extended selfsimilartiy ESS

supposed scaling laws

$$
\begin{aligned}
\left.\left.\langle | u_{r}\right|^{n}\right\rangle & \left.\left.\propto\langle | u_{r}\right|^{3}\right\rangle^{\xi_{n}^{l}} \\
\left.\left.\langle | v_{r}\right|^{n}\right\rangle & \left.\left.\propto\langle | u_{r}\right|^{3}\right\rangle \xi_{n}^{t}
\end{aligned}
$$

turbulence: long/transversal -2-

extended selfsimilartiy ESS

supposed scaling laws

$$
\begin{aligned}
& \left.\left.\left.\langle | u_{r}\right|^{n}\right\rangle\left.\propto\langle | u_{r}\right|^{3}\right\rangle^{\xi_{n}^{l}} \\
& \left.\left.\left.\langle | v_{r}\right|^{n}\right\rangle\left.\propto\langle | u_{r}\right|^{3}\right\rangle^{\xi_{n}^{t}}
\end{aligned}
$$

open problem: (Antonia 97, Benzi 97, van der Water 99, Grossman et.al. 97....)

$$
\xi_{n}^{t}>\xi_{n}^{l}
$$

are transversal structures more intermittent? n

turbulence: long/transversal -3-

$$
\begin{aligned}
& -r \frac{\partial}{\partial r} p\left(\mathbf{u}, r \mid \mathbf{u}_{\mathbf{0}}, r_{0}\right)= \\
& \quad\left(-\sum_{i=1}^{n} \frac{\partial}{\partial u_{i}} D_{i}^{(1)}+\sum_{i, j=1}^{n} \frac{\partial^{2}}{\partial u_{i} \partial u_{j}} D_{i j}^{(2)}\right) p\left(\mathbf{u}, r \mid \mathbf{u}_{\mathbf{0}}, r_{0}\right)
\end{aligned}
$$

turbulence: long/transversal -4-

rescaling symmetry: $r=>3 r / 2$

$$
\begin{aligned}
& <|v(r)|^{n}>\propto<|u(r)|^{3}>\xi_{n}^{t} \\
& <|v(r)|^{n}>\propto<|u(3 r / 2)|^{3}>\xi_{n}
\end{aligned}
$$

turbulence: long/transversal -4-

rescaling symmetry: $r=>3 r / 2$

$$
\begin{aligned}
& <|v(r)|^{n}>\propto<|u(r)|^{3}>\xi_{n}^{t} \\
& <|v(r)|^{n}>\propto<|u(3 r / 2)|^{3}>\xi_{n}
\end{aligned}
$$

$\left.<|u(r)|^{3}\right\rangle$

striking result - this is only possible if the scaling laws

turbulence: long/transversal -4-

rescaling symmetry: $r=>3 r / 2$

$$
\begin{aligned}
& <|v(r)|^{n}>\propto<|u(r)|^{3}>\xi_{n}^{t} \\
& <|v(r)|^{n}>\propto<|u(3 r / 2)|^{3}>\xi_{n}
\end{aligned}
$$

consitent with Karman equation:

$$
-r \frac{\partial}{\partial r}\left\langle u_{r}^{2}\right\rangle=2\left\langle u_{r}^{2}\right\rangle-2\left\langle v_{r}^{2}\right\rangle
$$

or

$$
\left\langle v_{r}^{2}\right\rangle=\left\langle u_{r}^{2}\right\rangle+\frac{r}{2} \frac{\partial}{\partial r}\left\langle u_{r}^{2}\right\rangle
$$

taken as Taylor series

$$
\left\langle v_{r}^{2}\right\rangle \approx\left\langle u_{3 / 2 r}^{2}\right\rangle
$$

turbulence: long/transversal -5-

universality of turbulence:

$D^{(1)}(u, r) \cong \gamma(r) u(r)$
$D^{(2)}(u, r) \cong \alpha(r, R e)+\delta(r) u(r)+\beta(r, R e) u^{2}(r)$
=> Exp: cascade process depends on Re

Phys. Rev. Lett. 89, (2002)
roll of transfered/dissipated energy e_{r} :,
$D^{(2)}\left(u, r, e_{r}\right) \cong \alpha(r)+m f\left(e_{r}\right)$
$D^{(2)}$ does not any more lead to multiplicative noise
$=>e_{r}$ causes intermittency of the velocity field

reconstruction of time series

simulation step
use of increments alined to the right

$$
p\left(u\left(x_{\text {new }}\right) \mid u\left(x_{1}\right) \ldots, u\left(x_{n}\right)\right)
$$

is given by
$p\left(u_{1}, r_{1} ; u_{2}, r_{2} ; \ldots ; u_{n}, r_{n-1}\right)$

Nawroth et al Phys. Lett. (2006)

multiplier statistics

since Kolomogorov 62 idea of multipliers (for increments)

$$
w_{n}:=u_{n+1} / u_{n}
$$

multiplier statistics

since Kolomogorov 62 idea of multipliers (for increments)

$$
\begin{aligned}
& w_{n}:=u_{n+1} / u_{n} \\
& p\left(w_{n}\right)=\int \delta\left(w_{n}-\frac{u_{n+1}}{u_{n}}\right) p\left(u_{n+1}, u_{n}\right) d u_{n+1} d u_{n} .
\end{aligned}
$$

Fokker-Planck equ. with

$$
\begin{aligned}
& D^{(1)}(u, r)=\gamma(r) u \\
& D^{(2)}(u, r)=\alpha(r)
\end{aligned}
$$

Chauchy distribution with parameters λ and b given by $D^{(1)}$ and by $D^{(2)}$

$$
p\left(w_{n}\right)=\frac{1}{\pi} \frac{\lambda_{n+1}}{\lambda_{n+1}^{2}+\left(b_{n+1}-w_{n}\right)^{2}}
$$

multiplier statistics

since Kolomogorov 62 idea of multipliers (for increments)

$$
\begin{aligned}
& w_{n}:=u_{n+1} / u_{n} \\
& p\left(w_{n}\right)=\int \delta\left(w_{n}-\frac{u_{n+1}}{u_{n}}\right) p\left(u_{n+1}, u_{n}\right) d u_{n+1} d u_{n}
\end{aligned}
$$

Fokker-Planck equ. with

$$
\begin{aligned}
& D^{(1)}(u, r)=\gamma(r) u \\
& D^{(2)}(u, r)=\alpha(r)
\end{aligned}
$$

Chauchy distribution with parameters λ and b given by $D^{(1)}$ and by $D^{(2)}$

$$
p\left(w_{n}\right)=\frac{1}{\pi} \frac{\lambda_{n+1}}{\lambda_{n+1}^{2}+\left(b_{n+1}-w_{n}\right)^{2}}
$$

Chauchy distribution arises if one divides two Gaussian stoch. variables

finance

scale dependent quantity for measuring the disorder

 return or log return for different time scales$$
Q(x, r)=>r(t, \tau)=\frac{x(t+\tau)}{x(t)} \text { or } R(t, \tau)=\log r(t, \tau)
$$

finance -2-

Functional form of the coefficients $D^{(1)}$ and $D^{(2)}$ is presented

Example: Volkswagen, $\tau=10 \mathrm{~min}$

finance -3-

Physica A 298 ,499 (2001)
comparison of data with numerical solution of the Kolmogorov equation

Does the method always work ?
further applications for time series

finance

the estimation of the Kramers Moyal coefficient gives divergencies for $\Delta \tau \rightarrow 0$
$D^{(n)}(R)=\lim _{\Delta \tau \rightarrow 0} \frac{1}{n!\Delta \tau} \int\left(R^{\prime}-R\right)^{n} p\left(R^{\prime}, \tau+\Delta \tau \mid R, \tau\right) d R^{\prime}$

FX DM/\$ Olsen data

finance

divergent Kramers Moyal coefficients are due to measurement noise (jump processes)
(Physica A 298, 499 (2001), Euro. Phys. Lett. 61 (2003); F. Böttcher, D. Kleinhans Phys. Rev. Lett. 97 (2006)
process variable $x(t)=>y(t)=x(t)+\sigma \cdot \eta(t)$

universal small scale statistics

Numerical solution of the Fokker-Planck equation for the coefficients $D^{(1)}$ and $D^{(2)}$, which were directly obtained from the data.
No Markov
properties

$\nabla \tau$

universal small scale statistics

The reference distribution \& The considered distribution timescale 】
τ_{2}

measure of distance d

universal small scale statistics

Comparison of PN_{N} and PR_{R} - The Measures

-- Kullback-Leiber-Entropy: $\quad d_{K}\left(p_{N}(Q, \tau), p_{R}\right)=\int_{-\infty}^{+\infty} p_{N}(Q, \tau) \cdot \ln \left(\frac{p_{N}(Q, \tau)}{p_{R}}\right) \cdot d Q$
--Weighted mean square error in logarithmic space:

$$
d_{M}\left(p_{N}(Q, \tau), p_{R}\right) \equiv \frac{\int_{-\infty}^{+\infty}\left(p_{R}+p_{N}(Q, \tau)\right) \cdot\left(\ln \left(p_{N}(Q, \tau)\right)-\ln \left(p_{R}\right)\right)^{2} \cdot d Q}{\int_{-\infty}^{+\infty}\left(p_{R}+p_{N}(Q, \tau)\right) \cdot\left(\ln ^{2}\left(p_{N}(Q, \tau)\right)+\ln ^{2}\left(p_{R}\right)\right) \cdot d Q}
$$

-- Chi-square distance:

$$
d_{C}\left(p_{N}(Q, \tau), p_{R}\right) \equiv \frac{\int_{-\infty}^{+\infty}\left(p_{N}(Q, \tau)-p_{R}\right)^{2} \cdot d Q}{\int_{-\infty}^{+\infty} p_{R} \cdot d Q}
$$

universal small scale statistics

Small Timescale
Regime
Non Markov

Small timescales are special !

Example: Volkswagen

universal small scale statistics

finance
turbulence

Eur. Phys. J. B 50, 147-151 (2006)

universal small scale statistics

scale dependent complexity

Physica A 382, 193 (2007)

$$
\begin{gathered}
d X_{t}=b\left(X_{t}, t\right) d t+\sigma\left(X_{t}, t\right) d w_{t} \\
b\left(X_{t}, t\right)=D^{(1)}\left(X_{t}, t\right) \\
\sigma^{2}\left(X_{t}, t\right)=D^{(2)}\left(X_{t}, t\right)
\end{gathered}
$$

END

shown that for stochastic processes drift and diffusion can be measured

see also http://www.physik.uni-oldenburg.de/hydro/20660.html

R. Friedrich and J. Peinke :Description of a Turbulent Cascade by a Fokker-Planck Equation Phys. Rev. Lett. 78, 863 (1997)
S. Siegert, R. Friedrich, and J. Peinke :Analysis of Data of Stochastic Systems Phys. Lett. A 243, 275 (1998)

Ch. Renner, J. Peinke, and R. Friedrich :Experimental indications for Markov properties of small scale turbulence, Journal of Fluid Mechanics 433, 383 (2001)

Ch. Renner, J. Peinke and R. Friedrich :Markov properties of high frequency exchange rate data Physica A 298, 499 (2001)

Ch. Renner, J. Peinke, R. Friedrich, O. Chanal, and B. Chabaud :Universality of small scale turbulence Phys. Rev. Lett. 89,124502 (2002)
M. Wächter, F. Riess, H. Kantz, and J. Peinke :Stochastic analysis of raod surface roughness Europhys. Lett. 64, 579 (2003)
R. Friedrich, Ch. Renner, M. Siefert, and J. Peinke :Comment on : Indispensable Finite Time corrections for Fokker-Planck equations from time series data, Phys. Rev. Lett. 89, 149401 (2002)
M. Siefert and J. Peinke :Joint multi-scale statistics of longitudinal and transversal increments in small-scale wake turbulence Journal of Turbulence 7, (No 50) 1-35 (2006).
D. Kleinhans, R. Friedrich, A.Nawroth, and J. Peinke :An iterative procedure for the estimation of drift and diffusion coefficients of Langevin processes Phys. Lett. A 346, 42 (2005)

St. Lück, Ch. Renner, J. Peinke, and R. Friedrich :The Markov -Einstein coherence length - a new meaning fort he Taylor length in turbulence Phys. Lett. A 359, 335 (2006)
A. P. Nawroth and J. Peinke : Small scale behavior of financial data Euro. Phys. Journal B 50, 147 (2006)
F. Böttcher, J. Peinke, D. Kleinhans, R. Friedrich, P.G. Lind and M. Haase :Reconstruction of complex dynamical systems affected by strong measurement noise Phys. Rev. Lett. 97, 090603 (2006)
A.P. Nawroth and J. Peinke :Multiscale reconstruction of time series Physics Letters A 360, 234 (2006)
M. Siefert and J. Peinke : Complete Multiplier Statistics Explained by Stochastic Cascade Processes Phys. Lett. A 371, 34 (2007)

