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Inference for semimartingales

Set up

✘ We consider a 1-dimensional semimartingale (”true process”) of the form

X = X0 +

∫ ·

0

audu +

∫ ·

0

σudWu + (x1{|x|≤1}) ∗ (µ − ν) + (x1{|x|>1}) ∗ µ

defined on some filtered probability space (Ω0,F0, (F0
t )t≥0, P

0). Here a is

locally bounded, σ is cádlág adapted, µ is a jump measure of X and ν is its

predictable compensator. The observed process Z, defined on

(Ω,F , (Ft)t≥0, P ), is given by

Zt = Xt + Ut , t ≥ 0.

The observation times are ti = i∆n with ∆n → 0. The probability space

(Ω,F , (Ft)t≥0, P ) is constructed in such a way that

E[Ut|F0] = 0, α2
t = E[U2

t |F0] is cádlág , (1)

and, conditionally on F0, Ut⊥Us for t 6= s.
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Equivalent representation of the model

✘ The process Z can be described by the following equation

Zt = Xt + h(Xt)εt , t ≥ 0 ,

where

αt = h(Xt) , E[εt|F0] = 0, E[ε2
t |F0] = 1 , t ≥ 0 ,

and, conditionally on F0, εt⊥εs for t 6= s.

✘ The latter representation can be interpreted as a time continuous nonlinear

regression model.
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Statement of the problem

✘ We are interested in the estimation of some characteristics of the true process

X , i.e.

❏ Estimation of the quadratic variation (incl. CLT)

[X, X ]t =

∫ t

0

σ2
udu +

∑

u≤t

|∆Xu|2.

❏ Estimation of jumps (incl. CLT)
∑

u≤t

|∆Xu|p , p > 2.

❏ Estimation of the quantities (incl. CLT)
∫ t

0

|σu|pdu

for any p > 0 when X is continuous.
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Some examples

(I) (Additive i.i.d. noise) Consider the process

Zt = Xt + Ut

with X⊥U , Ut is i.i.d. and EUt = 0, EU2
t = ω2. Such a process obviously

satisfies the conditions of (1) and α2
t = ω2.

(II) (Additive i.i.d. noise + rounding) Consider the process

Zt = γ
[Xt + Vt

γ

]

,

where X⊥V , Vt is i.i.d. Vt ∼ U([0, γ]) and γ > 0. Then Z satisfies the

assumptions of (1) and

α2
t = γ2

({Xt

γ

}

−
{Xt

γ

}2)

.
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Some statistics

✘ We choose a sequence of integers kn

√
∆n = θ + o(∆

1/4
n ) for some θ > 0 and

consider a function g : [0, 1] → IR (which is continuous, piecewise C1 with

piecewise Lipschitz derivative) with g(0) = g(1) = 0. Typical examples of

such a function g are given by g1(x) = x ∧ (1 − x) or g2(x) = sin(πx).

Moreover, we introduce the notation

Gp =

∫ 1

0

|g(s)|pds , Hp =

∫ 1

0

|g′(s)|pds.

✘ Next, we define the local moving average by

Z̄n
i =

kn−1
∑

j=1

g(
j

kn
)∆n

i+jZ = −
kn−1
∑

j=1

(

g(
j

kn
) − g(

j − 1

kn
)
)

Z i+j−1

n

,

where ∆n
i Z = Z i

n
− Z i−1

n
. This quantity has been proposed by Podolskij &

Vetter (2006) (see also Jacod, Li, Mykland, Podolskij & Vetter (2007)).
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Intuition

✘ Assume for a moment that X = W , W⊥U , Ut is i.i.d. and EUt = 0,

EU2
t = ω2. A simple calculation shows that

W
n

i
asy∼ N(0, ∆nknG2) ,

and

U
n

i
asy∼ N(0, k−1

n H2ω
2).

✘ This calculation shows that (with our choice of the sequence kn) the influence

of the Brownian part W
n

i and of the noise part U
n

i are balanced, i.e.

W
n

i = Op(∆
1/4
n ) = U

n

i ,

(which leads later to an optimal rate of convergence). This result remains

true for general continuous semimartingales X .
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Main results

✘ The core statistic of our method is defined by

V (Z, p)n
t =

[t/∆n]−kn+1
∑

i=0

|Zn

i |p , p ≥ 0.

✘ For bias corrections we need to define the following statistic

V̂ (Z)n
t =

[t/∆n]
∑

i=0

|∆n
i Z|2.

Notice that ∆n

2 V̂ (Z)n
t

P−→
∫ t

0
α2

udu.

✘ Before we proceed with the asymptotic results we introduce the process

Qt(p) = E[|Ut|p |F0], p > 0.
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Main results: limit in probability

Theorem 1:

(i) Assume that p > 2 and Qt(p) is locally bounded. Then we have

1

kn
V (Z, p)n

t
P−→ Gp

∑

u≤t

|∆Xu|p.

(ii) If p = 2 and Qt(4) is locally bounded we have

1

kn
V (Z, 2)n

t − H2

2k2
n

V̂ (Z)n
t

P−→ G2[X, X ]t.

(iii) Assume that X is continuous and Qt(2p) is locally bounded. Then we

have

∆
1− p

4
n V (Z, p)n

t
P−→ µp

∫ t

0

(

θG2σ
2
u +

H2

θ
α2

u

)p/2

du ,

where µp = E[|v|p] with v ∼ N(0, 1).
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Main results: central limit theorems

Before we present the central limit theorems we need to introduce some

additional notations. We set

φ1(s) =

∫ 1

s

g′(u)g′(u − s)du , φ2(s) =

∫ 1

s

g(u)g(u − s)du , s ∈ [0, 1]

Φij =

∫ 1

0

φi(s)φj(s)ds , i, j = 1, 2

Next, let B a new Brownian motion and (V −
m , V +

m , U−
m, U+

m)m≥1 a sequence of

random variables with

(V −
m , V +

m , U−
m, U+

m) i.i.d ∼ N(0, diag(Ψ−
1 , Ψ+

1 , Ψ−
2 , Ψ+

2 )) ,

where Ψ−
1 , Ψ+

1 , Ψ−
2 , Ψ+

2 depend on the function g. B and (V −
m , V +

m , U−
m, U+

m)m≥1

are independent, both defined on the extension of the probability space

(Ω,F , (Ft)t≥0, P ), and independent of F .
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Main results: central limit theorems

✘ Finally, we introduce the processes

L(p)t =
p

Gp

∑

Tm≤t

sgn(∆XTm
)|∆XTm

|p−1
(√

θ{σTm−U−
m + σTm

U+
m}

+
1√
θ
{αTm−V −

m + αTm
V +

m }
)

,

L̄t =

∫ t

0

γu dBu ,

where (Tm) are jump times of X and

γ2
u = 4

(

Φ22θσ
4
u + 2Φ12

σ2
uα2

u

θ
+ Φ11

α4
u

θ3

)

.

✘ Notice that L(p)t and L̄t are both mixed normal processes!
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Stable convergence

In the following we will show some stable central limit theorems associated with

Theorem 1. Let us briefly describe this concept (see Renyi (1963), Aldous &

Eagleson (1978) or Jacod & Shiryaev (2003) for more details on stable

convergence).

Definition: A sequence of random variables Yn converges stably in law

with limit Y (Yn
Dst−→ Y ), defined on an appropriate extension (Ω′,F ′, P ′)

of the original probability space (Ω,F , P ), if and only if for any F-

measurable random variable V the convergence in distribution

(Yn, V )
D−→ (Y, V )

holds.
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Main results: central limit theorems

Theorem 2: For any t > 0 we obtain the following assertions.

(i) Assume that p > 3 and Qt(2p) is locally bounded. Then we have

∆−1/4
n

( 1

kn
V (Z, p)n

t − Gp

∑

u≤t

|∆Xu|p
)

Dst−→ L(p)t.

(ii) If p = 2 and Qt(8) is locally bounded we have

∆−1/4
n

( 1

kn
V (Z, 2)n

t − H2

2k2
n

V̂ (Z)n
t − G2[X, X ]t

)

Dst−→ L(2)t + L̄t.

In particular, when X is continuous we have

∆−1/4
n

( 1

kn
V (Z, 2)n

t − H2

2k2
n

V̂ (Z)n
t − G2

∫ t

0

σ2
u du

)

Dst−→ L̄t.
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Remarks

✘ The conditional variances

Γ(p)t = E[|L(p)t|2 |F ] , Γ̄t = E[|L̄t|2 |F ]

can be estimated, and, by the properties of stable convergence, we can get a

feasible version of Theorem 2, i.e. for any estimators Γ(p)n
t

P−→ Γ(p)t,

Γ̄(p)n
t

P−→ Γ̄(p)t we have

∆
−1/4
n

(

1
kn

V (Z, 2)n
t − H2

2k2
n

V̂ (Z)n
t − G2[X, X ]t

)

√

Γ(p)n
t + Γ̄(p)n

t

D−→ N(0, 1).

✘ As a by-product we obtain consistent estimates of σ2
s , σ2

s−, α2
s, α2

s− (which

are robust to jumps of the process X !).
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Remarks

✘ Assume that X is continuous. As in Theorem 2 we can obtain a central limit

theorem for estimators of
∫ t

0
|σu|pdu for any even number p > 0. Suppose

moreover that X = σW and αt = α. In this case the rate ∆
1/4
n is known to

be optimal (see Gloter & Jacod (2001)). Finally, we can minimize the

conditional variance of the limit L̄t by choosing an optimal θ.

✘ In Podolskij & Vetter (2007) we study the asymptotic behaviour of the

functionals

V (Z, r, l)n
t =

[t/∆n]−2kn+1
∑

i=0

|Zn

i |r|Z
n

i+kn
|l , r, l ≥ 0.

We provide consistent estimates for the quantities
∫ t

0
|σu|pdu (for even

p > 0), which are robust to certain specification of jumps (in the WLLN and

CLT). This theory can be applied to construct tests for jumps in the

presence of noise.
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