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Introduction

•
 

Wind sensitive structures …
 

in particular wind turbines
•

 
Extreme wind events …

 
driven by turbulence

•
 

“Gust-generator”
 

for generation of stochastic turbulence 
fields with specified gust events consistently embedded 
… magnitudes of gust events

(e.g. in an optimization
context)

•
 

… Relevant for aeroelastic
 

design computations of wind 
turbines

 
as well as structural reliability considerations



Introduction

•
 

Focus on the simplest possible class of gust events …
 characterized by wind speed increase (coherent analogy: 

IEC 64100-1; extreme load case EOG)
•

 
Aim: Asymptotic closed form solution for the distribution 
of the largest

 
turbulence driven wind speed excursion 

within a specified span of time
 

… both turbulence 
generated excursions and recurrence period are 
assumed to be large (but otherwise arbitrary)



Cartwright /Longuet-Higgins

•
 

Based on pioneering work of Rice [2]
•

 
Basic assumptions

o

 

Stationary process with Gaussian “parent distribution”
o

 

Independent local extremes
o

 

Large magnitudes …
 

in terms of process standard 
deviations

o

 

Large number of local extremes contribution to the 
global extreme

•
 

Approach
o

 

Distribution of local extremes
o

 

Distribution of the global extreme



Cartwright /Longuet-Higgins

•
 

Result (normalised with process root mean square)

•
 

Distribution

•
 

Mean

•
 

Root mean square

•
 

Mode 

•
 

… with
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Cartwright /Longuet-Higgins

•
 

Characteristics: 
o

 

Distribution resemble (some of) the functional 
characteristics of the EV1 distribution

o

 

Mean increases with increasing time span T
o

 

Mode increases with increasing time span T
o

 

Root mean square decreases with increasing time 
span T

•
 

Performance …
 

comparing with data
o

 

Good for small/moderate recurrence periods
o

 

May underestimate substantially for large recurrence 
periods



Cartwright /Longuet-Higgins

•
 

Performance …
 

an example
 

Site Cartwright/ 
Longuet-
Higgens 

Extreme value 
analysis of  
measurements 

Skipheia; 
101m; 1 month 

4.9 m/s 7.5 ± 0.1 m/s 

Skipheia; 
101m; 1 year 

5.4 m/s 9.1 ± 0.2 m/s 

Skipheia; 
101m; 50 year 

6.1 m/s 11.7 ± 0.2 m/s 

Näsudden; 
78m; 1 month 

5.0 m/s 7.7 ± 0.2 m/s 

Näsudden; 
78m; 1 year 

5.4 m/s 9.3 ± 0.3 m/s 

Näsudden; 
78m; 50 year 

6.1 m/s 11.9 ± 0.4 m/s 

Oak Creek; 
79m; 1 month 

7.9 m/s 12.4 ± 0.2 m/s 

Oak Creek; 
79m; 1 year 

8.6 m/s 15.2 ± 0.2 m/s 

Oak Creek; 
79m; 50 year 

9.6 m/s 19.6 ± 0.3 m/s 



Prelude to non-Gaussian tail behavior approach

•
 

Two observations:
1.

 

Conventional Gaussian assumption is inadequate for 
description of events associated with large excursions from the 
mean

2.

 

Extremes, associated with turbulence driven full-scale events in 
the atmospheric boundary layer, usually seems to be well 
described by a Gumbel

 

EV1 distribution

•
 

… the suggested model aims at providing the link 
between these observations
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Model

Key elements:
o

 

Assumptions
o

 

Monotonic transformation
o

 

Distribution of local extremes in transformed domain
o

 

Distribution of the global extreme in transformed 
domain

o

 

Number of local extremes as function of recurrence 
period

o

 

Synthesis
o

 

Resulting distribution expressed in the physical 
domain

o

 

Parameter estimation



Model -
 

Assumptions

•
 

We postulate the following distribution of turbulence 
driven large

 
excursions from mean (double sided 

Gamma dist.; shape par. =1/2):

•
 

σ(z)
 

is the standard deviations of the total
 

data 
population measured at altitude z

•
 

C(z)
 

is a dimensionless, but site-
 

and height-dependant, 
positive

 
constant
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Model –
 

ex. distribution fit in the asymptotic regime 

OakCreek, Mast 2, z = 79m, U>8 m/s
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Model -
 

Monotonic transformation

•
 

We introduce the
 

monotonic
 

transformation:

•
 

The (standard) “trick”
 

is:
o

 

A monotonic transformation will transform local 
extremes in the physical domain into local extremes in 
the transformed domain

o

 

Thus, the number of local extremes (and their position 
on the time-axis) is invariant with respect to (strictly) 
monotone transformations

o

 

Therefore, global
 

extremes may be analyzed in the 
transformed domain and subsequently transformed 
back to the physical domain

( ) ( ) ( ) eeee u
zC
σusignugv ==



Model -
 

Monotonic transformations

•
 

In the transformed domain we obtain
 

the following 
Gaussian PDF

… and the analysis of the extremes in this domain can 
take advantage of a Gaussian variable having a tractable 
joint Gaussian distribution

 
of the variable and its 

associated first
 

and second
 

order derivatives (required 
for formulation of conditions for an extreme occurrence)
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Model -
 

Distribution of local extremes

•
 

Rice
 

[2] has established the statistics of local extremes, 
ηe

 

,
 

for a Gaussian process (normalized with σ):

… the statistics depends only on the band width 
parameter, which may be expressed in terms of process 
spectral moments as
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Model -
 

Distribution of the global extreme

•
 

We assume the local extremes to be statistical 
independent

•
 

D.E. Cartwright and M. S. Longuet-Higgins derived the 
following asymptotic

 
expression (i.e. large

 
excursions) for 

the largest among N independent local maxima:

… which for large
 

N can be approximated as
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Model -
 

Number of local extremes

•
 

In the pure Gaussian case, N was obtained from Rice’s 
estimate for the expected number of maxima [2]

•
 

Not consistent within 
this approach

•
 

The expected number
 

of extremes of the process should 
include only contributions from large extremes (i.e. 
extremes exceeding ~2σ

 
in the physical domain)
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Model -
 

Number of local extremes

•
 

A large extreme in the transformed (Gaussian) domain is 
accordingly

•
 

Closed form (asymptotic) expression for the expected 
number of maxima exceeding V0

 

obtained using Rice’s 
asymptotic result for expected number of excursions 
above a pre-defined threshold
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Model -
 

Synthesis

•
 

Combine expressions for extreme PDF, bandwidth 
parameter, and rate of local (large) maxima to obtain

•
 

Transformation to the normalized physical domain
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Model
 

–
 

Characteristics

•
 

Gumbel
 

EV1 type of distribution …
 

as “requested”

•
 

Mean 

•
 

Root mean square 

•
 

Mode 

•
 

Comparison with C/LH: We predict faster increase in 
mean and mode with T, and our root mean square is 
independent

 
of T
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Model –
 

Required parameters

•
 

Required parameters:
o

 

Standard deviation of the driving process σ
o

 

Spectral moments (m2

 

and m4

 

): from measurements 
or

 
closed form expressions based on

 
generic wind 

spectra as specified in codes (including length scale 
specifications) –

 
e.g. Kaimal

 
spectrum

o

 

C(z)
 

… requires a huge number of fast sampled data 
(which is seldom available), or an empirical “pre-

 calibration”



Model –
 

Calibration of C(z)

•
 

The “constant”
 

C(z)
 

is calibrated using a huge fast 
sampled data material representing three different terrain 
categories

o

 

offshore/coastal
o

 

flat homogeneous terrain, and
o

 

hilly scrub terrain
•

 
…by minimizing the functional

( )( ) ( ) ( ) ( ) ( )( ) ( )( )( )∫
+∞

−=
σ

σΠ
2

2 .zufzC,z;zufzduzC emeue

OakCreek, Mast 2, z = 79m, U>8 m/s

0.00000001

0.0000001

0.000001

0.00001

0.0001

0.001

0.01

0.1

1

10

-1.5 -1 -0.5 0 0.5 1 1.5

u(z,t)/U(z)

PD
F

Measured PDF
Gaussian PDF
Gamma PDF



Model –
 

Calibration of C(z)
Site Type of site Obs. height 

[m] 
No. hours Scan freq. [Hz] C 

Gedser rev Offshore 45 385 5 0.357 
Rødsand Offshore 45 390 5 0.325 
Horns Rev Offshore 50 629 20 0.387 
Nasudden Coastal; flat 40 1122 1 0.340 
Nasudden Coastal; flat 98 1548 1 0.401 
Nasudden Coastal; flat 118 1589 1 0.459 
Skipheya Coastal; roling hills 11 5200 0.85 0.307 
Skipheya Coastal; roling hills 21 5737 0.85 0.339 
Skipheya Coastal; roling hills 41 6408 0.85 0.373 
Skipheya Coastal; roling hills 72 4446 0.85 0.386 
Skipheya Coastal; roling hills 101 3904 0.85 0.434 
Skipheya Coastal; roling hills 101 3550 0.85 0.463 
Cabauw Flat, hom. (Pastoral) 40 377 2 0.297 
Cabauw Flat, hom. (Pastoral) 80 421 2 0.313 
Cabauw Flat, hom. (Pastoral) 140 440 2 0.331 
Cabauw Flat, hom. (Pastoral) 200 404 2 0.358 
Oak Creek (M1) Hill, scrub 79 1671 8 0.437 
Oak Creek (M2) Hill, scrub 10 2593 8 0.366 
Oak Creek (M2) Hill, scrub 50 1916 8 0.404 
Oak Creek (M2) Hill, scrub 79 3210 8 0.426 



Model –
 

Calibration of C(z)

 
Offshore/coastal
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Model –
 

Calibration of C(z)
 

Flat, hom. (Pastoral)
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Model –
 

Calibration of C(z)

 Hill, scrub

y = 0,0009x + 0,3566
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Model –
 

Calibration of C(z)

 
Transformation Factor
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Model –
 

Performance

 

 Cartwright/ 
Longuet-
Higgens 

Proposed 
model 

Extreme value 
analysis of  
measurements 

Skipheia; 
101m; 1 month 

4.9 m/s 7.5 m/s 7.5 ± 0.1 m/s 

Skipheia; 
101m; 1 year 

5.4 m/s 9.6 m/s 9.1 ± 0.2 m/s 

Skipheia; 
101m; 50 year 

6.1 m/s 13.0 m/s 11.7 ± 0.2 m/s 

Näsudden; 
78m; 1 month 

5.0 m/s 6.9 m/s 7.7 ± 0.2 m/s 

Näsudden; 
78m; 1 year 

5.4 m/s 8.9 m/s 9.3 ± 0.3 m/s 

Näsudden; 
78m; 50 year 

6.1 m/s 12.1 m/s 11.9 ± 0.4 m/s 

Oak Creek; 
79m; 1 month 

7.9 m/s 12.2 m/s 12.4 ± 0.2 m/s 

Oak Creek; 
79m; 1 year 

8.6 m/s 15.4 m/s 15.2 ± 0.2 m/s 

Oak Creek; 
79m; 50 year 

9.6 m/s 20.5 m/s 19.6 ± 0.3 m/s 



Model –
 

The asymptotic constraint

Nasudden
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Model –
 

C
 

based on GH distribution approach

•
 
Strategy:

o

 

Assume turbulence excursions generalized 
hyperbolic (GH) distributed (fatter than Gaussian 
tails) 

o

 

The distribution of the largest extreme is 
preferred evaluated in a Gaussian domain as 
GH distribution is not particularly analytically 
tractable (joint GH(u,ú,ü) needed for extreme 
assessment)

o

 

When resulting EV1 is required constraints are 
imposed on the GH asymptotic behavior →

 specific GH subclass follows …



Model –
 

GH distribution

•
 
Distribution of turbulent excursions

… with the requirement imposed that the asymptotic 
behavior resembles the characteristics of the 
Gamma distribution with shape parameter 1/2
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Model –
 

GH asymptotes

•
 
GH subclass defined by subclass parameter λ= ½

•
 
GG defined by

•
 
GG asymptotics
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Model –
 

GG symmetric

•
 
First attempt …

 
assume symmetry of distribution of 

excursions
•

 
Consequence  β

 
= 0

•
 
Turbulent excursions have zero mean

•
 
With β

 
= 0 and μ

 
= 0 GG asymptotes simplifies to
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Model –
 

Parameter match

•

•
 
and                           or 

•
 
… but 
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Model –
 

GG asymmetric

•
 

Symmetric
 

GG gives too fat tails compared to the 
requested Γ-behavior

 
… but           potentially opens for 

the needed affinity/scaling of the tail behavior
•

 
Second (and last)

 
attempt …

 
require asymmetry of the 

GG parent distribution by assuming           …
 

even
 

in 
case a symmetric empirical distribution (engineering 
approach!)

•
 

GG fit based on
o

 

Statistical moments (even order)
o

 

An additional parameter constraint arising from the 
requested type of asymptotic distribution behavior.

0≠β

0≠β



Model –
 

GG fit

•
 

Mean [4]

•
 

Variance [4]
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Model –
 

GG fit

•
 

4th order central moment

with the GG cumulant
 

function C(Θ) given by [4]

•
 

Requested asymptotic match
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Model –
 

Definition of asymptotic regime

•
 

Crossing between Gauss PDF and continuation of GG 
asymptote

OakCreek, Mast 2, z = 79m, U>8 m/s
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Model –
 

Implication for local extremes to be counted 

•
 

Rate of extremes in the asymptotic regime (i.e. rate of 
extremes exceeding u0

 

)

;
mm
m

C
kExp

4
2
0

3
2

2
⎟
⎠
⎞

⎜
⎝
⎛−≡κ

σ
0uk = ( ) ( ) 112 −− −= βασC



Model –
 

Syntheses

•
 

Assume the existence of a monotonic memoryless
 

(time 
independent) variable transformation that transforms the 
GG distribution onto a Gaussian distribution

•
 

This transformation does not have to be known, except 
for its asymptotic properties

•
 

The steps from here is analogue to the previous model 
with the empirical determination of C …

( ) ( ) ,uforu
C
σugugv Asymp +∞→=∝=



Conclusions

•
 

An asymptotic
 

model for the PDF of the largest wind 
speed excursion is derived

•
 

The model is based on a “mother”
 

distribution that 
reflects the Exponential-like distribution behaviour

 
of 

large
 

wind speed excursions …
 

and is shown to be of the 
Gumbel

 
EV1 type 

•
 

The recurrence period is assumed large, but may 
otherwise be arbitrary 

•
 

The model requires only a few, easy accessible, input 
parameters …

 
these are basic parameters characterizing 

the stochastic wind speed processes in the atmopheric
 boundary layer together with the recurrence period



Conclusions

•
 

The model parameter, C, have been calibrated against a 
large number of full-scale time series wind speed 
measurements for application in three common terrain 
categories

•
 

Model predictions have been successfully compared to 
results derived from full-scale measurements of wind 
speeds extracted from “Database on Wind 
Characteristics”

•
 

A fit of the C parameter has been attempted by assuming 
a parent distribution as a subclass (GG) of the GH 
distribution family



Conclusions

•
 

This approach in addition opens for a consistent 
definition of the asymptotic regime

•
 

The symmetric
 

version of the GG distribution inevitable 
results in too fat tails compared to the requested 
asymptotic behaviour

•
 

This has lead to the proposal of a GG fit with the 
skewness

 
parameter β

 
required

 
different from zero! …

 but up to now it has not been investigated if this 
approach leads to parameter estimates within the 
allowable regime αβδ <∧≥ 0



Outlook

•
 

Analyze the monotony of the transformation 
g: GG → Gauss

•
 

Analyze if the fitting system of equations can be solved 
within the allowable parameter regime
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