


In this talk we consider moment distributions which
underlying distribution is of either phase-type or
matrix—exponential.

We show that moment distributions of any order are again
phase—type or matrix—exponential.

Moment distributions have applications in various fields
like demography and engineering.

We especially focus on demographic applications relating to

the Lorenz curve and Gini index in which case explicit
formulas may be obtained.



Let f be the density a distribution on [0, 00). Let
= [, o' fleyds beits-nitirmoment.
Then

. 2
P Jha

is a density and is called the n’th moment distribution of f.

We shall now assume that f is either of phase-type or
matrix—exponential.

We shall start with the first order moment distribution.



Let f be a density on [0,00) and let F' denotes its
corresponding distribution function.

Consider a stationary renewal process with inter—arrival
distribution F.

Hence the renewal process is delayed with initial arrival
distribution given by the density
=L F) | F
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Let F. denote the corresponding distribution function.

Let A; be the age of the process at time ¢ (time from
previous arrival) and R; the residual life-time (time until
next arrival).



Then
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Differentiating twice w.r.t.  and y,

futuy(op) = L,

From this formula we read that A; and R; have the same
marginal distribution.

The spread S; = A; + R; has density
zf (z)
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A Phase-type distribution is the time until absorption in a
Markov jump process with finitely many states, one of
which is absorbing and the rest being transient.

We write 7 ~ PH(w, T') (note that ¢ = —Te, where e is the
column vector of ones.

Phase-type distributions is a flexible tool in applied
probability. Allows for many closed form solutions to
complex problems.

They are dense in the class of distributions on the positive
reals.

They are, however, light tailed.



. A general and easy to prove result states that
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Let 7 ~ PH(m, T'). Let f denote density of 7. Then
flz)dz = PG € (z, 2+ dz])
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Consider a renewal process with inter—arrival times Ty, Ts, ...
t Beng iid = PHigx 7).
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Renewal density: u(z) =probability of an arrival in [z, z + dz).

The concatated process is a Markov process {J; }>¢ with
intensity matrix R = T + tm:

T’ijd.'li = tijdx - tidmrj.






A stationary renewal process with phase—type inter—arrival
times 75, T3, ... i.i.d. ~ PH(a, T) is a delayed renewal
process with 77 ~ PH(my, T), where m = Oi":rlele.

71 is the stationary distribution of the Markov jump
process with intensity matrix T + ta.

71 is also the stationary distribution for the time reversed
process.

Time reversing a PH distribution essentially works as for
Markov jump processes.
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Let f be the density of a PH(mw, S).
Lel 4 75 /g5 % Then
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At, Rt ~ PH(Wl, S) or At, Rt = PH(TFl, S)

where S = A(my)~'S’A(my) and m; = —aS~ L

We time reverse A; or R;. If R, ~ PH(m,S), then we time
reverse A; with the choice of representation PH(7, S). If
we time reverse R; ~ PH(m, S), then we use
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The exit distribution the A;—process is 71, the same as the
initial distribution of R;. Hence we may generate the initial
distribution of the R; process by realizing the time reversed
of A; and then realize the process of R;. The total time it
takes for both processes to exit is just the spread §;.



If we reverse R; we get a representation is for the first
moment distribution (&, .51 ), where
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If we reverse A; we get a representation (041, S1) with
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Let f be the density of a matrix—exponential distribution
with representation (a, S, s) with s = —Se (the latter only
being notationally convenient).

Then its n’th moment distribution is again
matrix—exponential with representation («,, Sy, s,), where
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This easily follows from
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To obtain the corresponding distribution function F,, we
integrate partially and obtain
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In particular for n = 1 we get
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In principle we now conclude that moment distributions of
any order are again phase-type if the original distribution
is.

This follows trivially from the n’th order moment
distributions is the first order moment distribution of the
n — 1’th order moment distribution!

Hence, in principle, there is an algorithm for generating a
PH representation.
The order, however, will blow up unnecessarily.

The following result provides a lower order representation
of the n’th moment distribution, but we lack a probabilistic
proof :-(



Consider a phase-type distribution with representation («, S).
| Then the n’th order moment distribution is again of phase-type

with representation (o, Sy,), where
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If F is a distribution function and F; the corresponding
first moment distribution, then the parametric curve

t = (F(1), F1(t))

is called the Lorenz curve or concentration curve.
By definition,
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Hence the Lorenz curve is convex. For the ME (and PH)
we get
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The Gini index is defined as twice the area enclosed by the
Lorenz curve and the line y = z.

The Lorenz curve starts in (0,0) and ends in (1, 1). Since
the curve is convex it “lies under” y = z.

The area under the y=zforz=0toz=1is 1/2.

The area A under the Lorenz curve is
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The Gini index G hence amounts to
I =
G=2(;—4)=2(a0m)(- (56 5)) ls@e -1
Consider three examples:
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Representations for the Erlang and Hyper—exponential
distributions are taken to be
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while a representation for the ME distribution is
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Explicit formulas for moment representations of any order,
both ME and PH.

Closure property.

Explicit formulas for Gini index, important e.g. in
economics

Open problem of how to estimate grouped data in general.



Hard work in applied probability. ..




