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SA–DD: Two-sex Galton–Watson branching proc. (ZW, 1968)

[DD proved ‘obvious’ sufficient condition for a.s. extinction us-

ing complex variable technique; SA gave martingale proof]

Visit to Australia c.1980 or 1983 ? (Pat Moran’s office, view

of lake).

etc.

Overlapping visits in Santa Barbara 1988

Oberwolfach meetings . . .

Mittag-Leffler meeting c.2004

AP Editor-in-Chief

Host on briefer visits: Goteborg ’91, Aalborg ’94, Aarhus ’05

([pipe] organ)

New Frontiers in AP
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1. A digression (?)

Epidemics and Rumours in Complex Systems

Moez Draief and Laurent Massoulié (Cambridge UP, 2010)

Basically about Graph Theory applicable to spreading pro-

cesses in models for epidemics, rumours (information spread)

Two parts: network unstructured or structured

Counting problems

Math’l techniques giving ‘solutions’ (martingales, Chernoff

bounds [ex Tchebychef inequality])

Connection between microscopic (stochastic) models and

macroscopic (deterministic) models

(d.e. methods for latter — Kurtz’ theorem)

Graph-theoretic ideas: to what extent are they applicable to

(locally finite) infinite stochastic models (on R
d) ??

[Population processes that remain locally finite ??]

(percolation in germ–grain models — Gunter Last . . . )
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Yoni Nazarathy and Gideon Weiss (QUESTA 2008)

BRAVO effect:

Balancing Reduces Asymptotic Variance of Outputs

varNdep(0, t]

M/M/1/K, Buffer of size K, Stationary

Arrivals are Poisson at rate λ,

Service times i.i.d. exponential at rate µ,

With ρ = λ/µ and t → ∞,

varN(0, t] ∼











ρt if ρ < 1,

t if ρ > 1,
2
3 t if ρ ≈ 1,

because output ≈
{

input if ρ < 1,
max service rate if ρ > 1.

[NW08] figures

What happens when ρ ≈ 1 ?

What happens in many-server system ?

What if reneging or abandonment in place of buffer ?

(joint work with Yoni Nazarathy)
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For a stationary orderly point process N ,

varN(0, t] =

∫ t

0

(

2[U(u)−mu]− 1
)

m du,

where U(u) = E
[

N [0, u] | N({0}) > 0
]

and m = E(N(0, 1] .

For a renewal process, U is renewal function, and if generic

lifetime X has finite second moment, then

varN(0, t] ∼ E(X2)

[E(X)]2
t

E(X)

If further E(X3) < ∞, then exact linear asymptotics hold i.e.

varN(0, t] = At+B + o(1)

for finite constants A and B; renewal-theoretic arguments suf-

fice.

Both these properties hold for Markov renewal processes with

finite second or third moments.

Queueing O/P in general not Markov renewal, let alone re-

newal . . .
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Output = Arrivals – lost customers

CONSERVATION arguments.

e.g. k-server system and K waiting places:

Q(t) = stationary number of customers in system.

Q(0) +Nadm(0, t] = Ndep(0, t] +Q(t)

|Nadm(0, t]−Ndep(0, t]| ≤ k +K

var

(

Ndep(0, t]√
t

− Nadm(0, t]√
t

)

→ 0 (t → ∞)

Theorem. In a stationary G/G/k/K queueing system for

which varNarr(0, 1) < ∞, the limits as t → ∞ of

varNdep(0, t]

t
and

varNadm(0, t]

t

either both exist finite and are equal, or both are infinite.

(Sufficient condition for crude asymptotic linearity.)

Turn to detailed conservation equations for point processes

(sample path realizations — cf. Bremaud (1981) ).
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[NW08] is about M/M/1/K (and M/M/k/(K − k)). Ndep is

NOT renewal for K ≥ 2 but the refined limit behaviour holds

for M/M/k/K because Q(t) is finite state space continuous

time Markov chain and asymptotics for geometrically ergodic

chains apply.

A ‘quick’ route to expressions for the moment behaviour of

Ndep comes from point process expressions, using Narr and

Nserv to describe counting functions of arrival point processes

and potential service departure epochs:

Use Ij(t) to denote an indicator function for {Q(t) = j}: then
in M/M/1/K,

Nlost(0, t] :=

∫

(0,t]

I1+K(u−)Narr(du),

hence

Nadm(0, t] =

∫

(0,t]

(

1− I1+K(u−)
)

Narr(du).

Similarly

Ndep(0, t] :=

∫

(0,t]

(

1− I0(u−)
)

Nserv(du).

Taking expectations appropriately, e.g.

E
[(

Nadm(0, t]
)2]

= E

[
∫

(0,t]×(0,t]

[1− I1+K(u−)][1− I1+K(v−)]Narr(du)Narr(dv)

]
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This leads ultimately to

varNadm(0, t]− E(Nadm(0, t])

= 2λµπ0

∫ t

0

[

(t− u)(p0,1+K(u)− π1+K)
]

du.

The coarse asymptotics follow by extracting a factor t and then

standard convergence property of the integral.

To extract the fine asymptotics, write integral as

t

∫

∞

0

[p0,1+K(u)−π1+K ] du−
∫

∞

0

u[p0,1+K(u)−π1+K ] du+o(1)

where the o(1) term takes account of the discrepancy between

the finite and infinite integration, and the other terms have

finite limits because of geometric ergodicity and monotonicity

of the transition probability functions.

This technique for studying O/P works for M/M/k/K

What are implications for graph Q(t) v. t ?

(ditto) BRAVO effect ?

(ditto) both of the above for M/M/k/rneg
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A PROBLEM

The departure process Ndep of these M/M/k/K systems is

certainly not renewal, though it is irreducible Markov renewal.

As a point process, there is embedded in it a sequence of re-

generative epochs:

What can be said about limit properties of a point process

containing an embedded regenerative structure?

(think of variance behaviour (!) )

For a stationary renewal process, the fine detailed asymptotics

hold as soon as the lifetime distribution has a third moment.

Do these carry over to a stationary point process that contains

an embedded regenerative structure ?

Refer to integral for variance:

varN(0, t] = mt+ 2

∫ t

0

[U(u)−mu] du

Depends of rate of convergence of U(u) − mu to its limit (if

it exists) (for renewal process, limit = E(X2)/2[(E(X))2]; re-

newal theorem does not yield full detail of convergence rate,

though finite third moment does yield finiteness on

U(u)−mu− 1
2 (approx’n to 2nd moment).
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OUTPUT OF M/M/k/K

Recall: {πi} is stationary queue-size distribution,

πi = Pr{Q(t) = i} (all t)

λπi−1 = min(i, k)µ (i = 1, . . . , k, . . . , k +K),

∑k+K

i=0 πi = 1. For BRAVO effect, want arrival and service

rates around ‘balance’, i.e. µ = kλ. Recurrence relations give

πi =







(kλ/µ)i

i!
π0 =

(kρ)
i

i!
π0 for i ≤ k,

(λ/µ)i−kπk = ρk−iπk for i ≥ k,

First investigate case ρ = 1:

Cases i ≤ k give
k

∑

i=0

πi ≈ 1
2e

kπ0 ≈ 1
2πk

√
2πk for k not small.

Cases i > k give
k+K
∑

i=k+1

πi = Kπk.

Special case:
πk

π0
=

kk

k!
≈ kk√

2πk kk e−k
=

ek√
2πk

.

Hence, πk

(

K +
√

πk/2
)

≈ 1.

Want to evaluate crude linear asymptote (this exists, and

fine linear asymptotic relation also, because the stationary MC

{Q(t)} has finite state space and is irreducible, hence it is ge-

ometrically ergodic).
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Introduce the family of indicator random variables JQ(t−)

which, conditional on Q(t−), are mutually independent for dis-

tinct time variables t and independent of Nserv(du) in u ≥ t,

for which

JQ(t−)

∣

∣{Q(t−) = i} =

{

1, with probability min(i, k)/k,

0, otherwise.

Then Ndep(dt) = JQ(t−) Nserv(dt), equivalently

Ndep(0, t] =

∫

(0,t]

Ndep(du) =

∫

(0,t]

JQ(u−)Nserv(du).

This leads ultimately to
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varNdep(0, t]− E
(

Ndep(0, t]
)

=
2µ2

k2

k+K
∑

i=1

k+K
∑

j=1

min(i, k) min(j, k)

∫ t

0

(t− u)πi[pi−1,j(u)− πj ] du,

=
2µλ

k

k+K
∑

j=1

min(j, k)

∫ t

0

(t− u)πk+K [πj − pk+K,j(u)] du,

so

lim
t→∞

[

varNdep(0, t]− E
(

Ndep(0, t]
)]

/λt

=
2µ

k

k+K
∑

j=1

min(j, k)

∫

∞

0

πk+K [πj − pk+K,j(u)] du,

and exploiting reversibility, this equals

2µ

k

k+K
∑

j=1

min(j, k)πj

∫

∞

0

[πk+K − pj,k+K(u)] du

= 2λ
k+K
∑

j=1

πj−1

∫

∞

0

[πk+K − pj,k+K(u)] du.

[Now convert this to sums of moments of first-passage times

etc.]
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What changes for ρ 6= 1 ?

Use ρ = 1− β

K
, and K = α

√
k

(so both k, K → ∞ but ‘controlled’ relative rate).

Use

lim
t→∞

varNdep(0, t]

E
(

N(0dep(0, t]
) = 1− 2

k+K
∑

i=0

πivi(1− vi)

where (birth-and-death process) vi = πk+KPi/πi and Pi =
∑i

j=0 πi.

varNdep(0, t] falls short of asymptotic rate for Poisson process

x(1− x) ≤ 1

4
(all real x)

[BUT: expression is for finite state-space birth–death proc.]

Return to [NW08] figure:
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It is variance function that is asymptotically discontinuous .

. . there is change in mechanism producing the O/P process

at ρ = 1: why should second-order (variability) effect remain

continuous like first-order (mean) effect?

Why should volatility near change point be ‘continuous’ ?

Draief and Massoulié emphasize the criticality theorem for

branching processes as simplest change-point phenomenon with

small change in reproduction rate produces catastrophic change

in ultimate population.

Does BRAVO effect change output from more complex queue-

ing systems as system nears cricality (‘heavy traffic’) ?
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