Results 00000000 Outline of proof

Sunspot

(日)

Asymptotics for hidden Markov models with covariates

Jens Ledet Jensen

Department of Mathematical Sciences Aarhus University

New Frontiers in Applied Probability, August 2011

Outline of talk

- Two examples of correlated count data with covariates
- Results: old and new
- Outline of proof:
 - Mixing properties
 - Central limit theorem for "score"
 - Uniform convergence of "information"

Result: asymptotic normality of parameter estimate

Bayesian analysis of a time series of counts with covariates: an application to the control of an infectious disease

Biostatistics 2001

Counts: Monthly ESBL bacteria producing Klebsiella pneumonia in an Australian hospital (resistant to many antibiotics, first outbreak in Denmark: 2007)

Covariate: the amount of antibiotic cephalosporins used, lagged 3 months

Results

Outline of proof

Sunspot

Plot of data

month

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Introduction and Examples	Results	Outline of proof	Sunspot
0000000000	0000000	00000000	0000000

Model

 y_i : count, z_i :covariate

 $y_i | \mu_i \sim \mathsf{Poisson}(\mu_i)$

 $\mu_i = \exp(\beta z_i + x_i), \qquad x_i = \phi x_{i-1} + N(0, \sigma^2)$

Homogeneous hidden Markov and non-homogeneous emission probabilitites

Fully bayesian analysis using MCMC: posterior quantities:

 parameter
 mean
 2.5%
 97.5%

 β
 6.9
 1.7
 11.1

0000000000		
Markup 1		

Discretize hidden state space (x_i) : 41 points (truncated AR(1))

 $\hat{\beta} = 5.0$, likelihood ratio test, $\beta = 0$: 5.5%

red: $\beta = 0$, MAP of $\exp(x_i)$

blue:
$$\beta = 5$$
, MAP of $\exp(\beta z_i + x_i)$

green: $\beta = 5$, MAP of $\exp(x_i)$

Introduction and Examples	Results 0000000	Outline of proof	Sunspot
My run 2			

$$x_i = (\tilde{x}_i, u_i)$$
 is a Markov chain on $\{0.5, 1, 2, \dots, 9\} \times \{-1, 0, 1\}$

(日) (日) (日) (日) (日) (日) (日)

first coordinate: hidden mean second coordinate: increase or decrease at last step

$$u_i: \begin{array}{c|cccc} -1 & 0 & 1 \\ \hline -1 & 1-\alpha & \alpha & 0 \\ 0 & \rho(1-\gamma) & \gamma & (1-\rho)(1-\gamma) \\ 1 & 0 & \alpha & 1-\alpha \end{array}$$

 \tilde{x}_i : decrease: $i \rightarrow i - 1$ or i - 2 or i - 3increase: $i \rightarrow i + 1$ or i + 2 or i + 3

Introduction and Examples	Results 0000000	Outline of proof	Sunspot
My run 2			

$$\hat{\beta} = 0.9$$
, likelihood ratio test, $\beta = 0$: 40%

red: $\beta = 0$, MAP of \tilde{x}_i

blue: $\beta = 0.9$, MAP of $\tilde{x}_i \exp(\beta z_i)$

green: $\beta =$ 0.9, MAP of \tilde{x}_i

Model problem: roles of covariate and hidden variable are not well separated

Jørgensen, Lundbye-Christensen, Song, Sun

A longitudinal study of emergency room visits and air pollution for Prince Gorge, British Columbia

Statistics in Medicine 1996

Counts: daily counts of emergency room visits for four repiratory diseases

Covariates: 4 meteorological (\tilde{z}) and 2 air pollution (z)

Results

Outline of proof

Sunspot

Plot of Data

◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 - のへで

Results

Outline of proof

Sunspot

Plot of Data

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● の < @

Introduction and Examples	Results	Outline of proof	Sunspot
0000000 0000			

 $y_{it}|x_t \sim \mathsf{Poisson}(a_{it}x_t)$

 $a_{it} = \exp(\alpha_i \tilde{z}_i)$

$$x_t | x_{t-1} \sim \text{Gamma}(E = b_t x_{t-1}, \text{Var} = b_t^2 x_{t-1} \sigma^2)$$

$$b_t = \exp(\beta(z_t - z_{t-1}))$$

Non-homogeneous hidden Markov and non-homogeneous emission probabilitites

(日)

Analysis via approximate Kalman filter

Outline of proof

(日) (日) (日) (日) (日) (日) (日)

General model in this talk

x_i: non-homogeneous Markov chain, not observed

transition density: $p_i(x_i|x_{i-1};\theta)$

 y_i : conditionally independent given (x_1, \ldots, x_n) , observed conditional distribution depends on x_i only

emission density: $g_i(y_i|x_i;\theta)$

Covariates: enters through the index *i* on *p* and *g*

Outline of proof

Papers: setup

	state spaces:		
	hidden	observed	
Baum and Petrie 1966	finite	finite	
Bickel, Ritov and Rydén 1998	finite	general	
Jensen and Petersen 1999	\sim general	general	
Douc, Moulines and Rydén 2004	\sim general	general, AR(1)	
Jensen 2005	finite	finite	
Fuh 2006	(general)	(general)	

All except J 2005: homogeneous Markov, homogeneous emission

Result: there exists solution $\hat{\theta}$ to likelihood equations with $\sqrt{n}(\hat{\theta} - \theta)$ asymptotically normal

Results o●○○○○○○ Outline of proof

Fuh, Ann.Statist. 2006

Appears very general

Example from paper: x_i is AR(1), $y_i = x_i + N(0, 1)$

But: there are serious errors in the paper

results cannot be trusted

Introduction	and	Examples	
00000000	000		

Outline of proof

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Conditions on hidden variable

All papers and here:

 $\mathbf{0} < \sigma_{-} \leq \mathbf{p}_{\mathbf{i}}(\cdot|\cdot; \mathbf{ heta}) \leq \sigma_{+} < \infty, \, \mathbf{ heta} \in \mathbf{B}_{\mathbf{0}}$

upper bounds on log derivatives of $p_i(\cdot|\cdot; \theta)$

moments of upper bound of log derivatives of $g_i(y_i|\cdot;\theta)$

Not covered: x_i is an AR(1)

Outline of proof

Conditions on observed variable

BRR 1998, JP 1999: condition on $\max_{a,b} \frac{g(y|a;\theta)}{g(y|b;\theta)}$ to control mixing properties of x|y

Outline of proof

(日) (日) (日) (日) (日) (日) (日)

Conditions on observed variable

BRR 1998, JP 1999: condition on $\max_{a,b} \frac{g(y|a;\theta)}{g(y|b;\theta)}$ to control mixing properties of x|y

DMR 2004: simple trick to avoid this (choosing a different dominating measure, dependent on *i*) same trick used here: for all *i* $x \in B$: $0 \in (\alpha(x|x; \theta)x(dx)) \in \infty$

for all $i, y_i, \theta \in B_0$: $0 < \int g_i(y_i|x_i; \theta) \mu(dx_i)) < \infty$

Covered: $y_i | x_i \sim \text{poisson}(\exp(\beta z_i + x_i)), x$: finite state space, z: bounded

Introduction and Examples	Results	Outline of proof	Sunspot
	00000000		

Conditions: Estimating equation

Previous papers: $\hat{\theta} = MLE$

Here: Find $\hat{\theta}$ by solving

$$S_n(\theta) = \sum_{i=1}^n E_{\theta} \{ \psi_i(\theta; \bar{x}_i, y_i) | y_1, \dots, y_n \} = 0$$

$$ar{x}_i = (x_{i-1}, x_i, x_{i+1}), \qquad E_{ heta}\psi_i(heta) = 0$$

MLE: $\psi_i(\theta; \bar{x}_i, y_i) = D^1 \log(p_i(x_i|x_{i-1}; \theta)g_i(y_i|x_i; \theta))$

moments of upper bound of $\psi_i(\cdot; \cdot, y_i)$ and $D\psi_i(\cdot; \cdot, y_i)$

(日) (日) (日) (日) (日) (日) (日)

Outline of proof

Sunspot

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Example: estimating equation

x_i: finite state

$$\begin{array}{l} y_i | x_i \text{: Ising lattice field on } \{1, 2, \dots, k\}^2 \\ g_i(y_i | x_i) = c(\beta(x_i)) \exp[\beta(x_i) \sum_{u \sim v} y_{iu} y_{iv}], \quad y_{iu} \in \{-1, 1\} \end{array}$$

 $\pmb{c}(\beta)$ is unknown: use pseudolikelihood $\rightarrow \psi$

 $D_1 \log g_i(y_i|x_i) \rightarrow D_1 \log \prod_u p_i(y_{iu}|y_{i,(-u)},x_i)$

		0000000
Estimation: Qua	silikelihood	

Zeger: 1988

Solve $M(\theta)(y - \mu(\theta))$

Asymptotics is 'simple': $\sum_i h(y_i)$: mixing of y_i 's

Here: MLE or Estimating equation: each term in sum depends on all *y_i*'s!

(日)

Way of thinking (arbitrary silly covariate sequence)

$$J_n(\theta) = -DS_n(\theta), \quad \gamma(n,\delta) = \sup_{\theta \in B(\delta)} \left| \frac{1}{n} (J_n(\theta) - J_n(\theta_0)) \right|$$

Assume:

(i)
$$\frac{1}{n}J_n(\theta_0) - F_n \xrightarrow{P} 0$$
, F_n nonrandom, eigen $(F_n) > c_0$
(ii) $\gamma(n, \delta_n) \xrightarrow{P} 0$ for any $\delta_n \to 0$
(iii) $\frac{1}{\sqrt{n}}S_n(\theta_0)G_n^{-1/2} \xrightarrow{D} N_p(0, I)$, $c_1 < \text{eigen}(G_n) < c_2$

Result: $\sqrt{n}(\hat{\theta}_n - \theta_0)(\frac{1}{n}J_n)G_n^{-1/2} \xrightarrow{D} N_p(0, I)$ for any consistent $\hat{\theta}$.

	Results 00000000	0000000
Mixing: basic		

Conditional process $(x_1, \ldots, x_n)|(y_1, \ldots, y_n)$

General: density $c \prod_{k=1}^{n} p_k(x_k | x_{k-1}) g_k(x_k)$

transition density wrt μ : $p_k(x_k|x_{k-1})g_k(x_k)a_k(x_k)/a_{k-1}(x_{k-1})$

define μ_k by $\frac{d\mu_k}{d\mu}(x_k) = g_k(x_k)a_k(x_k)/\int g_k(z)a_k(z)\mu(dz)$

transition density $q_k(x_k|x_{k-1})$ wrt μ_k : $p_k(x_k|x_{k-1}) / \int p_k(z|x_{k-1}) \mu_k(dz)$

Bounds: $\frac{\sigma_{-}}{\sigma_{+}} \leq q_k(x_k|x_{k-1}) \leq \frac{\sigma_{+}}{\sigma_{-}}$ from $\sigma_{-} \leq p_k(x_k|x_{k-1}) \leq \sigma_{+}$

Two sided: $\left(\frac{\sigma_{-}}{\sigma_{+}}\right)^2 \leq q_k(x_k|x_{k-1},x_{k+1}) \leq \left(\frac{\sigma_{+}}{\sigma_{-}}\right)^2$

Introduction and Examples	Results oooooooo	Outline of proof	Sunspot

Chain: $c \prod_{k=1}^{n} p_k(x_k | x_{k-1}) g_k(x_k)$

Let
$$r < s$$
 and $\rho = 1 - \sigma_- / \sigma_+$, then
 $\sup_{u} P(x_s \in A | x_r = u) - \inf_{v} P(x_s \in A | x_r = v) \le \rho^{s-r}$,

Let
$$r < s_1 \leq s_2 < t$$
 and $\tilde{\rho} = 1 - (\sigma_-/\sigma_+)^2$, then
 $\sup_{a, b} P(x_{s_1}^{s_2} \in B | x_r = a, x_t = b)$
 $-\inf_{u, v} P(x_{s_1}^{s_2} \in B | x_r = u, x_t = v) \leq \tilde{\rho}^{s_1 - r} + \tilde{\rho}^{t - s_2}$

Iterative argument: Doob 1953!

(Generalization: perhaps read and understand Meyn and Tweedie: Markov Chains and Stochastic Stability)

Outline of proof

Sunspot

(日)

Central limit theorem

$$S_n = \sum_{i=1}^n E(\psi_i | y_1, \dots, y_n)$$

Mixing properties of summands ? Not so obvious

Instead:

$$|\boldsymbol{E}(\psi_i|\boldsymbol{y}_1^n) - \boldsymbol{E}(\psi_i|\boldsymbol{y}_{i-l}^{i+l})| \leq 4(\sup_{\bar{\boldsymbol{x}}_i}\psi_i)\tilde{\rho}^{l-1}$$

▲□ ▶ ▲□ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ● ● ● ●

General CLT based on Göetze and Hipp, 1982

$$S_n = \sum_{i=1}^n Z_i, \ E(Z_i) = 0, \ E|Z_i|^{2+\epsilon} \le K_0$$

$$\begin{aligned} \sigma\text{-algebras } \mathcal{D}_j: \\ |\mathcal{P}(\mathcal{A}_1 \cap \mathcal{A}_2) - \mathcal{P}(\mathcal{A}_1)\mathcal{P}(\mathcal{A}_2)| &\leq \gamma_0 |I_1|^{\gamma_1} |I_2|^{\gamma_2} \mathsf{dist}(I_1, I_2)^{-\lambda} \\ \text{for } \mathcal{A}_i \in \sigma(\mathcal{D}_j : j \in I_i) \end{aligned}$$

$$E|Z_j - Z_j(m)| \le K_1 m^{-\lambda}, \quad z_j(m)$$
 is $\sigma(\mathcal{D}_i : |i - j| \le m)$ -measurable

eigen $(\frac{1}{n}$ Var $S_n) \ge c_0$

Then:
$$S_n \operatorname{Var}(S_n)^{-1/2} \xrightarrow{D} N_p(0, I)$$

Results

Outline of proof

Sunspot

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ 亘 のへぐ

Uniform convergence of information

$$J_n(\theta) = -\frac{\partial}{\partial \theta} S_n(\theta), \qquad \omega_i = \log[p_i(x_i|x_{i-1})g_i(y_i|x_i)]$$

$$J_{n}(\theta) = -\sum_{i=1}^{n} E_{\theta} \left[\frac{\partial}{\partial \theta} \psi_{i}(\theta) | y_{1}^{n} \right]$$
$$-\sum_{i,j=1}^{n} \operatorname{Cov}_{\theta} \left[\psi_{i}(\theta), \frac{\partial}{\partial \theta} \omega_{j}(\theta) | y_{1}^{n} \right]$$

Results

Outline of proof

Sunspot

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ □ □ ● のへで

Difference of two conditional means

$$egin{aligned} |m{E}_{ heta}[b(x^s_r)|y^n_1] &- m{E}_{ heta_0}[b(x^s_r)|y^n_1]| \ &\leq b^0ig\{2p| heta- heta_0|\sum_{i=r-l+1}^{s+l}h_i(y_i)+8 ilde{
ho}^lig\}, \quad ilde{
ho}=1-ig(rac{\sigma_-}{\sigma_+}ig)^2 \end{aligned}$$

 b^0 : upper bound on $b(x_r^s)$

$$h_i(y_i) = \sup_{x_{i-1}, x_i, \theta \in B_0, r} \left| \frac{\partial}{\partial \theta_r} \omega_i(\theta) \right|$$
$$\omega_i = \log[p_i(x_i | x_{i-1}) g_i(y_i | x_i)]$$

Outline of proof

Difference of two conditional covariances

$$\begin{split} & E_{\theta}(a_{u}b_{v}|y_{1}^{n}) - E_{\theta_{0}}(a_{u}b_{v}|y_{1}^{n}) \leq \\ & a_{u}^{0}b_{u}^{0}\Big[2p|\theta - \theta_{0}|\sum_{i=u-l}^{v+1+l}h_{i}(y_{i}) + 8\tilde{\rho}^{l}\Big] \\ & E_{\theta}(a_{u}|y_{1}^{n})E_{\theta}(b_{v}|y_{1}^{n}) - E_{\theta_{0}}(a_{u}|y_{1}^{n})E_{\theta_{0}}(b_{v}|y_{1}^{n}) \\ & \leq a_{u}^{0}b_{u}^{0}\Big[2p|\theta - \theta_{0}|\{\sum_{i=u-l}^{u+1+l}h_{i}(y_{i}) + \sum_{i=v-l}^{v+1+l}h_{i}(y_{i})\} + 16\tilde{\rho}^{l}\Big] \end{split}$$

Use this when *u* and *v* are close otherwise: bound of Ibragimov and Linnik on covariances for mixing sequences

Results 00000000 Outline of proof

Sunspot

Nonrandom limit of observed information

$$J_{n}(\theta) = -\sum_{i=1}^{n} E_{\theta} \left[\frac{\partial}{\partial \theta} \psi_{i}(\theta) | y_{1}^{n} \right]$$
$$-\sum_{i,j=1}^{n} \operatorname{Cov}_{\theta} \left[\psi_{i}(\theta), \frac{\partial}{\partial \theta} \omega_{j}(\theta) | y_{1}^{n} \right]$$

$$\operatorname{Var}\left(\frac{1}{n}\sum_{i=1}^{n}E(a_{u}|y_{1}^{n})\right)=O(1/n)$$
$$\operatorname{Var}\left(\frac{1}{n}\sum_{u,v=1}^{n}\operatorname{Cov}(a_{u},b_{v}|y_{1}^{n})\right)\to 0$$

Introduction	and	Examp	les

Outline of proof

Sunspot

End of proof!

Results

Outline of proof

・ロト ・四ト ・ヨト ・ヨト

э

Sunspot

Sunspot numbers: monthly

sqrt

year

Results

Outline of proc

Sunspot

Sunspot numbers: yearly

year

Yearly Sunspot

year

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

Introduction and Examples	Results	Outline of proof	Sunspot
			000000

$$\begin{split} y_i | x_i &\sim \mathcal{N}(h(x_i), \sigma^2) \\ x_i &= (t_i, w_i), \quad t_i \in \{0, 2, \dots, 53\} \quad w_i \in \{3, 4, 5, 6, 7\} \\ t_{i+1} &= t_i + w_{i+1} (\text{mod } 54) \\ p(w_{i+1} | w_i) \text{ some persistence } (\text{slow period / fast period}) \\ h(x_i) &= h(t_i) = \begin{cases} 2 + t_i \frac{3}{10} & 0 \le t_i \le 20, \\ 8 - (t_i - 20) \frac{3}{17} & 20 < t_i < 54. \end{cases} \end{split}$$

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへで

Introduction	and	Examples
00000000		

Outline of proo

Sunspot ooo●oooo

Model

$p(w_{i+1}|w_i)$:

	3	4	5	6	7
3	ρ	$(1 - \rho)/2$	$(1 - \rho)/2$	0	0
4	$(1 - \rho)/3$	ho	$(1 - \rho)/3$	$(1 - \rho)/3$	0
5	$(1 - \rho)/4$	$(1 - \rho)/4$	ho	$(1 - \rho)/4$	$(1 - \rho)/4$
6	0	$(1 - \rho)/3$	$(1 - \rho)/3$	ho	(1- ho)/3
7	0	0	$(1 - \rho)/2$	$(1 - \rho)/2$	ho

stationary: $\left(\frac{2}{14}, \frac{3}{14}, \frac{4}{14}, \frac{3}{14}, \frac{2}{14}\right)$

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● の < @

Introduction	and	Examples
00000000		

Outline of proof

(日)

Simulations

Simulate n = 200 observations — Find $(\hat{\rho}, \hat{\sigma})$

We use
$$\theta = \log(\hat{\rho}/(1-\hat{\rho}))$$
 and $\log(\hat{\sigma})$

Repeat this 500 times

Simulations: $\rho = 0.7 \ (\theta = 0.85), \ \sigma = 1$

Introduction	and	Examp	les
00000000			

Outline of proc

Sunspot

Simulated data

time

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ 三豆 めのの

Results 00000000 Outline of proof

Sunspot

Asymptotic normality ?

5 DQC

Introduction	and	Examples	

Outline of proof

Sunspot

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Sqrt of yearly sunspot numbers

Trend: (Gleissberg cycle)

$$E(y_i|x_i) = h(x_i) + \beta_1 \cos(2\pi t/100) + \beta_2 \sin(2\pi t/100)$$

$$\hat{
ho} = 0.38, \qquad \hat{\sigma} = 1.22$$

$$\hat{eta}_1 = -1.19, \qquad \hat{eta}_2 = 0.35$$

Results

Outline of proc

Sunspot

Sunspot numbers: yearly

year

sqrt

year

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

End of talk

Questions:

- Remove compactness assumption on state space
- How to do model check for hidden Markov model ?
- Interplay between hidden variable and covariates ?
- Interplay between flexibility in hidden variable and σ² ? (y_i|x_i ∼ N(h(x_i), σ²))