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Outline of talk

Two examples of correlated count data with covariates

Results: old and new

Outline of proof:

Mixing properties
Central limit theorem for “score”
Uniform convergence of “information”

Result: asymptotic normality of parameter estimate
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Hay and Pettitt

Bayesian analysis of a time series of counts with covariates: an
application to the control of an infectious disease

Biostatistics 2001

Counts: Monthly ESBL bacteria producing Klebsiella
pneumonia in an Australian hospital
(resistant to many antibiotics, first outbreak in Denmark: 2007)

Covariate: the amount of antibiotic cephalosporins used,
lagged 3 months
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Plot of data
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Model

yi : count, zi :covariate

yi |µi ∼ Poisson(µi)

µi = exp(βzi + xi), xi = φxi−1 + N(0, σ2)

Homogeneous hidden Markov and non-homogeneous emission
probabilitites

Fully bayesian analysis using MCMC: posterior quantities:

parameter mean 2.5% 97.5%
β 6.9 1.7 11.1
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My run 1

Discretize hidden state space (xi ): 41 points (truncated AR(1))

β̂ = 5.0, likelihood ratio test, β = 0: 5.5%
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red: β = 0, MAP of
exp(xi)

blue: β = 5, MAP of
exp(βzi + xi)

green: β = 5, MAP of
exp(xi)
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My run 2

xi = (x̃i ,ui) is a Markov chain on {0.5,1,2, . . . ,9} × {−1,0,1}

first coordinate: hidden mean
second coordinate: increase or decrease at last step

ui :

−1 0 1
−1 1− α α 0
0 ρ(1− γ) γ (1− ρ)(1− γ)
1 0 α 1− α)

x̃i : decrease: i → i − 1 or i − 2 or i − 3
increase: i → i + 1 or i + 2 or i + 3
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My run 2

β̂ = 0.9, likelihood ratio test, β = 0: 40%

0 10 20 30 40 50 60 70

0
2

4
6

8
1
0

month

K
le

b
s
ie

ll
a

red: β = 0, MAP of x̃i

blue: β = 0.9, MAP of
x̃i exp(βzi)

green: β = 0.9, MAP of
x̃i

Model problem: roles of covariate and hidden variable are not well
separated
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Jørgensen, Lundbye-Christensen, Song, Sun

A longitudinal study of emergency room visits and air pollution for
Prince Gorge, British Columbia

Statistics in Medicine 1996

Counts: daily counts of emergency room visits for four
repiratory diseases

Covariates: 4 meteorological (z̃) and 2 air pollution (z)
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Plot of Data



Introduction and Examples Results Outline of proof Sunspot

Plot of Data
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Model

yit |xt ∼ Poisson(aitxt )

ait = exp(αi z̃i)

xt |xt−1 ∼ Gamma(E = btxt−1,Var = b2
t xt−1σ

2)

bt = exp(β(zt − zt−1))

Non-homogeneous hidden Markov and non-homogeneous
emission probabilitites

Analysis via approximate Kalman filter



Introduction and Examples Results Outline of proof Sunspot

General model in this talk

xi : non-homogeneous Markov chain, not observed

transition density: pi(xi |xi−1; θ)

yi : conditionally independent given (x1, . . . , xn), observed
conditional distribution depends on xi only

emission density: gi(yi |xi ; θ)

Covariates: enters through the index i on p and g
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Papers: setup

state spaces:
hidden observed

Baum and Petrie 1966 finite finite
Bickel, Ritov and Rydén 1998 finite general
Jensen and Petersen 1999 ∼general general
Douc, Moulines and Rydén 2004 ∼general general, AR(1)
Jensen 2005 finite finite
Fuh 2006 (general) (general)

All except J 2005: homogeneous Markov, homogeneous
emission

Result: there exists solution θ̂ to likelihood equations with√
n(θ̂ − θ) asymptotically normal
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Fuh, Ann.Statist. 2006

Appears very general

Example from paper: xi is AR(1), yi = xi + N(0,1)

But: there are serious errors in the paper

results cannot be trusted
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Conditions on hidden variable

All papers and here:

0 < σ− ≤ pi(·|·; θ) ≤ σ+ <∞, θ ∈ B0

upper bounds on log derivatives of pi(·|·; θ)

moments of upper bound of log derivatives of gi(yi |·; θ)

Not covered: xi is an AR(1)
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Conditions on observed variable

BRR 1998, JP 1999:
condition on maxa,b

g(y |a;θ)
g(y |b;θ)

to control mixing properties of x |y

DMR 2004: simple trick to avoid this
(choosing a different dominating measure, dependent on i)
same trick used here:
for all i , yi , θ ∈ B0: 0 <

∫
gi(yi |xi ; θ)µ(dxi)) <∞

Covered: yi |xi ∼ poisson(exp(βzi + xi)),
x : finite state space, z: bounded
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Conditions: Estimating equation

Previous papers: θ̂ = MLE

Here: Find θ̂ by solving

Sn(θ) =
∑n

i=1 Eθ
{
ψi(θ; x̄i , yi)|y1, . . . , yn

}
= 0

x̄i = (xi−1, xi , xi+1), Eθψi(θ) = 0

MLE: ψi(θ; x̄i , yi) = D1 log(pi(xi |xi−1; θ)gi(yi |xi ; θ))

moments of upper bound of ψi(·; ·, yi) and Dψi(·; ·, yi)
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Example: estimating equation

xi : finite state

yi |xi : Ising lattice field on {1,2, . . . , k}2
gi(yi |xi) = c(β(xi)) exp

[
β(xi)

∑
u∼v yiuyiv

]
, yiu ∈ {−1,1}

c(β) is unknovn: use pseudolikelihood→ ψ

D1 log gi(yi |xi)→ D1 log
∏

u pi(yiu|yi,(−u), xi)
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Estimation: Quasilikelihood

Zeger: 1988

Solve M(θ)(y − µ(θ))

Asymptotics is ‘simple’:
∑

i h(yi): mixing of yi ’s

Here: MLE or Estimating equation: each term in sum depends
on all yi ’s!
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Way of thinking (arbitrary silly covariate sequence)

Jn(θ) = −DSn(θ), γ(n, δ) = supθ∈B(δ)

∣∣1
n (Jn(θ)− Jn(θ0))

∣∣
Assume:

(i) 1
n Jn(θ0)− Fn

P→ 0, Fn nonrandom, eigen(Fn) > c0

(ii) γ(n, δn)
P→ 0 for any δn → 0

(iii) 1√
n Sn(θ0)G−1/2

n
D→ Np(0, I), c1 < eigen(Gn) < c2

Result:
√

n(θ̂n − θ0)( 1
n Jn)G−1/2

n
D→ Np(0, I) for any consistent θ̂.
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Mixing: basic

Conditional process (x1, . . . , xn)|(y1, . . . , yn)

General: density c
∏n

k=1 pk (xk |xk−1)gk (xk )

transition density wrt µ: pk (xk |xk−1)gk (xk )ak (xk )/ak−1(xk−1)

define µk by dµk
dµ (xk ) = gk (xk )ak (xk )/

∫
gk (z)ak (z)µ(dz)

transition density qk (xk |xk−1) wrt µk :
pk (xk |xk−1)/

∫
pk (z|xk−1)µk (dz)

Bounds: σ−
σ+
≤ qk (xk |xk−1) ≤ σ+

σ−
from

σ− ≤ pk (xk |xk−1) ≤ σ+

Two sided:
(σ−
σ+

)2 ≤ qk (xk |xk−1, xk+1) ≤
( σ+

σ−

)2
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Mixing

Chain: c
∏n

k=1 pk (xk |xk−1)gk (xk )

Let r < s and ρ = 1− σ−/σ+, then
supu P(xs ∈ A|xr = u)− infv P(xs ∈ A|xr = v) ≤ ρs−r ,

Let r < s1 ≤ s2 < t and ρ̃ = 1− (σ−/σ+)2, then
supa, b P(xs2

s1
∈ B|xr = a, xt = b)

− infu, v P(xs2
s1
∈ B|xr = u, xt = v) ≤ ρ̃s1−r + ρ̃t−s2

Iterative argument: Doob 1953!

(Generalization: perhaps read and understand Meyn and
Tweedie: Markov Chains and Stochastic Stability)
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Central limit theorem

Sn =
∑n

i=1 E(ψi |y1, . . . , yn)

Mixing properties of summands ? Not so obvious

Instead:

E(ψi |yn
1 )− E(ψi |y i+l

i−l )| ≤ 4(supx̄i
ψi)ρ̃

l−1
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General CLT based on Göetze and Hipp, 1982

Sn =
∑n

i=1 Zi , E(Zi) = 0, E |Zi |2+ε ≤ K0

σ-algebras Dj :
|P(A1 ∩ A2)− P(A1)P(A2)| ≤ γ0|I1|γ1 |I2|γ2dist(I1, I2)−λ

for Ai ∈ σ(Dj : j ∈ Ii)

E |Zj − Zj(m)| ≤ K1m−λ, zj(m) is
σ(Di : |i − j | ≤ m)-measurable

eigen( 1
n VarSn) ≥ c0

Then: SnVar
(
Sn
)−1/2 D→ Np(0, I)
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Uniform convergence of information

Jn(θ) = − ∂
∂θSn(θ), ωi = log[pi(xi |xi−1)gi(yi |xi)]

Jn(θ) = −
∑n

i=1 Eθ
[
∂
∂θψi(θ)|yn

1

]
−
∑n

i,j=1 Covθ
[
ψi(θ), ∂∂θωj(θ)|yn

1

]
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Difference of two conditional means

|Eθ[b(xs
r )|yn

1 ]− Eθ0 [b(xs
r )|yn

1 ]|

≤ b0{2p|θ − θ0|
∑s+l

i=r−l+1 hi(yi) + 8ρ̃l}, ρ̃ = 1−
(σ−
σ+

)2

b0: upper bound on b(xs
r )

hi(yi) = supxi−1,xi ,θ∈B0,r |
∂
∂θr
ωi(θ)|

ωi = log[pi(xi |xi−1)gi(yi |xi)]
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Difference of two conditional covariances

Eθ(aubv |yn
1 )− Eθ0(aubv |yn

1 ) ≤

a0
ub0

u

[
2p|θ − θ0|

∑v+1+l
i=u−l hi(yi) + 8ρ̃l

]
Eθ(au|yn

1 )Eθ(bv |yn
1 )− Eθ0(au|yn

1 )Eθ0(bv |yn
1 )

≤ a0
ub0

u

[
2p|θ − θ0|{

∑u+1+l
i=u−l hi(yi) +

∑v+1+l
i=v−l hi(yi)}+ 16ρ̃l

]
Use this when u and v are close

otherwise: bound of Ibragimov and Linnik
on covariances for mixing sequences
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Nonrandom limit of observed information

Jn(θ) = −
∑n

i=1 Eθ
[
∂
∂θψi(θ)|yn

1

]
−
∑n

i,j=1 Covθ
[
ψi(θ), ∂∂θωj(θ)|yn

1

]

Var
(

1
n
∑n

i=1 E(au|yn
1 )
)

= O(1/n)

Var
(

1
n
∑n

u,v=1 Cov(au,bv |yn
1 )
)
→ 0
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End of proof!
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Sunspot numbers: monthly
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Sunspot numbers: yearly
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Model

yi |xi ∼ N(h(xi), σ
2)

xi = (ti ,wi), ti ∈ {0,2, . . . ,53} wi ∈ {3,4,5,6,7}

ti+1 = ti + wi+1(mod 54)

p(wi+1|wi) some persistence (slow period / fast period)

h(xi) = h(ti) =

{
2 + ti 3

10 0 ≤ ti ≤ 20,
8− (ti − 20) 3

17 20 < ti < 54.
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Model

p(wi+1|wi):

3 4 5 6 7
3 ρ (1− ρ)/2 (1− ρ)/2 0 0
4 (1− ρ)/3 ρ (1− ρ)/3 (1− ρ)/3 0
5 (1− ρ)/4 (1− ρ)/4 ρ (1− ρ)/4 (1− ρ)/4
6 0 (1− ρ)/3 (1− ρ)/3 ρ (1− ρ)/3
7 0 0 (1− ρ)/2 (1− ρ)/2 ρ

stationary:
( 2

14 ,
3
14 ,

4
14 ,

3
14 ,

2
14

)
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Simulations

Simulate n = 200 observations — Find (ρ̂, σ̂)

We use θ = log(ρ̂/(1− ρ̂)) and log(σ̂)

Repeat this 500 times

Simulations: ρ = 0.7 (θ = 0.85), σ = 1
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Simulated data
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Asymptotic normality ?
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Sqrt of yearly sunspot numbers

Trend: (Gleissberg cycle)

E(yi |xi) = h(xi) + β1 cos(2πt/100) + β2 sin(2πt/100)

ρ̂ = 0.38, σ̂ = 1.22

β̂1 = −1.19, β̂2 = 0.35
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Sunspot numbers: yearly
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End of talk

Questions:

Remove compactness assumption on state space
How to do model check for hidden Markov model ?
Interplay between hidden variable and covariates ?
Interplay between flexibility in hidden variable and σ2 ?
(yi |xi ∼ N(h(xi), σ

2))
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