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Outline

We will present two different algorithms for simulating (exactly) from
the stationary distribution of customer delay for the stable
(ρ = λ/µ < c) FIFO M/G/c queue. ( c servers in parallel, Poisson
arrivals, iid service times.)

Our first algorithm is for the special case when ρ = λ/µ < 1 (super
stable case). This algorithm involves the general method of
dominated coupling from the past (DCFTP) and we use the
single-server queue operating under the processor sharing (PS)
discipline as a sample-path upper bound. The algorithm is shown to
have finite expected termination time if and only if service times have
finite second moment.
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Outline

Our second algorithm is for the general case of ρ < c. Here we use
discrete-time processes and regenerative simulation methods, in
which as regeneration points, we use return visits to state 0 of a
corresponding random assignment (RA) model which serves as a
sample-path upper bound.

Both algorithms yield, as output, a stationary copy of the entire
Kiefer-Wolfowitz workload vector.
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Muti-server queue (1)

Here we consider the FIFO M/G/c queue. Poisson arrivals at rate λ,
iid service times S with general distribution G(x) = P(S ≤ x), mean
E(S) = 1/µ, and the stability condition ρ = λ/µ < c. When c = 1,
this is the classic “M/G/1" queue and it has a stationary distribution
for customer delay D, that is known via the Pollaczek-Kintchine
formula (Laplace transform of D):

E−sD =
1 − ρ

1 − ρE(e−sSe )
, s ≥ 0,

where Se is distributed as Ge, the equilibrium distribution of service, it
has density µP(S > x).
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Muti-server queue (2)

This implies that D can be expressed (in distribution) as a geometric
sum of iid Se rvs:

D =

L∑
j=1

Yj , (1)

where the {Yj} are iid distributed as the equilibrium distribution of
service, with cumulative distribution function given by
Ge(x) = µ

∫ x
0 P(S > y)dy , x ≥ 0, and independently L has a

geometric distribution, P(L = k ) = ρk (1 − ρ), k ≥ 0.
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Muti-server queue (3)

It is reasonable to assume that we could simulate from both G and
Ge, and of course we can simulate a geometric rv. Thus we have an
exact simulation algorithm under such assumptions:

Algorithm for simulating D for the FIFO M/G/1 queue
1. Generate L geometrically distributed with parameter ρ.
2. If L = 0, set D = 0. Otherwise generate L iid copies Y1, . . . ,YL

distributed as Ge, and set

D =

L∑
j=1

Yj .
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Muti-server queue (3)

When c ≥ 2, no such formula for D is known. At arrival epochs tn with
iid interarrival times Tn = tn − tn−1 (t0

def
= 0), define the vector Wn

defined recursively by

Wn = R(Wn−1 + Sne − Tnf)+, n ≥ 1, (2)

where Wn = (Wn(1), . . . ,Wn(c)), e = (1,0, . . .0), f = (1,1, . . . ,1), R
places a vector in ascending order, and + takes the positive part of
each coordinate. Dn = Wn(1) is then customer delay in queue (line)
of the nth customer. This is called the Kiefer-Wolfowitz workload
vector and when ρ < c it is known to converge to a unique stationary
distribution π. (It is notoriously complicated to analyze π.)
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Muti-server queue (4)

In continuous time, the Kiefer-Wolfowitz workload vector is denoted
by

V(t) = (V(1, t),V(2, t), . . . ,V(c, t)), t ≥ 0,

and
Wn = V(tn−), n ≥ 0,

the workload found by the nth customer (not including their own
service time).
When arrivals are Poisson (as we are assuming), PASTA implies that
the two processes have the same stationary distribution, π. So we
can, and will, work in continuous time instead of discrete time.
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Muti-server queue (4)

We take a from the past stationary version,

{V(t) : t ≤ 0},

and our objective is to simulate a copy of V(0) ∼ π.

We shall assume that ρ < 1, the system is super stable: the
corresponding M/G/1 queue will also be stable.
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Muti-server queue (5)

Lemma
Let V1(t) denote total work in system at time t for the FIFO M/G/1
queue, and let Vc(t) =

∑c
i=1 V(i, t) denote total work in system at time

t for the corresponding FIFO M/G/c queue, where
V1(0) = Vc(0) = 0 and both are fed exactly the same input of Poisson
arrivals and iid service times. Then

P(Vc(t) ≤ V1(t), for all t ≥ 0) = 1. (3)

(Workload is defined as the sum of all remaining service times in the
system.)
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Muti-server queue (6)

KEY IDEA:
1. If we were to start off both the c−server and the single-server

models empty at time t = −∞ while feeding them exactly the
same input, then both would have their stationary distributions at
time 0 and their workload would be ordered at all times due to
the Lemma.

2. Moreover, if we walk backwards in time from the origin, and
detect the first time −τ ≤ 0 at which the single-server model is
empty, then from the Lemma, the c−server model would be
empty as well.

3. We then could construct a sample of V(0) (having the stationary
distribution π) by starting off empty at time −τ and using the
Kiefer-Wolfowitz recursion forwards in time from time −τ to 0.
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Muti-server queue (7)

We now proceed to show how to accomplish this. The main problem
is how to “walk backwards in time" in stationarity for the single-server
model, how do we do that?
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Muti-server queue (8)

Outline of the approach/solution:
1. Workload for single-server queues is invariant under changes of

disciplines: FIFO, LIFO, Processor-sharing (PS), pre-emptive
LIFO, random choice, etc., all have exactly the same
sample-paths for workload {V1(t) : t ≥ 0}.

2. Under PS, it is known that :

{X(t) : t ≥ 0} = {(L(t),Y1(t), . . . ,YL(t)(t)) : t ≥ 0},

where L(t) denotes number of customers in service at time t ,
and Yi(t) their remaining service times, is a Markov process with
stationary distribution (L ,Y1, . . . ,YL ) exactly as from the
Pollaczek-Kintchine formula; L is geometric with parameter ρ,
and the Yi are iid Ge.
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Muti-server queue (9)

3. When started with its stationary distribution (which we know how
to simulate from), the time-reversal of this Markov process is the
Markov process representing this same PS model, except the Yi
are now the ages of the service times: It too has Poisson arrivals,
and iid ∼ G service times. (This means that the departure
process of the PS model (when stationary) is Poisson at rate λ.)

4. Thus we can simulate the time-reversal PS model until it
empties, all the while recording the departure times and the
service times attached to those departures. We then feed these
service times and interarrival times back into an initially empty
multi-server model forward in time-using the Kiefer-Wolfowitz
recursion-to construct V(0).
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Muti-server queue (10)

Algorithm for simulating V(0) distributed as π
1. Set t = 0 (time). Generate a vector (L ,Y1, . . . ,YL ) distributed as

the stationary distribution and set
X(0) = (L(0),Y1(0), . . . ,YL(0(0)) = (L ,Y1, . . . ,YL ).

2. If L = 0, then stop simulating and set τ = 0. Otherwise, continue
to simulate (as a discrete-event simulation with iid interarrival
times T ∼ exp(λ) and iid service times S ∼ G) the time-reversed
PS model until time τ = min{t ≥ 0 : L(t) = 0}: Each of the L > 0
customers’ service times are to be served simultaneously at rate
r = 1/L until the time of the next event, either a new arrival or a
departure; reset t = this new time.
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Muti-server queue (11)

3. If the next event is an arrival, then generate a service time S for
this customer distributed as G (keep a record of its value and
place it in service), generate the next interarrival time T
distributed as exp(λ) and reset L = L + 1, set r = 1/L .

4. If the next event is a departure, then record this as the next
departure time and record the service time of the customer
associated with it and reset L = L − 1. If L = 0, then stop
simulating, set τ = t .

5. If τ > 0 after stopping the simulation, then let t1, . . . , tk and
S1, . . . ,Sk denote the k ≥ 1 recorded departure times (in order of
departure), and the associated service times, that occurred up to
time τ (with tk = τ the last such departure time). Define the
interdeparture times Ti = ti − ti−1, 0 ≤ i ≤ k , with t0 = 0.
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Muti-server queue (12)

6. We now construct V(0) as follows: If τ = 0, then set V(0) = 0.
Otherwise: Reset (S1, . . . ,Sk ) = (Sk , . . . ,S1) and
(T1, . . . ,Tk ) = (Tk , . . . ,T1) (that is, place them in reverse order).
(They have the conditional distribution of iid input given τ
resulted in k departures, so they are no longer iid.) Using
(S1, . . . ,Sk ) and (T1, . . . ,Tk ) as the input, construct Wk
(initializing with W0 = 0), by using the Kiefer-Wolfowitz recursion
from n = 1 up until n = k . Now set V(0) = Wk .
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Final comments

1. E(τ) < ∞ if and only if E(S2) < ∞ because τ (given it is > 0) is
the stationary excess (equilibrium) distribution of a M/G/1 busy
period B. E(τ) = ρE(Be) = ρE(B2)/2E(B).

2. At time t = 0, we actually need both the stationary remaining
service times and their ages. This is because the customers in
service at time t = 0 have (via the inspection paradox) service
times (age plus excess) distributed as the spread distribution. If
G has a density g(x), then the spread has density
h(x) = µxg(x).

3. Our method of using the PS queue also works for exactly
simulating the stationary distribution of general networks with iid
routes, Poisson arrivals and c FIFO single-server stations; but
we must have the harsh condition that ρ < 1. If
((i1,S(1)), (i2,S(2)), . . . , (iK ,S(K)) denotes a route of random
length K ≥ 1 and we define S =

∑K
i=1 S(i), then total work

brought by a customer is E(S) and we define ρ = λE(S).
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Muti-server queue-B (1)

Now we present our second algorithm and we allow for any ρ < c.

Wn+1 = R(Wn + Sne − Anf)+, n ≥ 0, (4)
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Simulating the stationary distr. of a reg. proc. (1)

Suppose that X = {X(t) : t ≥ 0} is a positive recurrent non-delayed
regenerative process, with iid cycle lengths generically denoted by T
distributed as F(x) = P(T ≤ x), x ≥ 0 with finite and non-zero mean
E(T) = 1/λ. A generic length T cycle is thus C = {X(t) : 0 ≤ t < T }.
From regenerative process theory, the (marginal) stationary
distribution π is given by (expected value over a cycle divided by the
expected cycle length)

π(·) = λE
∫ T

0
I{X(t) ∈ ·}dt . (5)
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Simulating the stationary distr. of a reg. proc. (2)

Due to Assmusen, Glynn and Thorisson (1992):

Proposition

1. Suppose we can and do sequentially simulate iid copies of
C = {X(t) : 0 ≤ t < T } (the first cycle), denoted by
Cn = {Xn(t) : 0 ≤ t < Tn}, n ≥ 1, having iid cycle lengths {Tn}

distributed as F.
2. Suppose further that we can and do simulate (independently)

one copy Te distributed as the equilibrium distribution having
density function fe(t) = λP(T > t) = λF̄(t), t ≥ 0.

3. Let τ = min{n ≥ 1 : Tn ≥ Te
}.

4. Use cycle Cτ to construct X ∗ = Xτ(Te)

Then the simulated random element X ∗ is distributed as π.
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Simulating the stationary distr. of a reg. proc. (3)

Proof.
Conditional on Te = t , it holds that τ = min{n ≥ 1 : Tn > t}, and thus
Cτ simply has the distribution of a first cycle given that its length is
larger than t :

P(X ∗ ∈ · | Te = t) = P(X(t) ∈ · | T > t) =
P(X(t) ∈ · , T > t)

F̄(t)
.

�
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Simulating the stationary distr. of a reg. proc. (4)

Proof.
Since Te has density fe(t) = λF̄(t), we obtain

P(X ∗ ∈ ·) =

∫
∞

0

P(X(t) ∈ · , T > t)

F̄(t)
λF̄(t)dt

= λ

∫
∞

0
P(X(t) ∈ · , T > t)dt

= λE
∫ T

0
I{X(t) ∈ ·}dt

= π(·).

�
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Simulating the stationary distr. of a reg. proc. (5)

Proposition 1 remains valid in a discrete-time setting too in which
case the density of Te is replaced by the probability mass function
P(Te = n) = λP(T ≥ n) on the positive integers n ≥ 1.
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Random Assignment (RA) model (1)

Given a c−server queueing model, the random assignment model
(RA) is the case when each of the c servers forms its own FIFO
single-server queue, and each arrival to the system, independent of
the past, randomly chooses queue i to join with probability
1/c, i ∈ {1,2, . . . c}. In the M/G/c case, we refer to this as the RA
M/G/c model.
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Random Assignment (RA) model (2)

The following is a special case of Lemma 1.3, Page 342 in [1]. (Such
results and others even more general are based on the early work
(1979, 1980) of S. Foss and R. Wolff.)

Lemma
Let QF (t) denote total number of customers in system at time t ≥ 0
for the FIFO M/G/c queue, and let QRA (t) denote total number of
customers in system at time t for the corresponding RA M/G/c model
in which both models are initially empty and fed exactly the same
input of Poisson arrivals {tn} and iid service times {Sn}. Assume
further that for both models the service times are used by the servers
in the order in which service initiations occur (Sn is the service time
used for the nth such initiation). Then

P(QF (t) ≤ QRA (t), for all t ≥ 0) = 1. (6)
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Random Assignment (RA) model (3)

The importance of Lemma 2 is that it allows us to jointly simulate
versions of the two stochastic processes {QF (t) : t ≥ 0} and
{QRA (t) : t ≥ 0} while achieving a coupling such that (6) holds. In
particular, whenever an arrival finds the RA model empty, the FIFO
model is found empty as well. These consecutive epochs in time
constitute regeneration points (for both models) due to the iid
assumptions on the input. We explain how to use these facts to our
advantage next.
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Random Assignment (RA) model (4)

Wn+1 = R(Wn + Sne − Anf)+, n ≥ 0, (7)

for the FIFO model defines a Markov chain and for the stable M/G/c
case, visits to the empty state 0 form positive recurrent regeneration
points. Sure, we can simulate iid cycles, starting with W0 = 0, but we
do not know how to simulate a copy of Te, equilibrium cycle length.
So we can not directly use the Proposition with such regeneration
points.
But the RA model too regenerates each time an arrival to it finds an
empty system, and since QF (t) ≤ QRA (t), t ≥ 0, these RA
regeneration points also serve as regeneration points for the FIFO
model.
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Random Assignment (RA) model (5)

Letting Qn = (Q1,n, . . . ,Qc,n) = Q(tn−) denotes the number in system
(at each node) as found by the nth arrival to the RA model, we set
Q0 = 0 and define

T = min{n ≥ 1 : Qn = 0}.
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Random Assignment (RA) model (6)

Moreover, for the RA model, we indeed can simulate an equilibrium
cycle length Te. This is because (as we shall next see), we know how
to simulate exactly from the stationary distribution of the RA model.
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Random Assignment (RA) model (7)

Letting Vn = (Vn(1), . . . ,Vn(i)) denote workload (at each node) as
found by the nth arriving customer to the RA model, we have, for each
node i ∈ {1,2, . . . , c},

Vn+1(i) = (Vn(i) + SnI{Un = i} − An)+, n ≥ 0, (8)

where here, Sn is an iid service time of the nth (Poisson rate λ)
arriving customer, and independently {Un : n ≥ 0} denotes an iid
sequence of random variables with the discrete uniform distribution
over {1,2, . . . , c}.
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Random Assignment (RA) model (8)

From PASTA, the stationary distribution of Vn is in fact of the form

(D(1), . . . ,D(c)), (9)

where the D(i) here are iid distributed as D from Pollaczek-Kintchine:

D =

L∑
j=1

Yj .
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Algorithm for simulating Te

1. Initialize V0 = (D(1), . . . ,D(c)).
2. Simulate sequentially {Vn : n ≥ 1} using the recursion in (8) until

time
Te = min{n ≥ 1 : Vn = 0}.
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Final Algorithm

1. Simulate one copy of Te.
2. Independently simulate a copy of a first cycle (number in system

for RA, coupled with the FIFO model) with corresponding cycle
length T .

3. If T < Te, then go back to step (2).
4. Construct the FIFO cycle C = {W1, . . . ,WT }. Set W = WTe .
5. Output W.
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