Overview of ME distributions	
Failure Recover Scenarios	
A Taboo Process - Two Absorbing States	14
RESTART and Checkpoints for Markov Models	18
Example	31

Checkpointing for the RESTART Problem in Markov Networks

Lester Lipsky Derek Doran Swapna Gokhale (With lots of help from Steve Thompson)

> Department of Computer Science & Engineering University of Connecticut

New Frontiers in Applied Probability at Sandbjerg Estate, Sønderborg, 1-5 August 2011 Conference in Honour of Søren Asmussen on the occasion of his 65th Birthday

イロト イポト イヨト イヨト

Overview of ME distributions	
Failure Recover Scenarios	
A Taboo Process - Two Absorbing States	14
RESTART and Checkpoints for Markov Models	18
Example	31

Overview

1

Overview of ME distributions 2

Failure Recover Scenarios 7

A Taboo Process - Two Absorbing States 14

RESTART and Checkpoints for Markov Models 18

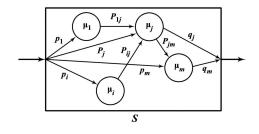
Example 31

3

Overview of ME distributions	2
Failure Recover Scenarios	7
A Taboo Process - Two Absorbing States	14
RESTART and Checkpoints for Markov Models	18
Example	31

Matrix Exponential (ME) Distributions - I 2

Subsystem with *M* nodes (phases)



э

Overview of ME distributions	2
Failure Recover Scenarios	7
A Taboo Process - Two Absorbing States	14
RESTART and Checkpoints for Markov Models	18
Example	31

Matrix Exponential (ME) Distributions - II 3

- ▶ Let **P** be a transition *M*-Matrix such that **I** − **P** has an inverse;
- Let ε' be an M dimensional column-vector of all 1's;
- Let **p** be an *M* row-vector where (**p**)_i is the probability that the process will start at node *i*, and **p**ε' = 1;
- ▶ Let each of the *M* nodes have exponential service time distributions, with rate µ_i = (M)_{ii} > 0 (M is a diagonal matrix);
- ▶ Let *T* be the time from entry to departure;

・ 同下 ・ ヨト ・ ヨト

Overview of ME distributions	2
Failure Recover Scenarios	7
A Taboo Process - Two Absorbing States	14
RESTART and Checkpoints for Markov Models	18
Example	31

Matrix Exponential (ME) Distributions - III 4

Define

$$\mathbf{B} = \mathbf{M}(\mathbf{I} - \mathbf{P}) \quad \text{and} \quad \mathbf{V} = \mathbf{B}^{-1};$$

► Then the Probability Distribution (PDF), Reliability, and probability density (pdf) functions for T are

$$F(t) := \mathbb{P}\mathbf{r}[T \le t] = 1 - \mathbf{p}\exp(-t\mathbf{B})\mathbf{\varepsilon}'. \quad \overline{F}(t) = 1 - F(t),$$

and
$$f(t) = \frac{dF}{dt} = \mathbf{p} \exp(-t\mathbf{B})\mathbf{B}\varepsilon'$$
.

Also

$$\mathbb{E}[\mathcal{T}^{\ell}] = \ell! \, \mathbf{pV}^{\ell} \, \boldsymbol{\varepsilon'}.$$

Overview of ME distributions	2
Failure Recover Scenarios	7
A Taboo Process - Two Absorbing States	14
RESTART and Checkpoints for Markov Models	18
Example	31

ME Representation of the Uniform Distribution

U2(t) U_(t) U₄(t) U_(t) 0.8 Density Function, Uniform U_(t) U₇(t) U_s(t) 0.6 U₁₀(t) U₂₀(t) U₄₀(t) 0.4 U₈₀(t) U₁₂₀(t) U₂₀₀(t) 0.2 0L 0.5 1.5 2.5 1 2 t

UCONN

э

5

Lipsky, Doran, Gokhale Checkpointing for the RESTART Problem in Markov Networks

Overview of ME distributions	2
Failure Recover Scenarios	
A Taboo Process - Two Absorbing States	14
RESTART and Checkpoints for Markov Models	18
Example	31

Truncated Power-tail (TPT) Distributions

10 10-2 10-4 $R_{_{\infty}}(x) \rightarrow c \; x^{-\alpha}$ 10-1 T=1 T=10 T=20 T=30 T=4 10⁻¹⁶ 10 10⁰ 10² 10⁴ 10⁶ 10⁸ х

6

э

Lipsky, Doran, Gokhale Checkpointing for the RESTART Problem in Markov Networks

Overview of ME distributions	
Failure Recover Scenarios	7
A Taboo Process - Two Absorbing States	14
RESTART and Checkpoints for Markov Models	18
Example	31

Recovery Scenarios

7

There have been three general scenarios about recovering after a system crashes during execution.

- preemptive Resume (prs) RESUME
- preemptive repeat different (prd) REPLACE
- preemptive repeat identical (pri) RESTART

RESUME and REPLACE can be analyzed by Markov models. RESTART, however, is more difficult to treat.

Overview of ME distributions	
Failure Recover Scenarios	7
A Taboo Process - Two Absorbing States	14
RESTART and Checkpoints for Markov Models	18
Example	31

The Performance of Systems Under RESTART - I 8

- Let T be the time for a job to complete without failures, .
- Let F(t), f(t) and $\overline{F}(t) = 1 F(t)$ be the *PDF*, *pdf*, and *reliability functions* for T.
- Assume that the failure distribution is exponential with failure rate β. Then for T = t, let X(t, β) be the completion time with failures, under RESTART, with PDF H(x|t). Then its Laplace transform was shown to be

$$H^*(s|t) = \frac{(s+\beta)e^{-(s+\beta)t}}{s+\beta e^{-(s+\beta)t}}.$$

► Since this is the moment generating function of H(x|t), we have in general

$$\mathbb{E}[X(t,\beta)^{\ell}] = (-1)^{\ell} \left[\frac{d^{\ell} H^*(s|t)}{ds^{\ell}} \right]_{s=0}.$$

Overview of ME distributions	
Failure Recover Scenarios	7
A Taboo Process - Two Absorbing States	14
RESTART and Checkpoints for Markov Models	18
Example	31

The Performance of Systems Under RESTART - II 9

Since T = t throughout a RESTART process, it follows that

$$\mathbb{E}[X(\beta)^{\ell}] = \int_0^\infty \mathbb{E}[X(t, \beta)^{\ell}] f(t) dt.$$

• In particular, for $\ell = 1$ we have

.

$$\mathbb{E}[X(t, \beta)] = rac{e^{eta t} - 1}{eta}$$
 and

$$\mathbb{E}[X(\beta)] = \int_0^\infty \frac{e^{\beta t} - 1}{\beta} f(t) \, dt$$

A 3 >

Overview of ME distributions	
Failure Recover Scenarios	7
A Taboo Process - Two Absorbing States	14
RESTART and Checkpoints for Markov Models	18
Example	31

The Performance of Systems Under RESTART - III 10

Define:

$$\lambda_{s} := \sup\left\{\lambda \mid \int_{0}^{\infty} \exp(\lambda t) f(t) \, dt < \infty
ight\}.$$

Also define

$$\alpha := \sup\left\{\ell \mid \int_0^\infty x^\ell h(x) \, dx < \infty\right\}$$

where h(x) is the pdf for $X(\beta)$ (total completion time under *RESTART*). Then $X(\beta)$ is *power-tailed* (PT) with index α if $0 < \alpha < \infty$.

Overview of ME distributions	
Failure Recover Scenarios	7
A Taboo Process - Two Absorbing States	14
RESTART and Checkpoints for Markov Models	18
Example	31

The Performance of Systems Under RESTART - IV 11

From these definitions we have the following.

- if T has infinite support, X(β) is sub-exponential.
- f(t) has an exponential tail with parameter λ_s if 0 < λ_s < ∞.
 If λ_s = 0 then f(t) is sub-exponential.
- If T has an exponential tail with parameter λ_s, then X(β) will be PT with index

$$\alpha = \lambda_s / \beta.$$

Thus as β becomes bigger, α becomes smaller, and the system behavior becomes more unstable.

・ 同 ト ・ ヨ ト ・ ヨ ト

Overview of ME distributions	
Failure Recover Scenarios	7
A Taboo Process - Two Absorbing States	14
RESTART and Checkpoints for Markov Models	18
Example	31

Markov Models of Software (MMS model) 12

- Software systems (among others) are highly modular, where the system control is passed among independent components.
- The passing of control between the *M* components (nodes) maps to an *M* dimensional Markov matrix, **P**.
- Assume that:
 - ► the service time at each node is exponentially distributed with rate µ_i := [M]_{ii} > 0;
 - there is a path to exit the system from each node;

Then, as previously described, the distribution for the total execution time T is ME distributed (actually, *PHase*).

・ 同下 ・ ヨト ・ ヨト

Overview of ME distributions	
Failure Recover Scenarios	7
A Taboo Process - Two Absorbing States	14
RESTART and Checkpoints for Markov Models	18
Example	31

The MMS Model Under RESTART

13

・周ト ・ヨト ・ヨト

For ME distributions, $\lambda_s := \min[|\lambda_i|]$, where $\{\lambda_i | 1 \le i \le M\}$ is the set of eigenvalues of **B** whose eigenvectors are not orthogonal to **p** or ε' .

▶ If the MMS model is subject to exponential failures, and must RESTART, $X(\beta)$ will be PT distributed with $\alpha = \lambda_s/\beta$

• The first two moments of $X(\beta)$ are given by:

$$\mathbb{E}[X(\beta)] = \mathbf{p} \left[\mathbf{V} (\mathbf{I} - \beta \mathbf{V})^{-1} \right] \boldsymbol{\varepsilon}' \quad (\beta < \lambda_s)$$

 $\mathbb{E}[X(\beta)^2] = 2\mathbf{p} \left[\mathbf{V}^2 (\mathbf{I} - 2\beta \mathbf{V})^{-2} (\mathbf{I} - \beta \mathbf{V})^{-1} \right] \boldsymbol{\varepsilon}' \quad (\beta < \lambda_s/2)$

even though $X(\beta > 0)$ is not ME.

Overview of ME distributions	
Failure Recover Scenarios	
A Taboo Process - Two Absorbing States	14
RESTART and Checkpoints for Markov Models	18
Example	31

Markov Chains with Two Absorbing States - I 14

Consider an (M+2)-dimensional Markov matrix P

with two absorbing states, a and b. That is,

$$\mathbf{\bar{P}}\mathbf{\bar{e'}} = \mathbf{\bar{e'}}$$
 and $(\mathbf{\bar{P}})_{aa} = (\mathbf{\bar{P}})_{bb} = 1$

Deleting the rows and columns of a and b gives P.
Then,

$$[\mathbf{Z}]_{ij} := [(\mathbf{I} - \mathbf{P})^{-1}]_{ij}$$

is the expected number of visits to j before absorption, given that the chain started at i.

A 3 >

Overview of ME distributions	
Failure Recover Scenarios	
A Taboo Process - Two Absorbing States	14
RESTART and Checkpoints for Markov Models	18
Example	31

Markov Chains with Two Absorbing States - II 15

Now define the *M*-dimensional column vectors

$$(\mathbf{q}'_{\mathbf{a}})_i := \bar{P}_{i\mathbf{a}} \quad \text{and} \quad (\mathbf{q}'_{\mathbf{b}})_i := \bar{P}_{i\mathbf{b}}, \text{ where } i \neq \mathbf{a}, \mathbf{b}.$$

These are the probability vectors of being absorbed by a and b, respectively.

It follows that the *ith* components of

$$\varepsilon_{\mathbf{a}}' := \mathsf{Z} \, \mathsf{q}_{\mathbf{a}}' \quad ext{and} \quad \varepsilon_{\mathbf{b}}' := \mathsf{Z} \, \mathsf{q}_{\mathbf{b}}'$$

are the probabilities that the process will end at *a* or *b*, respectively, given that the process started at *i*. Note that $\varepsilon'_{a} + \varepsilon'_{b} = \varepsilon'$.

Overview of ME distributions	
Failure Recover Scenarios	
A Taboo Process - Two Absorbing States	14
RESTART and Checkpoints for Markov Models	18
Example	31

Markov Chains with Two Absorbing States - III 16

 \blacktriangleright Let \boldsymbol{p}_{o} be the entrance vector. Then

$$p_{a} = \mathbf{p}_{o} \boldsymbol{\varepsilon}_{a}^{\prime}$$
 and $p_{b} = \mathbf{p}_{o} \boldsymbol{\varepsilon}_{b}^{\prime}$, where $p_{a} + p_{b} = 1$

are the probabilities that the process will be absorbed by a or b.

It is well known that [p_o exp(-Bt)]_i is the probability that absorption has not occured by time t, and the system is in state i. This all leads to the following:

A 3 >

Overview of ME distributions	
Failure Recover Scenarios	
A Taboo Process - Two Absorbing States	14
RESTART and Checkpoints for Markov Models	18
Example	31

Markov Chains with Two Absorbing States - IV 17

► Theorem: Let q'_u, ε'_u, p_o, B and V, where u ∈ {a, b}, be defined as above. Then T_u has distribution

$$\bar{F}_u(t) := \mathbb{P}\mathbf{r}[\mathcal{T}_u > t] = \mathbf{p}_0 \exp(-\mathbf{B}t) \boldsymbol{\varepsilon}'_{\mathbf{u}}/p_u, \quad u = a, \ b.$$

The moments of these distributions come from above:

$$\mathbb{E}[\mathcal{T}_u^\ell] = \ell! \, \mathbf{p_o} \, [\mathbf{V}^\ell] \, \boldsymbol{\varepsilon_u^\prime} / p_u$$

We then say that $\overline{F}_{u}(t)$ is generated by the triplet $\langle \mathbf{p}_{o}, \mathbf{B}, \varepsilon_{u}' \rangle$. \blacktriangleright (Note that $\mathbb{E}[T^{\ell}] = p_{a}\mathbb{E}[T_{a}^{\ell}] + p_{b}\mathbb{E}[T_{b}^{\ell}] = \ell! \mathbf{p}_{o}[\mathbf{V}^{\ell}]\varepsilon'$.)

Overview of ME distributions	
Failure Recover Scenarios	
A Taboo Process - Two Absorbing States	14
RESTART and Checkpoints for Markov Models	18
Example	31

Applying Checkpointing to the MMS

18

・ 同 ト ・ ヨ ト ・ ヨ ト

- Checkpointing can easily be applied to the model to combat the PT service times under RESTART.
- After execution of a selected node m, a system checkpoint operation can be applied, saving the system state.
- Ideally, the designer will apply checkpointing for each state, and select the one that yields the best performance.
- To analyze this system we need the conditional distributions for the time to absorption at each of two absorbing states.

Overview of ME distributions	
Failure Recover Scenarios	
A Taboo Process - Two Absorbing States	14
RESTART and Checkpoints for Markov Models	18
Example	31

Checkpointing in Markov Systems (MMSC model) 19

For the original MMSC model, select node m as the one that is followed by a system checkpoint. Then,

$$q_m = [\mathbf{q}']_m := [(\mathbf{I} - \mathbf{P})\boldsymbol{\varepsilon'}]_m$$

is the probability that execution will end after finishing at m.

Add one row and one column to P at index M + 1, representing the system checkpoint state, to produce the matrix P_c.

→

Overview of ME distributions	
Failure Recover Scenarios	
A Taboo Process - Two Absorbing States	14
RESTART and Checkpoints for Markov Models	18
Example	31

The MMSC Model - I

20

• P_c has the following properties: for $i \neq m$, M + 1 and $j \neq M + 1$,

$$[\mathbf{P}_{\mathbf{c}}]_{ij} = \mathbf{P}_{ij}, \quad [\mathbf{P}_{\mathbf{c}}]_{i,M+1} = 0,$$
$$[\mathbf{P}_{\mathbf{c}}]_{mi} = 0, \quad [\mathbf{P}_{\mathbf{c}}]_{m,M+1} = 1 - q_{m},$$
$$[\mathbf{P}_{\mathbf{c}}]_{M+1,k} = 0, \quad \forall \ k.$$

- This defines a Markov chain with two absorbing states, e (for end) and c (for checkpoint).
- To use the established theorem we need $\mathbf{q}_{\mathbf{e}}'$ and $\mathbf{q}_{\mathbf{c}}'$.
- ▶ q'_e is the same exit vector as that for the original model, with additional component [q'_e]_{M+1} = 0, so

$$[\mathbf{q}'_{\mathbf{e}}]_i = [(\mathbf{I} - \mathbf{P})\boldsymbol{\varepsilon}']_i, \text{ but } [\mathbf{q}'_{\mathbf{e}}]_{(M+1)} = 0$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Overview of ME distributions	
Failure Recover Scenarios	
A Taboo Process - Two Absorbing States	14
RESTART and Checkpoints for Markov Models	18
Example	31

The MMSC Model - II

21

- $\mathbf{q}'_{\mathbf{c}}$ is given as: $[\mathbf{q}'_{\mathbf{c}}]_i = 0$, for $i \leq M$ and $[\mathbf{q}'_{\mathbf{c}}]_{M+1} = 1$.
- ▶ We define the (M + 1)-matrix $\mathbf{Z}_{\mathbf{c}} = (\mathbf{I} \mathbf{P}_{\mathbf{c}})^{-1}$ to get

$$\epsilon_e' = \mathsf{Z}_{\mathsf{c}} \, \mathsf{q}_{\mathsf{e}}' \quad ext{and} \quad \epsilon_c' = \mathsf{Z}_{\mathsf{c}} \, \mathsf{q}_{\mathsf{c}}'$$

The probability of finishing the process without checkpointing is:

$$p_{\mathrm{o}e} := \mathbf{p_o} \boldsymbol{\epsilon'_e}$$

We can also get the probability of reaching the checkpoint before finishing:

$$p_{\mathrm{o}c} := \mathbf{p_o} \boldsymbol{\epsilon'_c}$$

不得下 不足下 不足下

Overview of ME distributions	
Failure Recover Scenarios	
A Taboo Process - Two Absorbing States	14
RESTART and Checkpoints for Markov Models	18
Example	31

The MMSC Model - III

22

► Now we apply the theorem to get the conditional distributions for the time to finish given no checkpoint (*T_{oe}*) and the time to reach and execute the checkpoint (*T_{oc}*).

Define the diagonal matrix

$$[\mathbf{M}_{\mathbf{c}}]_{ii} = [\mathbf{M}]_{ii} \quad \text{and} \quad [\mathbf{M}_{\mathbf{c}}]_{M+1,M+1} = \mu_{\mathbf{c}},$$

where $t_c = 1/\mu_c$ is the mean time to process a checkpoint. The conditional distributions are then:

$$\mathbf{B}_{\mathbf{c}} := \mathbf{M}_{\mathbf{c}}(\mathbf{I} - \mathbf{P}_{\mathbf{c}})$$
$$\bar{F}_{ou}(t) := \mathbb{P}\mathbf{r}[T_{ou} > t] = \mathbf{p}_{\mathbf{o}} \exp(-t\mathbf{B}_{\mathbf{c}}) \boldsymbol{\epsilon}_{\boldsymbol{u}}' / p_{ou}$$
$$u \in \{\boldsymbol{e}, \, \boldsymbol{c}\}$$

Overview of ME distributions	
Failure Recover Scenarios	
A Taboo Process - Two Absorbing States	14
RESTART and Checkpoints for Markov Models	18
Example	31

The MMSC Model - IV

23

- If the system execution takes the path described by *oe*, the process ends. But if the path leads to *m*, the system checkpoints after it's execution.
- We must define a restart vector p_c as an entrance vector into the system corresponding to where the execution of the system begins again after checkpointing.
- **p**_c is composed of the transition probabilities out of state *m*:

$$\mathbf{p_c} := [\mathbf{P}_{m1}, \, \mathbf{P}_{m2}, \, ..., \, \mathbf{P}_{mM}, \, 0 \,]/(1 - q_m)$$

向下 イヨト イヨト

Overview of ME distributions	
Failure Recover Scenarios	
A Taboo Process - Two Absorbing States	14
RESTART and Checkpoints for Markov Models	18
Example	31

The MMSC Model - V

24

So the probability of the system finishing after checkpointing without returning to m is

$$p_{ce} := \mathbf{p_c} \boldsymbol{\epsilon'_e}$$

The probability of the system returning to m after already checkpointing (to save a more recent state of the system) is

$$p_{cc} := \mathbf{p_c} \boldsymbol{\epsilon'_c}$$

► The time distribution for these two events are (for u ∈ {c, e}):

$$ar{\mathcal{F}}_{cu}(t) := \mathbb{P}\mathbf{r}[\mathcal{T}_{cu} > t] = \mathbf{p_c} \exp(-t\mathbf{B_c}) \mathbf{\epsilon'_u} / p_{cu}$$

Overview of ME distributions	
Failure Recover Scenarios	
A Taboo Process - Two Absorbing States	14
RESTART and Checkpoints for Markov Models	18
Example	31

The MMSC Model - VI

25

- What has been described can be thought of as an embedded Markov chain with four nodes whose service time distributions are given by each of the *F*_{ab}.
- The transition matrix for this process is:

$$\hat{\boldsymbol{P}}_{\boldsymbol{c}} := \begin{array}{|c|c|c|c|c|}\hline & oe & oc & ce & cc \\ \hline oe & 0 & 0 & 0 & 0 \\ oc & oc & 0 & 0 & p_{ce} & p_{cc} \\ ce & 0 & 0 & 0 & 0 \\ cc & 0 & 0 & p_{ce} & p_{cc} \end{array} \quad \text{with} \quad \hat{\boldsymbol{p}}_{\boldsymbol{c}} := [p_{oe}, p_{oc}, 0, 0]$$

expected number of visits to C:

 \mathbb{E}[N_c] = p_{oc} + p_{oc} p_{cc} / p_{oe} = p_{oc} / p_{oe}
 \end{table}

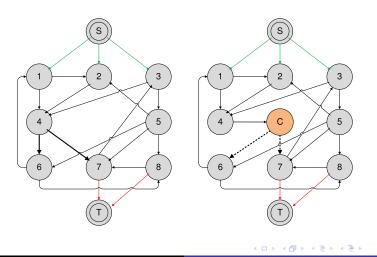
A B K A B K

Overview of ME distributions	
Failure Recover Scenarios	
A Taboo Process - Two Absorbing States	14
RESTART and Checkpoints for Markov Models	18
Example	31

Diagrams of the Markov Chain

26

UCONN



Lipsky, Doran, Gokhale Checkpointing for the RESTART Problem in Markov Networks

Overview of ME distributions	
Failure Recover Scenarios	
A Taboo Process - Two Absorbing States	14
RESTART and Checkpoints for Markov Models	18
Example	31

Applying RESTART to the MMSC

27

(日本) (日本) (日本)

- \hat{P}_c , together with the ME service time distributions of each node is an ME representation (but only for $\beta = 0$).
- If there is a failure, the system only has to redo whatever work had been accomplished within the node that had failed.
- ► Thus we can get $\mathbb{E}[X_u(\beta)]$ and $\mathbb{E}[X_u^2(\beta)]$ for $u \in \{oe, oc, cc, ce\}$.
- With the first two moments of the distribution for each node, we can get 𝔼[X^ℓ_c(β)] (ℓ = 1, 2) as follows:

Overview of ME distributions	
Failure Recover Scenarios	
A Taboo Process - Two Absorbing States	14
RESTART and Checkpoints for Markov Models	18
Example	31

Mean and Variance of $X_c(\beta)$

Define the 4-matrices

$$[\hat{\boldsymbol{\tau}}_{\boldsymbol{c}}]_{uu} := \mathbb{E}[X_u(\beta)], \quad \hat{\boldsymbol{V}}_{\boldsymbol{c}} := [\hat{\boldsymbol{l}} - \hat{\boldsymbol{P}}_{\boldsymbol{c}}]^{-1} \hat{\boldsymbol{\tau}}_{\boldsymbol{c}}, \quad \text{and}$$

 $[\hat{\boldsymbol{\Gamma}}]_{uu} := C_u^2 - 1,$

where $C_u^2 = \sigma_u^2(\beta) / (\mathbb{E}[X_u(\beta)])^2$ is the squared coefficient of variation of $X_u(\beta)$.

Then

$$\mathbb{E}[X_c(\beta)] = \hat{p}_c \, \hat{V}_c \, \hat{\epsilon}'$$

and

$$\sigma_c^2(\beta) = \sigma_{exp}^2 + \hat{p}_c \hat{V}_c \hat{T}_c \hat{\Gamma} \hat{\epsilon}'$$

where $\sigma_{exp}^2 = 2(\hat{p}_c \ \hat{V}_c^2 \ \hat{\epsilon}') - (\hat{p}_c \ \hat{V}_c \ \hat{\epsilon}')^2$ is the variance of the similar exponential network.

Checkpointing for the RESTART Problem in Markov Networks

UCONN

28

Overview of ME distributions	
Failure Recover Scenarios	
A Taboo Process - Two Absorbing States	14
RESTART and Checkpoints for Markov Models	18
Example	31

Asymptotic Properties of T, $X(\beta)$ and $X_c(\beta)$ - I 29

- The exponential tail for T is determined by $\lambda_s = \lambda_{min}$, where λ_{min} is the smallest eigenvalue of **B**.
 - If P is a *feed-forward* matrix, then the eigenvalues of B are the service rates, µ_i, of the nodes (assuming P_{ii} = 0), so λ_s = Min{µ_i}.
 - If there are some *feed-back* loops, then λ_s may be smaller. In any case, λ_s ≤ Min{µ_i}.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Overview of ME distributions	
Failure Recover Scenarios	
A Taboo Process - Two Absorbing States	14
RESTART and Checkpoints for Markov Models	18
Example	31

Asymptotic Properties of T, $X(\beta)$ and $X_c(\beta)$ - II 30

- The PT index for $X(\beta)$ is $\alpha = \lambda_s/\beta$
- Let λ_{us} (u ∈ {oc, oe, cc, ce}) be the exponential parameter for F_u(t). Then λ_{cs} := Min{λ_{us}} determines α_c = λ_{cs}/β
- If P is feed-forward, then the index for X_c(β) is the same as for X(β) (although E[X_c(β)] < E[X(β)])</p>
- If P has loops, and the checkpoint is inserted within a loop then α_c can be much larger.
- Even if \hat{P} has feedback ($p_{cc} > 0$), α_c does NOT change.

・同下 ・ヨト ・ヨト

	Failure F Process and Cheo	lecover - Two	s for Ma	os ng States	14 s 18 31							
	ΓО	.7	0	0.30	0	0	0	0]		[00.]	
	0	0	0	1.00	0	0	0	0			.00	
	0	0	0	0.75	.25	0	0	0			.00	
P =	0	0	0	0	0	.4	.6	0	and	a ′ —	.00	
г –	0	.3	0	0	0	.3	.1	.3	and	ч —	.00	
	.8	0	0	0	0	0	0	.2			.00	
	0	0	.75	0	0	0	0	0			.25	
	LΟ	0	0	0	0	0	.1	0			.90]	

 $[\mathbf{q}' = (\mathbf{I} - \mathbf{P}) \boldsymbol{\varepsilon'}]$, with entrance vector

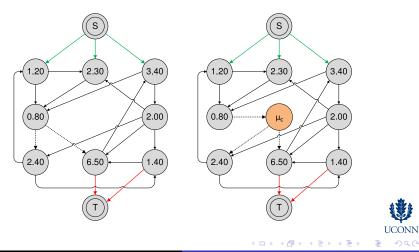
 $\mathbf{p} = [0.60, 0.20, 0.20, 0, 0, 0, 0, 0, 0],$ and

 $\mathbf{M} = \text{Diag}[1.2, 2.3, 3.4, 0.8, 2.0, 2.4, 6.5, \mu_c]$

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

Overview of ME distributions	
Failure Recover Scenarios	
A Taboo Process - Two Absorbing States	14
RESTART and Checkpoints for Markov Models	18
Example	31

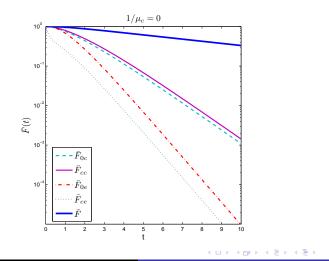
Diagrams of the Markov Chain With Node Service rates 32



Lipsky, Doran, Gokhale Checkpointing for the RESTART Problem in Markov Networks

Overview of ME distributions	
Failure Recover Scenarios	
A Taboo Process - Two Absorbing States	14
RESTART and Checkpoints for Markov Models	18
Example	31

Reliability Functions, \overline{F} , \overline{F}_u ($u \in \{oc, oe, cc, ce\}$) 33



Lipsky, Doran, Gokhale

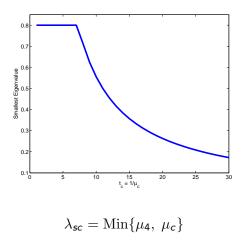
Checkpointing for the RESTART Problem in Markov Networks

UCONN

Overview of ME distributions	
Failure Recover Scenarios	
A Taboo Process - Two Absorbing States	14
RESTART and Checkpoints for Markov Models	18
Example	31

Asymptotic Tail Parameter

34



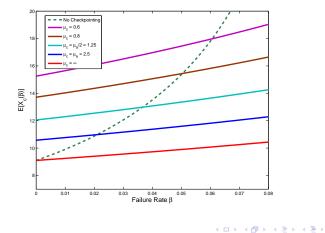
< ∃⇒

Lipsky, Doran, Gokhale Checkpointing for the RESTART Problem in Markov Networks

Overview of ME distributions	
Failure Recover Scenarios	
A Taboo Process - Two Absorbing States	14
RESTART and Checkpoints for Markov Models	18
Example	31

The Checkpointing Effect - I ($\mathbb{E}[X_c(\beta)]$)

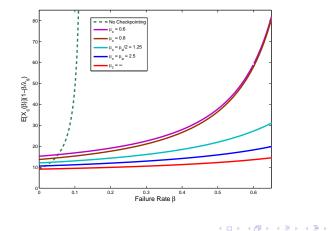
35



Lipsky, Doran, Gokhale Checkpointing for the RESTART Problem in Markov Networks

Overview of ME distributions	
Failure Recover Scenarios	
A Taboo Process - Two Absorbing States	14
RESTART and Checkpoints for Markov Models	18
Example	31

The Checkpointing Effect - II $(\mathbb{E}[X_c(\beta)](1-\beta/\lambda_{sc}))$ 36

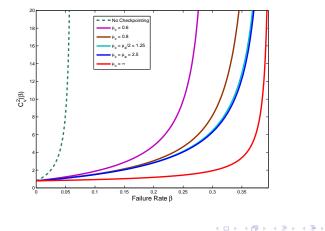


Lipsky, Doran, Gokhale Checkpointing for the RESTART Problem in Markov Networks

UCONN

Overview of ME distributions	
Failure Recover Scenarios	
A Taboo Process - Two Absorbing States	14
RESTART and Checkpoints for Markov Models	18
Example	31

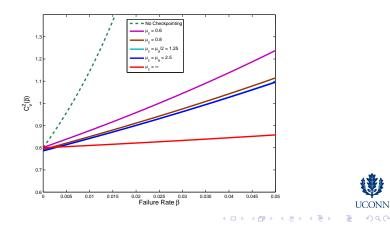
Squared Coefficient of Variaton $(C_v^2 := \sigma^2 / \mathbb{E}[X_c(\beta)]^2)$ 37



UCONN

Overview of ME distributions	
Failure Recover Scenarios	
A Taboo Process - Two Absorbing States	14
RESTART and Checkpoints for Markov Models	18
Example	31

Blowup of Squared Coefficient of Variaton $(C_v^2 := \sigma^2 / \mathbb{E}[X_c(\beta)]^2)$ 38



Lipsky, Doran, Gokhale

Checkpointing for the RESTART Problem in Markov Networks

Overview of ME distributions	
Failure Recover Scenarios	
A Taboo Process - Two Absorbing States	14
RESTART and Checkpoints for Markov Models	18
Example	31

Some Unresolved Questions

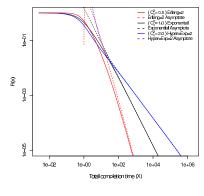
39

- ► How large must x be before the asymptotic formula is a "good" approximation to H
 (x)?
- How robust is the method if the nodes have non-exponential service times?
- What is to be done if the failure distribution is not exponential?

A 3 >

Overview of ME distributions	
Failure Recover Scenarios	
A Taboo Process - Two Absorbing States	14
RESTART and Checkpoints for Markov Models	18
Example	31

Simulation of $X(\beta)$ and Asymptotic Formulas for Exponential, Hyperexponential, and Erlangian Functions 40

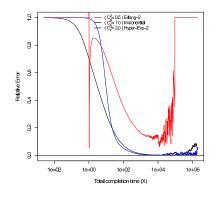


Observed Restart Behavior and Preclicted Asympotic Values

<ロ> (四) (四) (三) (三)

Overview of ME distributions	
Failure Recover Scenarios	
A Taboo Process - Two Absorbing States	14
RESTART and Checkpoints for Markov Models	18
Example	31

Relative Difference Between Simulation and AnalyticAsymptotic formula [Abs(Sim - Asymp)/Asymp]41



3

Lipsky, Doran, Gokhale Checkpointing for the RESTART Problem in Markov Networks

Overview of ME distributions	
Failure Recover Scenarios	
A Taboo Process - Two Absorbing States	14
RESTART and Checkpoints for Markov Models	18
Example	31

4

42

- We can compute the moments of $\overline{H}(x)$;
- We can get the asymptotic index, α_c ;
- We can't get $\overline{H}(x)$.

э