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Matrix Exponential (ME) Distributions - I 2

Subsystem with M nodes (phases)
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Matrix Exponential (ME) Distributions - II 3

◮ Let P be a transition M-Matrix such that I − P has an inverse;

◮ Let ε′ε′ε′ be an M dimensional column-vector of all 1’s;

◮ Let p be an M row-vector where (p)i is the probability that
the process will start at node i , and pε′ε′ε′ = 1;

◮ Let each of the M nodes have exponential service time
distributions, with rate µi = (M)ii > 0 (M is a diagonal
matrix);

◮ Let T be the time from entry to departure;
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Matrix Exponential (ME) Distributions - III 4

◮ Define
B = M(I − P) and V = B−1;

◮ Then the Probability Distribution (PDF), Reliability, and
probability density (pdf) functions for T are

F (t) := PPPr[T ≤ t] = 1 − p exp(−tB)ε′ε′ε′. F̄ (t) = 1 − F (t),

and f (t) =
dF

dt
= p exp(−tB)Bε′ε′ε′.

◮ Also
EEE[T ℓ] = ℓ!pVℓ ε′ε′ε′.
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ME Representation of the Uniform Distribution 5

0 0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1

t

D
en

si
ty

 F
un

ct
io

n,
 U

ni
fo

rm

 

 
U

2
(t)

U
3
(t)

U
4
(t)

U
5
(t)

U
6
(t)

U
7
(t)

U
8
(t)

U
10

(t)

U
20

(t)

U
40

(t)

U
80

(t)

U
120

(t)

U
200

(t)

Lipsky, Doran, Gokhale Checkpointing for the RESTART Problem in Markov Networks



Overview of ME distributions 2
Failure Recover Scenarios 7

A Taboo Process - Two Absorbing States 14
RESTART and Checkpoints for Markov Models 18

Example 31

Truncated Power-tail (TPT) Distributions 6
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Recovery Scenarios 7

There have been three general scenarios about recovering after a
system crashes during execution.

◮ preemptive Resume (prs) - RESUME

◮ preemptive repeat different (prd) - REPLACE

◮ preemptive repeat identical (pri) - RESTART

RESUME and REPLACE can be analyzed by Markov models.
RESTART, however, is more difficult to treat.
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The Performance of Systems Under RESTART - I 8

◮ Let T be the time for a job to complete without failures, .
◮ Let F (t), f (t) and F̄ (t) = 1 − F (t) be the PDF, pdf, and

reliability functions for T.
◮ Assume that the failure distribution is exponential with failure

rate β. Then for T = t, let X (t, β) be the completion time
with failures, under RESTART, with PDF H(x |t). Then its
Laplace transform was shown to be

H∗(s|t) =
(s + β)e−(s+β)t

s + βe−(s+β)t
.

◮ Since this is the moment generating function of H(x |t), we
have in general

EEE[X (t, β)ℓ] = (−1)ℓ
[

d ℓ H∗(s|t)

dsℓ

]

s=0

.

Lipsky, Doran, Gokhale Checkpointing for the RESTART Problem in Markov Networks



Overview of ME distributions 2
Failure Recover Scenarios 7

A Taboo Process - Two Absorbing States 14
RESTART and Checkpoints for Markov Models 18

Example 31

The Performance of Systems Under RESTART - II 9

◮ Since T = t throughout a RESTART process, it follows that

EEE[X (β)ℓ] =

∫

∞

0
EEE[X (t, β)ℓ] f (t) dt.

◮ In particular, for ℓ = 1 we have

EEE[X (t, β)] =
eβt − 1

β
and

EEE[X (β)] =

∫

∞

0

eβt − 1

β
f (t) dt

.
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The Performance of Systems Under RESTART - III 10

Define:

λs := sup

{

λ |

∫

∞

o

exp(λt) f (t) dt < ∞

}

.

Also define

α := sup

{

ℓ |

∫

∞

o

xℓ h(x) dx < ∞

}

where h(x) is the pdf for X (β) (total completion time under
RESTART ). Then X (β) is power-tailed (PT) with index α if
0 < α < ∞.
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The Performance of Systems Under RESTART - IV 11

From these definitions we have the following.

◮ if T has infinite support, X (β) is sub-exponential.

◮ f (t) has an exponential tail with parameter λs if 0 < λs < ∞.
If λs = 0 then f (t) is sub-exponential.

◮ if T has an exponential tail with parameter λs , then X (β) will
be PT with index

α = λs/β.

Thus as β becomes bigger, α becomes smaller, and the
system behavior becomes more unstable.
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Markov Models of Software (MMS model) 12

◮ Software systems (among others) are highly modular, where
the system control is passed among independent components.

◮ The passing of control between the M components (nodes)
maps to an M dimensional Markov matrix, P.

◮ Assume that:
◮ the service time at each node is exponentially distributed with

rate µi := [M]ii > 0;
◮ there is a path to exit the system from each node;

Then, as previously described, the distribution for the total
execution time T is ME distributed (actually, PHase).
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The MMS Model Under RESTART 13

For ME distributions, λs := Min[|λi |], where {λi | 1 ≤ i ≤ M} is
the set of eigenvalues of B whose eigenvectors are not orthogonal
to p or ε′ε′ε′.

◮ If the MMS model is subject to exponential failures, and must
RESTART, X (β) will be PT distributed with α = λs/β

◮ The first two moments of X (β) are given by:

EEE[X (β)] = p
[

V(I − βV)−1
]

ε′ε′ε′ (β < λs)

EEE[X (β)2] = 2p
[

V2(I − 2βV)−2(I − βV)−1
]

ε′ε′ε′ (β < λs/2)

even though X (β > 0) is not ME.
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Markov Chains with Two Absorbing States - I 14

◮ Consider an (M+2)-dimensional Markov matrix P̄ with two
absorbing states, a and b. That is,

P̄ε̄′ε′ε′ = ε̄′ε′ε′ and (P̄)aa = (P̄)bb = 1

◮ Deleting the rows and columns of a and b gives P.

◮ Then,
[Z]ij := [(I − P)−1]ij

is the expected number of visits to j before absorption, given
that the chain started at i .
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Markov Chains with Two Absorbing States - II 15

◮ Now define the M-dimensional column vectors

(q′

a)i := P̄ia and (q′

b)i := P̄ib, where i 6= a, b.

These are the probability vectors of being absorbed by a and
b, respectively.

◮ It follows that the i th components of

ε′aε
′

aε
′

a := Zq′

a and ε′bε
′

bε
′

b := Zq′

b

are the probabilities that the process will end at a or b,
respectively, given that the process started at i .
Note that ε′aε

′

aε
′

a + ε′bε
′

bε
′

b = ε′ε′ε′.
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Markov Chains with Two Absorbing States - III 16

◮ Let po be the entrance vector. Then

pa = poε
′

aε
′

aε
′

a and pb = poε
′

bε
′

bε
′

b, where pa + pb = 1

are the probabilities that the process will be absorbed by a or
b.

◮ It is well known that [po exp(−Bt)]i is the probability that
absorption has not occured by time t, and the system is in
state i . This all leads to the following:
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Markov Chains with Two Absorbing States - IV 17

◮ Theorem: Let q′

u, ε′uε
′

uε
′

u, po, B and V, where u ∈ {a, b}, be
defined as above. Then Tu has distribution

F̄u(t) := PPPr[Tu > t] = po exp(−Bt)ε′uε
′

uε
′

u/pu, u = a, b.

The moments of these distributions come from above:

EEE[T ℓ
u ] = ℓ!po [Vℓ]ε′uε

′

uε
′

uε′uε
′

uε
′

uε′uε
′

uε
′

u/pu

We then say that F̄u(t) is generated by the triplet
〈〈〈 po, B, ε′uε

′

uε
′

u 〉〉〉.

◮ (Note that EEE[T ℓ] = paEEE[T ℓ
a ] + pbEEE[T ℓ

b ] = ℓ!po [Vℓ]ε′ε′ε′.)
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Applying Checkpointing to the MMS 18

◮ Checkpointing can easily be applied to the model to combat
the PT service times under RESTART.

◮ After execution of a selected node m, a system checkpoint
operation can be applied, saving the system state.

◮ Ideally, the designer will apply checkpointing for each state,
and select the one that yields the best performance.

◮ To analyze this system we need the conditional distributions
for the time to absorption at each of two absorbing states.
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Checkpointing in Markov Systems (MMSC model) 19

◮ For the original MMSC model, select node m as the one that
is followed by a system checkpoint. Then,

qm = [q′]m := [(I − P)ε′ε′ε′]m

is the probability that execution will end after finishing at m.

◮ Add one row and one column to P at index M + 1,
representing the system checkpoint state, to produce the
matrix Pc.
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The MMSC Model - I 20

◮ Pc has the following properties: for i 6= m, M + 1 and
j 6= M + 1,

[Pc]ij = Pij , [Pc]i ,M+1 = 0,

[Pc]mi = 0, [Pc]m,M+1 = 1 − qm,

[Pc]M+1,k = 0, ∀ k.

◮ This defines a Markov chain with two absorbing states, e (for
end) and c (for checkpoint).

◮ To use the established theorem we need q′

e and q′

c.

◮ q′

e is the same exit vector as that for the original model, with
additional component [q′

e]M+1 = 0, so

[q′

e]i = [(I − P)ε′ε′ε′]i , but [q′

e](M+1) = 0
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The MMSC Model - II 21

◮ q′

c is given as: [q′

c]i = 0, for i ≤ M and [q′

c]M+1 = 1.

◮ We define the (M + 1)-matrix Zc = (I − Pc)
−1 to get

ǫ′eǫ
′

eǫ
′

e = Zc q′

e and ǫ′cǫ
′

cǫ
′

c = Zc q′

c

◮ The probability of finishing the process without checkpointing
is:

poe := poǫ
′

eǫ
′

eǫ
′

e

◮ We can also get the probability of reaching the checkpoint
before finishing:

poc := poǫ
′

cǫ
′

cǫ
′

c
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The MMSC Model - III 22

◮ Now we apply the theorem to get the conditional distributions
for the time to finish given no checkpoint (Toe) and the time
to reach and execute the checkpoint (Toc).

◮ Define the diagonal matrix

[Mc]ii = [M]ii and [Mc]M+1,M+1 = µc ,

where tc = 1/µc is the mean time to process a checkpoint.

◮ The conditional distributions are then:

Bc := Mc(I − Pc)

F̄ou(t) := PPPr[Tou > t] = po exp(−tBc)ǫ′uǫ
′

uǫ
′

u / pou

u ∈ {e, c}
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The MMSC Model - IV 23

◮ If the system execution takes the path described by oe, the
process ends. But if the path leads to m, the system
checkpoints after it’s execution.

◮ We must define a restart vector pc as an entrance vector into
the system corresponding to where the execution of the
system begins again after checkpointing.

◮ pc is composed of the transition probabilities out of state m:

pc := [Pm1, Pm2, ... , PmM , 0 ]/(1 − qm)
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The MMSC Model - V 24

◮ So the probability of the system finishing after checkpointing
without returning to m is

pce := pcǫ
′

eǫ
′

eǫ
′

e

◮ The probability of the system returning to m after already
checkpointing (to save a more recent state of the system) is

pcc := pcǫ
′

cǫ
′

cǫ
′

c

◮ The time distribution for these two events are
(for u ∈ {c , e}):

F̄cu(t) := PPPr[Tcu > t] = pc exp(−tBc)ǫ
′

uǫ
′

uǫ
′

u / pcu.
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The MMSC Model - VI 25
◮ What has been described can be thought of as an embedded

Markov chain with four nodes whose service time distributions
are given by each of the F̄ab.

◮ The transition matrix for this process is:

P̂cP̂cP̂c :=

oe oc ce cc

oe 0 0 0 0
oc 0 0 pce pcc

ce 0 0 0 0
cc 0 0 pce pcc

with p̂cp̂cp̂c := [poe , poc , 0, 0 ]

◮ expected number of visits to C :
EEE[Nc ] = poc + poc pcc / poe = poc / poe
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Diagrams of the Markov Chain 26
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Applying RESTART to the MMSC 27

◮ P̂cP̂cP̂c , together with the ME service time distributions of each
node is an ME representation (but only for β = 0).

◮ If there is a failure, the system only has to redo whatever work
had been accomplished within the node that had failed.

◮ Thus we can get EEE[Xu(β)] and EEE[X 2
u (β)] for

u ∈ {oe, oc , cc , ce }.

◮ With the first two moments of the distribution for each node,
we can get EEE[X ℓ

c (β)] (ℓ = 1, 2) as follows:
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Mean and Variance of Xc(β) 28

◮ Define the 4-matrices

[T̂cT̂cT̂c ]uu := EEE[Xu(β)], V̂cV̂cV̂c := [̂I − P̂cÎ − P̂cÎ − P̂c ]
−1 T̂cT̂cT̂c , and

[Γ̂̂Γ̂Γ]uu := C 2
u − 1,

where C 2
u = σ2

u(β)/ (EEE[Xu(β)])2 is the squared coefficient of
variation of Xu(β).

◮ Then
EEE[Xc(β)] = p̂c V̂c ǫ̂′p̂c V̂c ǫ̂′p̂c V̂c ǫ̂′

and
σ2

c (β) = σ2
exp + p̂c V̂c T̂c Γ̂ ǫ̂′p̂c V̂c T̂c Γ̂ ǫ̂′p̂c V̂c T̂c Γ̂ ǫ̂′

where σ2
exp = 2(p̂c V̂cp̂c V̂cp̂c V̂c

2 ǫ̂′ǫ̂′ǫ̂′) − (p̂c V̂c ǫ̂′p̂c V̂c ǫ̂′p̂c V̂c ǫ̂′)2 is the variance of the
similar exponential network.
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Asymptotic Properties of T , X (β) and Xc(β) - I 29

◮ The exponential tail for T is determined by λs = λmin, where
λmin is the smallest eigenvalue of B.

◮ If P is a feed-forward matrix, then the eigenvalues of B are the
service rates, µi , of the nodes (assuming Pii = 0), so
λs = Min{µi}.

◮ If there are some feed-back loops, then λs may be smaller. In
any case, λs ≤ Min{µi}.
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Asymptotic Properties of T , X (β) and Xc(β) - II 30

◮ The PT index for X (β) is α = λs/β

◮ Let λus (u ∈ {oc , oe, cc , ce}) be the exponential parameter
for Fu(t). Then λcs := Min{λus} determines αc = λcs/β

◮ If P is feed-forward, then the index for Xc(β) is the same as
for X (β) (although EEE[Xc(β)] < EEE[X (β)])

◮ If P has loops, and the checkpoint is inserted within a loop
then αc can be much larger.

◮ Even if P̂PP has feedback (pcc > 0), αc does NOT change.
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0 .7 0 0.30 0 0 0 0
0 0 0 1.00 0 0 0 0
0 0 0 0.75 .25 0 0 0
0 0 0 0 0 .4 .6 0
0 .3 0 0 0 .3 .1 .3
.8 0 0 0 0 0 0 .2
0 0 .75 0 0 0 0 0
0 0 0 0 0 0 .1 0

























and q′ =

























.00

.00

.00

.00

.00

.00

.25

.90

























[q′ = (I − P)ε′ε′ε′], with entrance vector

p = [0.60, 0.20, 0.20, 0, 0, 0, 0, 0 ], and

M = Diag[1.2, 2.3, 3.4, 0.8, 2.0, 2.4, 6.5, µc ]

.
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Diagrams of the Markov Chain With Node Service rates 32
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Reliability Functions, F̄ , F̄u (u ∈ {oc , oe, cc , ce}) 33
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Asymptotic Tail Parameter 34
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The Checkpointing Effect - I (EEE[Xc(β)] ) 35
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The Checkpointing Effect - II (EEE[Xc(β)] (1− β/λsc )) 36
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Squared Coefficient of Variaton (C 2
v := σ2/EEE[Xc(β)]2) 37
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Blowup of Squared Coefficient of Variaton

(C 2
v := σ2/EEE[Xc(β)]2) 38
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Some Unresolved Questions 39

◮ How large must x be before the asymptotic formula is a
”good” approximation to H̄(x)?

◮ How robust is the method if the nodes have non-exponential
service times?

◮ What is to be done if the failure distribution is not
exponential?
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Simulation of X (β) and Asymptotic Formulas for

Exponential, Hyperexponential, and Erlangian Functions 40
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Relative Difference Between Simulation and Analytic

Asymptotic formula [Abs(Sim − Asymp)/Asymp] 41
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Conclusion 42

◮ We can compute the moments of H̄(x);

◮ We can get the asymptotic index, αc ;

◮ We can’t get H̄(x).

‘
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