Threshold Strategies for Risk Processes and their Relation to Queueing Theory

Onno Boxma, David Perry, Andreas Löpker

I. Setting / Literature II. Risk and queues / Dualities III. Ruin probability IV. More general ideas (V. If time allows: Ruin time)

I. Setting / Literature

Risk process with threshold dividend strategy

We consider a simple insurance risk model (Cramèr-Lundberg regime), where R_t denotes the surplus of an insurance company at time t.

Some of the income is re-distributed as dividends: whenever R_t is larger than some threshold b, a fraction of γ is paid out as dividends.

⇒ Threshold strategy (refracting barrier)

Setting

Risk process: $dR_t = r(R_t) dt + dS_t$, with

- aggregated claims $S_t = \sum_{i=1}^{N_t} X_i$,
- i.i.d. claims $(X_i)_{i=1,2,...}$, distribution G, $\mathbb{E}[X_1] = 1/\lambda$,
- Poisson claim number process N_t with rate μ ,
- "plowback rate" $r(x) = 1 \gamma \mathbf{1}(x \ge b)$,
- dividend process $D_t = \gamma \int_0^t \mathbf{1}(R_s > b) ds$,

We let $\rho = \mu / \lambda$ and $\psi(x) = \mathbb{P}_x(\tau < \infty)$.

Three scenarios

We omit the cases $\rho = 1$ and $\rho = 1 - \gamma$.

Ruin theory + dividends	Ruin theory	Queues & Risk
de Finetti (1957)	Lundberg (1903)	
•	:	
Gerber (196	9)	Prabhu (1961)
Bühlman	ın (1970)	Seal (1972)
•	Dickson (1993)	Siegmund (1976)
Albrecher, Kainhofer (2002)	•	Harrison & Resnick (1978)
Lin,Willmot, Drekic (2003)	Gerber, Shiu (1997, 1998)	Asmussen (1987/2003)
Li, Garrido (2004)	Rolski, Schmidli, Schmidt, Teugels (1999)	Asmussen, Petersen (1988)
Zhou (2005)	A cmusson (2000)	Asmussen, Sigman (1998)
Albrecher, Hartinger,	Albrecher, Asmussen (2000)	Sigman, Ryan (2000)
	Mikosch (2004)	
Gerber, Shiu (2006)		
Lin, Pavlova (2006)		
Avanzi (2009) review		

II. Risk and queues

Dualities

Costruct dual process V_t as follows:

- fix a time T,
- use the same jump sizes and inter-jump times, but in reversed order and reversed direction,
- set $\frac{dV_t}{dt} = 0$ for $V_t \le 0$ and $\frac{dV_t}{dt} = -r(V_t)$ else.

 V_t is the workload process of a M/G/1 with service time distribution *G*, arrival rate μ and server speed $1 - \gamma \mathbf{1}(V_t \ge b)$.

Then surprisingly (ASMUSSEN & PETERSEN (1988)) $\mathbb{P}_x(\tau \leq T) = \mathbb{P}(V_T > x | V_0 = 0)$ and, if $\rho < 1 - \gamma$, $\overline{\psi}(x) = \mathbb{P}_x(\tau = \infty) = F(x)$,

where *F* is the stationary distribution of the dual queue.

Duality II

There is another (more obvious) duality:

III. Ruin probability

Case $\rho < 1 - \gamma$ (upward drift) The survival probability is positive: $\overline{\psi}(x) = \mathbb{P}_x(\tau = \infty) > 0$ It follows from duality I that

 $\overline{\psi}(x)=F(x),$

where *F* is the stationary distribution of an M/G/1 queue with server speed $1 - \gamma \mathbf{1}(V_t > b)$, service distribution *G* and arrival rate μ .

The Laplace transform of F has been derived by GAVER & MILLER (1962) (context: storage processes).

Aim: express $\overline{\psi}$ in terms of $F^{(\gamma)}$ and $F^{(0)}$ (stationary distribution of the standard queue), where $F^{(\gamma)}$ denotes the stationary distribution of an M/G/1 queue with server speed $1 - \gamma$.

(A) For x < b:

$$\overline{\psi}(x) = \theta(x,b)\overline{\psi}(b),$$

where $\theta(x, b) = \mathbb{P}_x(R_t = b \text{ for some } t < \tau)$. The same formula holds in the $\gamma = 0$ case, too, hence

$$\theta(x,b) = \frac{F^{(0)}(x)}{F^{(0)}(b)}.$$

by duality I.

(B) For $x \ge b$ we have $\tau = \infty$ if either

1. R_t never reaches b, the probability being $\lim_{y \to \infty} \theta(x - b, y) = F^{(\gamma)}(x - b).$

2. $R_s < b$ for some s > 0, but never jumps below 0, the probability being

$$\overline{F}^{(\gamma)}(x-b)\int_0^b \theta(b-u,b)\,dH_{x-b}(u)\psi(b),$$

where $H_{x-b}(u)$ is the p.d.f. of the excess.

We obtain:

$$\overline{\psi}(x) = \begin{cases} \theta(x,b)\overline{\psi}(b) & ;x < b \\ F^{(\gamma)}(x-b) & \\ + \overline{F}^{(\gamma)}(x-b)\overline{\psi}(b) \int_0^b \theta(b-u,b) H_{x-b}(du) & ;x \ge b \end{cases}$$

Still to determine:

i) excess distribution $H_{x-b}(u)$ and ii) survival probability $\overline{\psi}(b)$.

i) c.f. Figure. Excesses U_1, U_2, \ldots form a renewal process.

 $H_{x-b}(u)$ is the distribution of the forward recurrence time at time x - b of a renewal process with inter-occurrence time distribution $H_0(u)$.

The distribution $H_0(u)$ equals the distribution of the idle period of a transient G/M/1 queue (or deficit at ruin):

$$H_0(u) = \lambda \int_0^u (1 - G(t)) dt.$$

(e.g. Prabhu (1997) - apparently well known in risk theory: Bowers, Gerber, Hickmann, Jones & Nesbitt (1987))

Two possibilites

1. Process never reaches b again, the probability being

$$1-\rho_{\gamma}=1-\rho/(1-\gamma).$$

(e.g. by duality I: steady state idle probability) 2. Process jumps below *b*, but $\tau = \infty$, the probability being

$$\rho_{\gamma}\int_0^b \theta(b-u,b)\,dH_0(u)\overline{\psi}(b).$$

It follows that

$$\overline{\psi}(b) = 1 - \rho_{\gamma} + \rho_{\gamma} \int_0^b \theta(b - u, b) \, dH_0(u) \overline{\psi}(b).$$

After rearranging we obtain

$$\overline{\psi}(b) = \frac{1 - \rho_{\gamma}}{1 - \rho_{\gamma} \int_0^b \theta(b - u, b) dH_0(u)},$$

$$\overline{\psi}(b) = \frac{1 - \rho_{\gamma}}{1 - \frac{\rho_{\gamma}}{F^{(0)}(b)} \int_0^b F^{(0)}(b - u) dH_0(u)}.$$

The term

$$\int_0^b F^{(0)}(b-u) \, dH_0(u)$$

looks familiar...

Ruin probability

Cohen (1982): For the G/G/1 queue with

- V_{∞} =steady-state workload,
- W_{∞} =steady-state waiting time,
- *W_r*=residual waiting time,

 $V_{\infty}|(V_{\infty}>0) \stackrel{d}{\sim} W_{\infty}+W_r.$

With Poisson arrivals and PASTA we obtain

$$F^{(0)}(y) = 1 - \rho + \rho \int_0^y F^{(0)}(y - u) \, dH_0(u).$$

(follows also by integration of the well known integro-differential equation for F).

Ruin probability

Inserting into equation for $\overline{\psi}(b)$ yields $\overline{\psi}(b) = F^{(0)}(b) \frac{1 - \rho - \gamma}{1 - \rho - \gamma F^{(0)}(b)}.$ (1)

Theorem: The survival probability is given by

$$\overline{\psi}(x) = \begin{cases} \theta(x,b)\overline{\psi}(b) & ; x < b \\ F^{(\gamma)}(x-b) & \\ + \overline{F}^{(\gamma)}(x-b)\overline{\psi}(b) \int_0^b \theta(b-u,b) H_{x-b}(du) & ; x \ge b \end{cases}$$

with $\overline{\psi}(b)$ given in (1) and $H_{x-b}(u)$ the distribution of the forward recurrence time at time x - b of a renewal process with renewal distribution $H_0(u)$.

(c.f. Lin & Pavlova (2006)).

IV. Some general ideas

Case $\mathbb{P}_{x}(\tau < \infty) = 1$.

Gerber-Shiu discounted penalty function

For the dividend-free risk process ($\gamma = 0$) the functional $\Phi_{\alpha,w}(x) = \mathbb{E}_x[e^{-\alpha\tau}w(R_{\tau-}, |R_{\tau}|)]$

was introduced by GERBER & SHIU (1998). On can show that

$$\Phi'_{\alpha,w}(x) = (\mu + \alpha)\Phi_{\alpha,w}(x) - \mu \int_x^\infty w(x, y - x) \, dG(y)$$
$$-\mu \int_0^x \varphi_\alpha(x - y) \, dG(y).$$

Gerber-Shiu-ism: Extensive literature about solutions. Approaches available for the usual suspects:

- exponential *G*,
- Erlang *G*,
- phase-type *G*.

Generalization

More generally one could investigate the two functionals $\Psi_{v,\beta}(x) = \mathbb{E}_x \left[\int_0^\tau e^{-\int_0^t v(R_s) \, ds} \beta(R_t) \, dt \right].$

and

$$\Phi_{v,w}(x) = \mathbb{E}_x[e^{-\int_0^\tau v(R_s)\,ds}w(R_{\tau-},|R_{\tau}|)],$$

(β , v, w non-negative and bounded) for a risk process $dR_t = r(R_t) dt + dS_t$

with general ("plowback"-)rate $r : \mathbb{R} \to (0, 1]$.

Why is

$$\Psi_{v,\beta}(x) = \mathbb{E}_x\left[\int_0^\tau e^{-\int_0^t v(R_s)\,ds}\beta(R_t)\,dt\right]$$

useful?

• Expected present value of the discounted dividends:

$$\Psi_{\delta,1-r}(x) = \mathbb{E}_x\left[\int_0^\tau e^{-\delta t}(1-r(R_t))\,dt\right].$$

• Expected value of the total dividends (undiscounted):

$$\Psi_{0,1-r}(x) = \mathbb{E}_x[\int_0^\tau (1-r(R_t))\,dt].$$

Why is

$$\Phi_{v,w}(x) = \mathbb{E}_x[e^{-\int_0^\tau v(R_s)\,ds}w(R_{\tau-},|R_{\tau}|)]$$

useful?

• Gerber-Shiu-functional if $v(x) = \alpha$: $\Phi_{\alpha,w}(x) = \mathbb{E}_x[e^{-\alpha\tau}w(R_{\tau-}, |R_{\tau}|)]$

• Laplace-transform of the total dividends:

$$\Phi_{\alpha(1-r),1}(x) = \mathbb{E}_{x}[e^{-\alpha \int_{0}^{\tau} (1-r(R_{s})) \, ds}].$$

• Laplace-transform of the ruin time (GERBER & SHIU (2006)) $\Phi_{\alpha,1}(x) = \mathbb{E}_x[e^{-\alpha\tau}]$

Generalization

(2)

Theorem: Consider the integro-differential equation r(x)S'(x) $= (\mu + v(x))S(x) - \mu \int_0^x S(x - u)dG(u) - h(x).$

- Then $\Psi_{v,\beta}(x)$ is a solution of (2) with $h(x) = \beta(x)$ and
- $\Phi_{v,w}(x)$ is a solution of (2) with $h(x) = \mu \int_x^\infty w(x, u x) dG(u)$.

Classic proof: condition on the number of jumps during $[0, \Delta t]$ and let $\Delta t \rightarrow 0$.

Here: Approach via PDMPs (c.f. Dassios & Embrechts (1989), Embrechts & Schmidli (1994)) "Proof" for $\Psi_{v,\beta}(x) = \mathbb{E}_x [\int_0^\tau e^{-\int_0^t v(R_s) ds} \beta(R_t) dt]$: Rewrite the equation

$$r(x)S'(x) = (\mu + v(x))S(x) - \mu \int_0^x S(x - u)dG(u) - \beta(x)$$

into $\mathscr{GS}(x) = v(x)S(x) - \beta(x)$, with generator \mathscr{G} of the killed Markov process R_t :

$$\mathscr{G}f(x) = r(x)f'(x) + \mu \int_0^x (f(x-y) - f(x)) \, dG(y) - \mu f(x)(1 - G(x)).$$

Use the martingale

$$e^{-\int_0^t v(R_s)\,ds}S(R_t) - \int_0^t e^{-\int_0^s v(R_u)\,du} \big(\mathscr{G}S(R_s) - v(R_s)S(R_s)\big)\,ds.$$

+ optional stopping with $S(\Delta) = 0$ (Δ the cemetery state).

"Proof" for $\Phi_{v,w}(x) = \mathbb{E}_x[e^{-\int_0^{\tau} v(R_s) ds} w(R_{\tau-}, |R_{\tau}|)]$: Rewrite

$$r(x)S'(x) = (\mu + v(x))S(x) - \mu \int_0^x S(x - u)dG(u) - \mu \int_x^\infty w(x, u - x) dG(u).$$

into eigenfunction equation $\mathscr{G}S(x) = v(x)S(x)$, where

$$\mathscr{G}f(x) = r(x)f'(x) + \mu \int_0^x (f(x-u) - f(x))dG(u) + \mu \int_x^\infty (w(x, u-x) - f(x))dG(u).$$

(! uncountable number of outer states)Finally use the same martingale as before:

 $e^{-\int_0^t v(R_s)\,ds}S(R_t).$

Solutions

Drawback: solutions of

 $r(x)S'(x) = (\mu + v(x))S(x) - \mu \int_0^x S(x - u)dG(u) - h(x)$

are difficult to find.

• Let
$$\theta(x) = \exp\left(\int_0^x \frac{\mu + f(z)}{r(z)} dz\right)$$
. Then

$$S(x) = \theta(x) \left(S(0) - \int_0^x \frac{S^*(w)}{\theta(w)}, dw\right)$$

and S^* solves the Volterra integral equation

$$S^{*}(x) = b(x) - \int_{0}^{x} K(w, x) S^{*}(w) dw$$

with certain functions *K* and *b*.

Solutions

• If *G* is absolutely continuous having a density g with

$$g(x-u) = \sum_{k=0}^{m} A_k(x) B_k(y),$$

(e.g. exponential, Erlang, hyper-exponential distributions) then one can rewrite

$$r(x)S'(x) = (\mu + v(x))S(x) - \mu \int_0^x S(x - u)dG(u) - h(x)$$

into a system of first order linear differential equations.

Point processes

Observation: Two functionals

$$\Psi_{v,\beta}(x) = \mathbb{E}_{x} \left[\int_{0}^{\tau} e^{-\int_{0}^{t} v(R_{s}) \, ds} \beta(R_{t}) \, dt \right].$$

$$\Phi_{v,w}(x) = \mathbb{E}_{x} \left[e^{-\int_{0}^{\tau} v(R_{s}) \, ds} w(R_{\tau-\tau}, |R_{\tau}|) \right],$$

solve the same equation

$$r(x)S'(x) = (\mu + v(x))S(x) - \mu \int_0^x S(x - u)dG(u) - h(x).$$

with $h(x) = \beta(x)$ and $h(x) = \mu \int_x^\infty w(x, u - x) dG(u).$

It is tempting to equate $\beta(x)$ and $\mu \int_x^\infty w(x, u - x) dG(u)$: $\Phi_{v,w}(x) = \mu \mathbb{E}_x \left[\int_0^\tau e^{-\int_0^t v(R_s) ds} \int_{R_t}^\infty w(R_s, u - R_s) dG(u) dt \right].$

V. The ruin time

Back to the threshold paper

Laplace transform of the ruin time:

 $\varphi_{\alpha}(x) = \mathbb{E}_{x}[e^{-\alpha\tau}\mathbf{1}(\tau < \infty)]$

We have seen that (see GERBER & SHIU (2006))

$$(1 - \gamma \mathbf{1}(x \ge b))\varphi'_{\alpha}(x)$$

= $(\mu + \alpha)\varphi_{\alpha}(x) - \mu \overline{G}(x) - \mu \int_{0}^{x} \varphi_{\alpha}(x - y) dG(y)$ (3)

Connection to Queueing theory: We can write

 $\varphi_{\alpha}(x) = \mathbb{P}_0(V_T > x)$

with $T \stackrel{d}{\sim} \exp(\alpha)$ and V_t the workload process of M/G/1. Then (3) follows from a result in GAVER & MILLER (1962).

Equation (3): $(1 - \gamma \mathbf{1}(x \ge b))\varphi'_{\alpha}(x)$ $= (\mu + \alpha)\varphi_{\alpha}(x) - \mu\overline{G}(x) - \mu \int_{0}^{x} \varphi_{\alpha}(x - y) dG(y).$

In general no hope for explicit solutions (several results in LIN & PAVLOVA (2006).)

Our suggestion: define (double-)transforms

$$\Psi_{\alpha}^{-}(s) = \int_{0}^{\infty} e^{-sx} \varphi_{\alpha}^{-}(x) \, dx,$$
$$\Psi_{\alpha}^{+}(s) = \int_{b}^{\infty} e^{-sx} \varphi_{\alpha}(x) \, dx,$$

where $\varphi_{\alpha}^{-}(x)$ is a solution on $[0, \infty)$ of (3) with $\gamma = 0$.

Then

$$\Psi_{\alpha}^{-}(s) = \frac{\varphi_{\alpha}^{-}(0) - \mu \frac{1 - G^{*}(s)}{s}}{s - \mu (1 - G^{*}(s)) - \alpha}$$

Inversion of $\Psi_{\alpha}^{-}(s)$ yields $\varphi_{\alpha}(x)$ for x < b. Moreover,

$$\Psi_{\alpha}^{+}(s) = \frac{(1-\gamma)\varphi_{\alpha}(b) - \mu \int_{b}^{\infty} \overline{G}(x)e^{-sx} dx - \mu W(s,x)}{s(1-\gamma-\alpha-\mu(1-G^{*}(s)))},$$

with

$$W(s,x) = \int_0^b \left(G^*(s)\varphi_\alpha(x) - \int_0^x \varphi_\alpha(x-u) \, dG(u) \right) e^{-sx} \, dx.$$

Thank you!

CONFERENCE IN HONOUR OF SØREN ASMUSSEN - NEW FRONTIERS IN APPLIED PROBABILITY