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I. Setting / Literature

II. Risk and queues / Dualities
III. Ruin probability

IV. More general ideas

(V. If time allows: Ruin time)

CONFERENCE IN HONOUR OF SOREN ASMUSSEN - NEW FRONTIERS IN APPLIED PROBABILITY



I 3/37

I. Setting / Literature

Risk process with threshold
dividend strategy
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We consider a simple insurance risk model (Cramer-Lundberg
regime), where R; denotes the surplus of an insurance com-
pany at time f.

Some of the income is re-distributed as dividends: whenever
R; is larger than some threshold b, a fraction of <y is paid out
as dividends.

= Threshold strategy (refracting barrier)
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Risk process: dR; = r(R;) dt + dS;, with

¢ aggregated claims Sy = Zf\’:’fl X,

¢ iid. claims (X;);—1 o, distribution G, E|X;]| = 1/A,
¢ Poisson claim number process N; with rate y,

¢ "plowback rate" r(x) =1 —91(x > b),

¢ dividend process D; = 7 fo 1(Rs > b) ds,

Ri A

Welet o = /A and ¢(x) = Py(T < 0).
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10}

()
o>1,
Ry — —o0
p(x) =1

Three scenarios

(1)
l—y<p<],
R} pos. recurrent

p(x) =1

(I11)

p<1_r),,
R; — o0

P(x) <1

We omit thecasesp =1and p =1 — 7.
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II. Risk and queues

Dualities
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Risk process

M/G/1 workload

Costruct dual process V; as follows:

¢ fix a time T,

¢ use the same jump sizes and interjump times, but in re-
versed order and reversed direction,

¢ set th = 0 for V; < 0 and th = —r(V}) else.

Vi is the workload process of a M/G/1 with service time dis-
tribution G, arrival rate u and server speed 1 — y1(V; > b).
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Then surprisingly (ASMUSSEN & PETERSEN (1988))
Px(t<T)=P(Vr>x|Vy=0)
and, if o <1 —17,

P(x) = Px(T = 00) = F(x),
where F is the stationary distribution of the dual queue.
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There is another (more obvious) duality:

>
Risk process Workload G/M/1
Arrival rate y <  Service mean 1_77
Claim size mean % Arrival rate A
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III. Ruin probability
Case p < 1 — 7y (upward drift)

The survival probability is positive:

P(x) =Py(T=00) >0
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It follows from duality I that
p(x) = F(x),

where F is the stationary distribution of an M/G/1 queue

with server speed 1 — y1(V; > b), service distribution G and
arrival rate u.

The Laplace transform of F has been derived by GAVER &
MILLER (1962) (context: storage processes).

Aim: express § in terms of F(7) and F(9) (stationary distribu-

tion of the standard queue), where F(7) denotes the stationary
distribution of an M/G/1 queue with server speed 1 — 7.
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(A) For x < b:

Pp(x) =0(x,b)y(b),
where 0(x,b) = P,(R; = b for some t < T).
The same formula holds in the v = 0 case, too, hence

0(x,b) =

by duality I.
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(B) For x > b we have T = oo if either

1. Ry never reaches b, the probability being
lim 0(x — b,y) = F)(x — b).

Yy—00

2. Rs < b for some s > 0, but never jumps below 0, the proba-
bility being

F ) [ 00— w b b, _y(u)p(b),

where H,,_j,(u) is the p.d.f. of the excess.
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We obtain:
0(x,b)i(b) ;x < b
Fx) = FO(x— by
+f(7)(x b)y f() b—u,b)H, (du) ;x>0b

Still to determine:

i) excess distribution H,_,(u) and

ii) survival probability ¥ (b).
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i) c.f. Figure.
Excesses Uy, U>, ... form a re-

newal process. U,
H,_p(u) is the distribution of U,
the forward recurrence time

at time x — b of a renewal H1 U

process with inter-occurrence
time distribution Hy(u).

The distribution Hy(u) equals the distribution of the idle pe-
riod of a transient G/M/1 queue (or deficit at ruin):

Ho(u) = A/O”u _G(1))dt.

(e.g. PrABHU (1997) - apparently well known in risk theory:
BowegRs, GERBER, HICKMANN, JONES & NESBITT (1987))
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i) ¢ (b)

Ry

A

b

Two possibilites

1. Process never reaches b again, the probability being

1—py=1-p/1—7)
(e.g. by duality I: steady state idle probability)
2. Process jumps below b, but T = oo, the probability being

b —
oy | 0(b =1, b) dHo(w)(b).
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It follows that
b

B(b) =1—py+py [ 00— u,b) dHo(w)F(0).

After rearranging we obtain

_ 1 —
1/J(b) — b i ’

1—py fg0(b—u,b)dHy(u)
_ 1—pqy
l[J(b) — b

1— F(é))“y(b) [y FO(b — u) dHy(u)

The term
b
: FO (b — u) dHy(u)

looks familiar...
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CoHEN (1982): For the G/G/1 queue with
¢ Ve=steady-state workload,
¢ We=steady-state waiting time,
¢ W,=residual waiting time,

Vio| (Voo > 0) & Weo + W
With Poisson arrivals and PASTA we obtain

FO@) =1-p+p [ FOy - u)dHo(w)

(follows also by integration of the well known integro-differential
equation for F).
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Inserting into equation for ¥ (b) yields

_ 1—p—
#(0) = FOO) = (1)

Theorem: The survival probability is given by

0(x,b)p(b) ;X < b
W(x) = F)(x —b)
+F() fo b—u,b)H, ,(du) ;x>0

with Y (b) given in (1) and Hx_b( ) the distribution of the forward
recurrence time at time x — b of a renewal process with renewal
distribution Hy(u).

(c.f. LIN & Paviova (2006)).
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IV. Some general ideas

Case Py(T < 00) = 1.
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For the dividend-free risk process (v = 0) the functional

Dy (x) = Exle™" w(Rr—, [Rel)]

was introduced by GERBER & SHIU (1998).
On can show that

Plo(x) = (4 + ) Puao(x) = 1 [ w(x,y — ) dG(y)
—u/ Pa(x —y) dG(y).

Gerber-Shiu-ism: Extensive literature about solutions.
Approaches available for the usual suspects:

¢ exponential G,
¢ Erlang G,
¢ phase-type G.
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More generally one could investigate the two functionals

¥o5(x) = /0 e Joo(R)dsg(R,) ]
and
o) = Exle™ 1) Pro(Re, [Re]),
(B, v, w non-negative and bounded) for a risk process
dR; = r(Ry) dt + dS;
with general ("plowback"-)rate r : R — (0, 1].
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Why is

Fop(x) = Eqf /OT e~ oo (R AR, ) d

useful?

¢ Expected present value of the discounted dividends:

¥y, (x) = ] /O "o 01— #(R))) df].

¢ Expected value of the total dividends (undiscounted):

W1, (x) = /O (1= #(Ry)) dt).
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Why is

Poo(x) = Exle” o 8@ (Re_, |Re|)]
useful?
¢ Gerber-Shiu-functional if v(x) = a:

Dpw(x) = Ex[e™ " w(Rr—, [Re])
¢ Laplace-transform of the total dividends:
Py(1-r)1 (%) = Exle o 1R &,
¢ Laplace-transform of the ruin time (GERBER & SHIU (2006))
Dy (x) = Ex[e™]
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Theorem: Consider the integro-differential equation
r(x)S'(x)
X
= (u+0(x)S(x) —p [ S(x—wdG(u) —h(x). @)
© Then Y, g(x) is a solution of (2) with h( ) = ,B( ) and
© Dy (x) isasolution of (2) withh(x) = p [ w(x,u—x)dG(u).

Classic proof: condition on the number of jumps during |0, Af]
and let At — 0.

Here: Approach via PDMPs (c.f. DAss10s & EMBRECHTS (1989),EMm-
BRECHTS & SCHMIDLI (1994))
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nPrOOfn fOl‘ TU,IB( ) ]Ex[f e fO Rs dS,B( ) ]
Rewrite the equation

r(x)8'(x) = (u+0(x))S(x) ~ p [ S(x = wdG(u) — B(x)

into ¥S(x) = v(x)S(x) — B(x), with generator ¢ of the killed

Markov process Ry:
9F(x) = r(0)f (x) +u [
—puf(x)(1 -Gl

Use the martingale

e~ Jov(Rs)dsg(R,) — /0 o fio(R) du (9S(Rs) — v(Rs)S(Rs)) ds.

+ optional stopping with S(A) = 0 (A the cemetery state).

flx—y)—f(x)) dG(y)
x)).
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"Proof" for @y o (x) = Exle o PR B5(R_|R-|)]:
Rewrite

r(0)8'(x) = (4 0(x)S(x) — [ S(x — w)dG(u)
—y/ (x,u—x dG()

into e1genfunct10n equatlon 4S(x) = v(x)S(x), where

91 (x) = +y/' (x = u) = f(x))dG(u)
+y/ - x) — f(x))dG(u).

(! uncountable number of outer states)
Finally use the same martingale as before:

e~ Jo v(Rs) S(Ry).
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Drawback: solutions of

(x)8'(x) = (+ 0())S(x) — 1 [ S(x — w)dG(w) ~ h(x)
are difficult to find.
¢ Let 6(x) = exp (fox%j;gz)dz). Then

S(x) = 6(x) (5(0) _ Ox 59*((%),&1@0)

and S* solves the Volterra integral equation
X

S*(x) = b(x) —/0 K(w, x)S*(w) dw

with certain functions K and b.
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¢ If G is absolutely continuous having a density ¢ with

g(x —u) ZAk

(e.g. exponential, Erlang, hyper—exponentlal distributions)
then one can rewrite

r()8'(x) = (4 0(x)S(x) [ S(x — w)dG(u) — h(x)

into a system of first order linear differential equations.
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Observation: Two functionals

Tv,,@(x) — ]Ex:/OT e fOtv(RS) dSIB(Rt) dt:-
q)v,w(x) — ]Ex e fo o(Rs)ds ( T— ‘RT )]/

solve the same equation

(0)5'(x) = (e +0()S(x) — e [ (e~ w)dG(u) — h(x).
with ii(x) = B(x) and h(x) = p [ w(x, u — x) dG(u).

It is tempting to equate S(x) and u [, w(x,u — x)dG(u) :

0@

Dy (%) = HEy] /O "o Joo(Rs)ds / w(Rs, 1t — Re) dG () dt].

Ry
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V. The ruin time

Back to the threshold paper
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Laplace transform of the ruin time:
Pa(x) = Exle "1 (1 < o0)]
We have seen that (see GERBER & SHIU (2006))
(1=71(x = b)) pu(x)
= (1 + a)pu(x) — pG(x u/ Pulx —y) dG(y)  (3)
Connection to Queueing theory: We can write
¢u(x) = Po(Vp > x)

with T & exp(«) and V; the workload process of M/G/1.
Then (3) follows from a result in GAVER & MILLER (1962) .
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Equation (3):
(1—=91(x > b)) py(x)
= (4 a)pa(x) — uG(x u/ pu(x —y) dG(y).

In general no hope for explicit solutions (several results in LIN
& Paviova (2006).)

Our suggestion: define (double-)transforms

¥o() = [ e gr () dx,
i) = [ e galn) dx,

where ¢, (x) is a solution on [0, o0) of (3) with v = 0.

CONFERENCE IN HONOUR OF SOREN ASMUSSEN - NEW FRONTIERS IN APPLIED PROBABILITY



Ruin time / Solution V 36/37

Then

_ 9 (0) —p—
s —p(1-G*(s)) —a
Inversion of ¥ (s) yields ¢,(x) for x < b.

¥ (s)

Moreover,
gt (o) (L= 9u() 7 Cx)e™ dx — (s, )
o 5(1_7_0‘_]/1(1—G*(s))) /
with
b X
W(s,x) = /o (G*(s)(p“(x) _/o Pa(x — 1) dG(u))e—sx Iy
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Thank you!
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