Threshold Strategies for Risk Processes and their Relation to Queueing Theory

Onno Boxma, David Perry, Andreas Löpker

I. Setting / Literature
 II. Risk and queues / Dualities
 III. Ruin probability
 IV. More general ideas
 (V. If time allows: Ruin time)

I. Setting / Literature

Risk process with threshold

 dividend strategy

We consider a simple insurance risk model (Cramèr-Lundberg regime), where R_{t} denotes the surplus of an insurance company at time t.
Some of the income is re-distributed as dividends: whenever R_{t} is larger than some threshold b, a fraction of γ is paid out as dividends.
\Rightarrow Threshold strategy (refracting barrier)

Risk process: $d R_{t}=r\left(R_{t}\right) d t+d S_{t}$, with

- aggregated claims $S_{t}=\sum_{i=1}^{N_{t}} X_{i}$,
- i.i.d. claims $\left(X_{i}\right)_{i=1,2, \ldots}$, distribution $G, \mathbb{E}\left[X_{1}\right]=1 / \lambda$,
- Poisson claim number process N_{t} with rate μ,
- "plowback rate" $r(x)=1-\gamma \mathbf{1}(x \geq b)$,
- dividend process $D_{t}=\gamma \int_{0}^{t} \mathbf{1}\left(R_{s}>b\right) d s$,

We let $\rho=\mu / \lambda$ and $\psi(x)=\mathbb{P}_{x}(\tau<\infty)$.

Three scenarios

(I)

$$
\begin{gathered}
\rho>1 \\
R_{t} \rightarrow-\infty \\
\psi(x)=1
\end{gathered}
$$

(II)

$$
1-\gamma<\rho<1
$$

R_{t} pos. recurrent
$\psi(x)=1$

$$
\begin{gathered}
\rho<1-\gamma \\
R_{t} \rightarrow \infty \\
\psi(x)<1
\end{gathered}
$$

We omit the cases $\rho=1$ and $\rho=1-\gamma$.

II. Risk and queues

Dualities

Costruct dual process V_{t} as follows:

- fix a time T,
- use the same jump sizes and inter-jump times, but in reversed order and reversed direction,
- set $\frac{d V_{t}}{d t}=0$ for $V_{t} \leq 0$ and $\frac{d V_{t}}{d t}=-r\left(V_{t}\right)$ else.
V_{t} is the workload process of a $\mathrm{M} / \mathrm{G} / 1$ with service time distribution G, arrival rate μ and server speed $1-\gamma \mathbf{1}\left(V_{t} \geq b\right)$.

Then surprisingly (Asmussen \& Petersen (1988))

$$
\mathbb{P}_{x}(\tau \leq T)=\mathbb{P}\left(V_{T}>x \mid V_{0}=0\right)
$$

and, if $\rho<1-\gamma$,

$$
\bar{\psi}(x)=\mathbb{P}_{x}(\tau=\infty)=F(x)
$$

where F is the stationary distribution of the dual queue.

There is another (more obvious) duality:

Risk process
Arrival rate μ
Claim size mean $\frac{1}{\lambda}$

Workload G/M/1
$\Leftrightarrow \quad$ Service mean $\frac{1-\gamma}{\mu}$ Arrival rate λ

III. Ruin probability

Case $\rho<1-\gamma$ (upward drift)
The survival probability is positive:

$$
\bar{\psi}(x)=\mathbb{P}_{x}(\tau=\infty)>0
$$

It follows from duality I that

$$
\bar{\psi}(x)=F(x)
$$

where F is the stationary distribution of an $M / G / 1$ queue with server speed $1-\gamma \mathbf{1}\left(V_{t}>b\right)$, service distribution G and arrival rate μ.
The Laplace transform of F has been derived by Gaver \& Miller (1962) (context: storage processes).

Aim: express $\bar{\psi}$ in terms of $F^{(\gamma)}$ and $F^{(0)}$ (stationary distribution of the standard queue), where $F^{(\gamma)}$ denotes the stationary distribution of an $M / G / 1$ queue with server speed $1-\gamma$.

Ruin probability

(A) For $x<b$:

$$
\bar{\psi}(x)=\theta(x, b) \bar{\psi}(b)
$$

where $\theta(x, b)=\mathbb{P}_{x}\left(R_{t}=b\right.$ for some $\left.t<\tau\right)$.
The same formula holds in the $\gamma=0$ case, too, hence

$$
\theta(x, b)=\frac{F^{(0)}(x)}{F^{(0)}(b)}
$$

by duality I.

(B) For $x \geq b$ we have $\tau=\infty$ if either

1. R_{t} never reaches b, the probability being

$$
\lim _{y \rightarrow \infty} \theta(x-b, y)=F^{(\gamma)}(x-b)
$$

2. $R_{s}<b$ for some $s>0$, but never jumps below 0 , the probability being

$$
\bar{F}^{(\gamma)}(x-b) \int_{0}^{b} \theta(b-u, b) d H_{x-b}(u) \psi(b)
$$

where $H_{x-b}(u)$ is the p.d.f. of the excess.

We obtain:

$$
\bar{\psi}(x)= \begin{cases}\theta(x, b) \bar{\psi}(b) & ; x<b \\ F^{(\gamma)}(x-b) & \\ +\bar{F}^{(\gamma)}(x-b) \bar{\psi}(b) \int_{0}^{b} \theta(b-u, b) H_{x-b}(d u) & ; x \geq b\end{cases}
$$

Still to determine:
i) excess distribution $H_{x-b}(u)$ and
ii) survival probability $\bar{\psi}(b)$.
i) c.f. Figure.

Excesses U_{1}, U_{2}, \ldots form a renewal process.
$H_{x-b}(u)$ is the distribution of the forward recurrence time at time $x-b$ of a renewal process with inter-occurrence time distribution $H_{0}(u)$.

The distribution $H_{0}(u)$ equals the distribution of the idle period of a transient $G / M / 1$ queue (or deficit at ruin):

$$
H_{0}(u)=\lambda \int_{0}^{u}(1-G(t)) d t .
$$

(e.g. Prabhu (1997) - apparently well known in risk theory: Bowers, Gerber, Hickmann, Jones \& Nesbitt (1987))
ii) $\bar{\psi}(b)$

Two possibilites

1. Process never reaches b again, the probability being

$$
1-\rho_{\gamma}=1-\rho /(1-\gamma)
$$

(e.g. by duality I: steady state idle probability)
2. Process jumps below b, but $\tau=\infty$, the probability being

$$
\rho_{\gamma} \int_{0}^{b} \theta(b-u, b) d H_{0}(u) \bar{\psi}(b)
$$

It follows that

$$
\bar{\psi}(b)=1-\rho_{\gamma}+\rho_{\gamma} \int_{0}^{b} \theta(b-u, b) d H_{0}(u) \bar{\psi}(b)
$$

After rearranging we obtain

$$
\begin{aligned}
\bar{\psi}(b) & =\frac{1-\rho_{\gamma}}{1-\rho_{\gamma} \int_{0}^{b} \theta(b-u, b) d H_{0}(u)^{\prime}} \\
\bar{\psi}(b) & =\frac{1-\rho_{\gamma}}{1-\frac{\rho_{\gamma}}{F^{(0)}(b)} \int_{0}^{b} F^{(0)}(b-u) d H_{0}(u)}
\end{aligned}
$$

The term

$$
\int_{0}^{b} F^{(0)}(b-u) d H_{0}(u)
$$

looks familiar...

Cohen (1982): For the G/G/1 queue with

- $V_{\infty}=$ steady-state workload,
- $W_{\infty}=$ steady-state waiting time,
- $W_{r}=$ residual waiting time,

$$
V_{\infty} \mid\left(V_{\infty}>0\right) \stackrel{d}{\sim} W_{\infty}+W_{r} .
$$

With Poisson arrivals and PASTA we obtain

$$
F^{(0)}(y)=1-\rho+\rho \int_{0}^{y} F^{(0)}(y-u) d H_{0}(u)
$$

(follows also by integration of the well known integro-differential equation for F).

Inserting into equation for $\bar{\psi}(b)$ yields

$$
\begin{equation*}
\bar{\psi}(b)=F^{(0)}(b) \frac{1-\rho-\gamma}{1-\rho-\gamma F^{(0)}(b)} . \tag{1}
\end{equation*}
$$

Theorem: The survival probability is given by
$\bar{\psi}(x)= \begin{cases}\theta(x, b) \bar{\psi}(b) & ; x<b \\ F^{(\gamma)}(x-b) & \\ +\bar{F}^{(\gamma)}(x-b) \bar{\psi}(b) \int_{0}^{b} \theta(b-u, b) H_{x-b}(d u) & ; x \geq b\end{cases}$
with $\bar{\psi}(b)$ given in (1) and $H_{x-b}(u)$ the distribution of the forward recurrence time at time $x-b$ of a renewal process with renewal distribution $H_{0}(u)$.
(c.f. Lin \& Pavlova (2006)).

IV. Some general ideas

$$
\text { Case } \mathbb{P}_{x}(\tau<\infty)=1 \text {. }
$$

For the dividend-free risk process $(\gamma=0)$ the functional

$$
\Phi_{\alpha, w}(x)=\mathbb{E}_{x}\left[e^{-\alpha \tau} w\left(R_{\tau-},\left|R_{\tau}\right|\right)\right]
$$

was introduced by Gerber \& Shiu (1998).
On can show that

$$
\begin{aligned}
\Phi_{\alpha, w}^{\prime}(x)=(\mu & +\alpha) \Phi_{\alpha, w}(x)-\mu \int_{x}^{\infty} w(x, y-x) d G(y) \\
& -\mu \int_{0}^{x} \varphi_{\alpha}(x-y) d G(y)
\end{aligned}
$$

Gerber-Shiu-ism: Extensive literature about solutions. Approaches available for the usual suspects:

- exponential G,
- Erlang G,
- phase-type G.

More generally one could investigate the two functionals

$$
\Psi_{v, \beta}(x)=\mathbb{E}_{x}\left[\int_{0}^{\tau} e^{-\int_{0}^{t} v\left(R_{s}\right) d s} \beta\left(R_{t}\right) d t\right] .
$$

and

$$
\Phi_{v, w}(x)=\mathbb{E}_{x}\left[e^{-\int_{0}^{\tau} v\left(R_{s}\right) d s} w\left(R_{\tau-},\left|R_{\tau}\right|\right)\right]
$$

(β, v, w non-negative and bounded) for a risk process

$$
d R_{t}=r\left(R_{t}\right) d t+d S_{t}
$$

with general ("plowback"-)rate $r: \mathbb{R} \rightarrow(0,1]$.

Why is

$$
\Psi_{v, \beta}(x)=\mathbb{E}_{x}\left[\int_{0}^{\tau} e^{-\int_{0}^{t} v\left(R_{s}\right) d s} \beta\left(R_{t}\right) d t\right]
$$

useful?

- Expected present value of the discounted dividends:

$$
\Psi_{\delta, 1-r}(x)=\mathbb{E}_{x}\left[\int_{0}^{\tau} e^{-\delta t}\left(1-r\left(R_{t}\right)\right) d t\right] .
$$

- Expected value of the total dividends (undiscounted):

$$
\Psi_{0,1-r}(x)=\mathbb{E}_{x}\left[\int_{0}^{\tau}\left(1-r\left(R_{t}\right)\right) d t\right]
$$

Why is

$$
\Phi_{v, w}(x)=\mathbb{E}_{x}\left[e^{-\int_{0}^{\tau} v\left(R_{s}\right) d s} w\left(R_{\tau-}\left|R_{\tau}\right|\right)\right]
$$

useful?

- Gerber-Shiu-functional if $v(x)=\alpha$:

$$
\Phi_{\alpha, w}(x)=\mathbb{E}_{x}\left[e^{-\alpha \tau} w\left(R_{\tau-}\left|R_{\tau}\right|\right)\right]
$$

- Laplace-transform of the total dividends:

$$
\Phi_{\alpha(1-r), 1}(x)=\mathbb{E}_{x}\left[e^{-\alpha \int_{0}^{\tau}\left(1-r\left(R_{s}\right)\right) d s}\right]
$$

- Laplace-transform of the ruin time (Gerber \& Shiu (2006))

$$
\Phi_{\alpha, 1}(x)=\mathbb{E}_{x}\left[e^{-\alpha \tau}\right]
$$

Generalization

Theorem: Consider the integro-differential equation

$$
\begin{align*}
& r(x) S^{\prime}(x) \\
& \quad=(\mu+v(x)) S(x)-\mu \int_{0}^{x} S(x-u) d G(u)-h(x) \tag{2}
\end{align*}
$$

- Then $\Psi_{v, \beta}(x)$ is a solution of (2) with $h(x)=\beta(x)$ and
- $\Phi_{v, w}(x)$ is a solution of (2) with $h(x)=\mu \int_{x}^{\infty} w(x, u-x) d G(u)$.

Classic proof: condition on the number of jumps during $[0, \Delta t]$ and let $\Delta t \rightarrow 0$.
Here: Approach via PDMPs (c.f. Dassios \& Embrechts (1989),Embrechts \& Schmidli (1994))
"Proof" for $\Psi_{v, \beta}(x)=\mathbb{E}_{x}\left[\int_{0}^{\tau} e^{-\int_{0}^{t} v\left(R_{s}\right) d s} \beta\left(R_{t}\right) d t\right]$:
Rewrite the equation

$$
r(x) S^{\prime}(x)=(\mu+v(x)) S(x)-\mu \int_{0}^{x} S(x-u) d G(u)-\beta(x)
$$

into $\mathscr{G} S(x)=v(x) S(x)-\beta(x)$, with generator \mathscr{G} of the killed Markov process R_{t} :

$$
\begin{aligned}
& \mathscr{G} f(x)=r(x) f^{\prime}(x)+\mu \int_{0}^{x}(f(x-y)-f(x)) d G(y) \\
&-\mu f(x)(1-G(x))
\end{aligned}
$$

Use the martingale

$$
e^{-\int_{0}^{t} v\left(R_{s}\right) d s} S\left(R_{t}\right)-\int_{0}^{t} e^{-\int_{0}^{s} v\left(R_{u}\right) d u}\left(\mathscr{G} S\left(R_{s}\right)-v\left(R_{s}\right) S\left(R_{s}\right)\right) d s
$$

+ optional stopping with $S(\Delta)=0$ (Δ the cemetery state).

[^0]"Proof" for $\Phi_{v, w}(x)=\mathbb{E}_{x}\left[e^{-\int_{0}^{\tau} v\left(R_{s}\right) d s} w\left(R_{\tau-},\left|R_{\tau}\right|\right)\right]$:
Rewrite
\[

$$
\begin{aligned}
r(x) S^{\prime}(x) & =(\mu+v(x)) S(x)-\mu \int_{0}^{x} S(x-u) d G(u) \\
& -\mu \int_{x}^{\infty} w(x, u-x) d G(u)
\end{aligned}
$$
\]

into eigenfunction equation $\mathscr{G} S(x)=v(x) S(x)$, where

$$
\begin{gathered}
\mathscr{G} f(x)=r(x) f^{\prime}(x)+\mu \int_{0}^{x}(f(x-u)-f(x)) d G(u) \\
+\mu \int_{x}^{\infty}(w(x, u-x)-f(x)) d G(u)
\end{gathered}
$$

(! uncountable number of outer states)
Finally use the same martingale as before:

$$
e^{-\int_{0}^{t} v\left(R_{s}\right) d s} S\left(R_{t}\right)
$$

Solutions

Drawback: solutions of

$$
r(x) S^{\prime}(x)=(\mu+v(x)) S(x)-\mu \int_{0}^{x} S(x-u) d G(u)-h(x)
$$

are difficult to find.

- Let $\theta(x)=\exp \left(\int_{0}^{x} \frac{\mu+f(z)}{r(z)} d z\right)$. Then

$$
S(x)=\theta(x)\left(S(0)-\int_{0}^{x} \frac{S^{*}(w)}{\theta(w)}, d w\right)
$$

and S^{*} solves the Volterra integral equation

$$
S^{*}(x)=b(x)-\int_{0}^{x} K(w, x) S^{*}(w) d w
$$

with certain functions K and b.

Solutions

- If G is absolutely continuous having a density g with

$$
g(x-u)=\sum_{k=0}^{m} A_{k}(x) B_{k}(y)
$$

(e.g. exponential, Erlang, hyper-exponential distributions) then one can rewrite

$$
r(x) S^{\prime}(x)=(\mu+v(x)) S(x)-\mu \int_{0}^{x} S(x-u) d G(u)-h(x)
$$

into a system of first order linear differential equations.

Observation: Two functionals

$$
\begin{aligned}
\Psi_{v, \beta}(x) & =\mathbb{E}_{x}\left[\int_{0}^{\tau} e^{-\int_{0}^{t} v\left(R_{s}\right) d s} \beta\left(R_{t}\right) d t\right] \\
\Phi_{v, w}(x) & =\mathbb{E}_{x}\left[e^{-\int_{0}^{\tau} v\left(R_{s}\right) d s} w\left(R_{\tau-},\left|R_{\tau}\right|\right)\right]
\end{aligned}
$$

solve the same equation

$$
\begin{aligned}
& \quad r(x) S^{\prime}(x)=(\mu+v(x)) S(x)-\mu \int_{0}^{x} S(x-u) d G(u)-h(x) . \\
& \text { with } h(x)=\beta(x) \text { and } h(x)=\mu \int_{x}^{\infty} w(x, u-x) d G(u) .
\end{aligned}
$$

It is tempting to equate $\beta(x)$ and $\mu \int_{x}^{\infty} w(x, u-x) d G(u)$:

$$
\Phi_{v, w}(x)=\mu \mathbb{E}_{x}\left[\int_{0}^{\tau} e^{-\int_{0}^{t} v\left(R_{s}\right) d s} \int_{R_{t}}^{\infty} w\left(R_{s}, u-R_{s}\right) d G(u) d t\right] .
$$

V. The ruin time
 Back to the threshold paper

Ruin time

Laplace transform of the ruin time:

$$
\varphi_{\alpha}(x)=\mathbb{E}_{x}\left[e^{-\alpha \tau} \mathbf{1}(\tau<\infty)\right]
$$

We have seen that (see Gerber \& Shiu (2006))

$$
\begin{align*}
& (1-\gamma \mathbf{1}(x \geq b)) \varphi_{\alpha}^{\prime}(x) \\
& \quad=(\mu+\alpha) \varphi_{\alpha}(x)-\mu \bar{G}(x)-\mu \int_{0}^{x} \varphi_{\alpha}(x-y) d G(y) \tag{3}
\end{align*}
$$

Connection to Queueing theory: We can write

$$
\varphi_{\alpha}(x)=\mathbb{P}_{0}\left(V_{T}>x\right)
$$

with $T \stackrel{d}{\sim} \exp (\alpha)$ and V_{t} the workload process of $M / G / 1$. Then (3) follows from a result in Gaver \& Miller (1962) .

Ruin time / Solution

Equation (3):

$$
\begin{aligned}
& (1-\gamma \mathbf{1}(x \geq b)) \varphi_{\alpha}^{\prime}(x) \\
& \quad=(\mu+\alpha) \varphi_{\alpha}(x)-\mu \bar{G}(x)-\mu \int_{0}^{x} \varphi_{\alpha}(x-y) d G(y)
\end{aligned}
$$

In general no hope for explicit solutions (several results in LiN \& Pavlova (2006).)
Our suggestion: define (double-)transforms

$$
\begin{aligned}
& \Psi_{\alpha}^{-}(s)=\int_{0}^{\infty} e^{-s x} \varphi_{\alpha}^{-}(x) d x \\
& \Psi_{\alpha}^{+}(s)=\int_{b}^{\infty} e^{-s x} \varphi_{\alpha}(x) d x
\end{aligned}
$$

where $\varphi_{\alpha}^{-}(x)$ is a solution on $[0, \infty)$ of (3) with $\gamma=0$.

Ruin time / Solution

Then

$$
\Psi_{\alpha}^{-}(s)=\frac{\varphi_{\alpha}^{-}(0)-\mu \frac{1-G^{*}(s)}{s}}{s-\mu\left(1-G^{*}(s)\right)-\alpha}
$$

Inversion of $\Psi_{\alpha}^{-}(s)$ yields $\varphi_{\alpha}(x)$ for $x<b$.
Moreover,

$$
\Psi_{\alpha}^{+}(s)=\frac{(1-\gamma) \varphi_{\alpha}(b)-\mu \int_{b}^{\infty} \bar{G}(x) e^{-s x} d x-\mu W(s, x)}{s\left(1-\gamma-\alpha-\mu\left(1-G^{*}(s)\right)\right)}
$$

with

$$
W(s, x)=\int_{0}^{b}\left(G^{*}(s) \varphi_{\alpha}(x)-\int_{0}^{x} \varphi_{\alpha}(x-u) d G(u)\right) e^{-s x} d x
$$

Thank you!

[^0]: CONFERENCE IN HONOUR OF SØREN ASMUSSEN - NEW FRONTIERS IN APPLIED PROBABILITY

