Approximations of the Laplace Transform of a Lognormal Random Variable

Leonardo Rojas Nandayapa

Joint work with Søren Asmussen & Jens Ledet Jensen

The University of Queensland School of Mathematics and Physics

Outline

- Sums of Lognormal Random Variables
- Laplace transforms in probability
- Approximations of the Laplace transform
 - The Laplace method
 - The exponential family generated by a Lognormal

3 Applications

- Cdf of a sum of lognormal via inversion
- Tail probabilities and rare-event simulation

Sums of Lognormal Random Variables Laplace transforms in probability

Outline

Introduction

- Sums of Lognormal Random Variables
- Laplace transforms in probability
- 2 Approximations of the Laplace transform
 - The Laplace method
 - The exponential family generated by a Lognormal

3 Applications

- Cdf of a sum of lognormal via inversion
- Tail probabilities and rare-event simulation

- 4 同 5 - 4 回 5 - 4 回

Sums of Lognormal Random Variables Laplace transforms in probability

Sums of Lognormal random variables

Due to the popularity of the Lognormal random variables sums of lognormal appear in a wide variety of applications

- Finance Stock prices are modeled as lognormals. Sums of lognormals arise in portfolio and option pricing.
- Insurance Individual claims are also modeled lognormal: Total claim amount is a sum of lognormals.
- Engineering. Sums of lognormals arise in a large amount of applications. Most prominent in telecommunications.
- Biology, Geology,...

Sums of Lognormal Random Variables Laplace transforms in probability

Sums of Lognormal random variables

Since the distribution of the sum of lognormals is not available a large number of numerical and approximative methods have been developed.

- Approximating distributions. A popular approach is using another lognormal distribution. More recently Pearson Type IV, left skew normal, log-shifted gamma, power lognormal distributions have been used.
- 2 Transforms Inversion.
- Bounds.
- Monte Carlo methods.

Sums of Lognormal Random Variables Laplace transforms in probability

Sums of Lognormal random variables

However, most of these methods have drawbacks:

- Inaccuracies in certain regions. Lower regions and upper tail.
- Poor approximations for large/low number of summands. Same for extreme parameters.
- Oifficulties arising from non-identically distributed.
- Omplicated methods.

Sums of Lognormal Random Variables Laplace transforms in probability

Outline

Introduction

- Sums of Lognormal Random Variables
- Laplace transforms in probability
- 2 Approximations of the Laplace transform
 - The Laplace method
 - The exponential family generated by a Lognormal

3 Applications

- Cdf of a sum of lognormal via inversion
- Tail probabilities and rare-event simulation

- 4 同 5 - 4 回 5 - 4 回

Sums of Lognormal Random Variables Laplace transforms in probability

Laplace Transform

We denote the Laplace transform of a density f

$$\mathcal{L}_{f}(\theta) = \int_{0}^{\infty} \mathrm{e}^{-\theta X} f(x) dx = \mathbb{E} \left[\mathrm{e}^{-\theta X} \right].$$

where the domain of convergence of the transform is

$$\Theta = \{\theta \in \mathbb{R} : \theta \ge \mathbf{0}\}.$$

A B + A B +
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Sums of Lognormal Random Variables Laplace transforms in probability

Some applications of Laplace transforms

• **Cumulative Distribution Functions:** It follows that the Laplace transform of its cdf *F* is

$$\mathcal{L}_{\mathcal{F}}(heta) = rac{\mathcal{L}_{f}(heta)}{ heta}, \qquad heta > \mathbf{0}.$$

Thus we can compute probabilities by using any of the numerical inversion methods available in the literature.

Sums of Lognormal Random Variables Laplace transforms in probability

Common applications of Laplace transforms

Example (Bromwich inversion integral)

If F is supported over $[0,\infty]$ with no atoms then

$$F(x) = rac{1}{2\pi i} \int_{\gamma-i\infty}^{\gamma+i\infty} \mathrm{e}^{x heta} \mathcal{L}_F(heta) d heta, \qquad \gamma>0.$$

Sums of Lognormal Random Variables Laplace transforms in probability

Common applications of Laplace transforms

• Sums of Independent Random Variables: Let $X_1, ..., X_n$ be independent random variables with pdf's $f_1, ..., f_n$ and let *F* be the cdf of $S_n := X_1 + \cdots + X_n$. Then

$$\mathcal{L}_{F}(heta) = rac{\prod_{i=1}^{n}\mathcal{L}_{f_{i}}(heta)}{ heta^{n}}, \qquad heta > \mathsf{0}.$$

Common applications of Laplace transforms

• Exponential families generated by a random variable Let X be a random variable with distribution F. The family of distributions defined by

$$dF_{ heta}(x) = rac{\mathrm{e}^{- heta x} dF(x)}{\mathcal{L}_f(heta)}, \qquad heta \in \Theta.$$

is known as the *exponential family of distributions* generated by X.

Sums of Lognormal Random Variables Laplace transforms in probability

Common applications of Laplace transforms

Example

In some applications (saddlepoint approximation and rare-event simulation for example) it is often required to find the solution θ to the equation

$$\mathbb{E}_{\theta}[X] = y, \quad y \text{ fixed.}$$

Here \mathbb{E}_{θ} is the expectation w.r.t. F_{θ} .

Sums of Lognormal Random Variables Laplace transforms in probability

Laplace transform of a Lognormal

No closed form of the Laplace transform of a Lognormal random variable is known

$$\mathcal{L}_{f}(\theta) = \int_{0}^{\infty} \frac{1}{x\sqrt{2\pi}\sigma} \exp\left\{-\theta x - \frac{(\log x - \mu)^{2}}{2\sigma^{2}}\right\} dx$$

The Laplace method The exponential family generated by a Lognormal

Outline

Introduction

- Sums of Lognormal Random Variables
- Laplace transforms in probability
- 2 Approximations of the Laplace transform
 - The Laplace method
 - The exponential family generated by a Lognormal

3 Applications

- Cdf of a sum of lognormal via inversion
- Tail probabilities and rare-event simulation

The Laplace method The exponential family generated by a Lognormal

Intuitive approach

We consider for $k = 0, 1, 2, \ldots$

$$\mathbb{E}\left[X^{k}e^{-\theta X}\right] = \int_{0}^{\infty} \frac{x^{k-1}}{\sigma\sqrt{2\pi}} \exp\left\{-\theta x - \frac{(\log x - \mu)^{2}}{2\sigma^{2}}\right\} dx$$
$$= \int_{-\infty}^{\infty} \frac{1}{\sigma\sqrt{2\pi}} \exp\left\{-\theta e^{y} + ky - \frac{(y - \mu)^{2}}{2\sigma^{2}}\right\} dy.$$

The change of variable $y = \log x$ was used here.

The Laplace method The exponential family generated by a Lognormal

Intuitive approach

The Laplace method suggest to replace the expression

$$-\theta e^{y} + ky - \frac{(y-\mu)^2}{2\sigma^2}$$
(1)

by a Taylor approximation of second order around the value ρ_k that maximizes this expression. That is

$$-\theta e^{\rho_k} \left[1 + (y - \rho_k) + \frac{(y - \rho_k)^2}{2} \right] + ky - \frac{(y - \mu)^2}{2\sigma^2}.$$
 (2)
THE UNIVERSITY
OF QUEENSLAND
AUSTRALIA

The Laplace method The exponential family generated by a Lognormal

Intuitive approach

The figures illustrate the idea

The Laplace method The exponential family generated by a Lognormal

Intuitive approach

Moreover, the method works because the resulting integral can be explicitly obtained.

$$\frac{1}{\sqrt{2\pi}\sigma}\int_{-\infty}^{\infty}\exp\left\{-\theta e^{\rho_k}\left[1+(y-\rho_k)+\frac{(y-\rho_k)^2}{2}\right]+ky-\frac{(y-\mu)^2}{2\sigma^2}\right\}dy.$$

(Notice that the expression in the brackets is simply a second order polynomial).

< 🗇 🕨

The Laplace method The exponential family generated by a Lognormal

Intuitive approach

The novelty in the lognormal case is the explicit calculation of the value

$$\rho_{k} = -\mathrm{LW}(\theta\sigma^{2}\mathrm{e}^{k\sigma^{2}+\mu}) + k\sigma^{2} + \mu_{2}$$

where the function LW : $[-e^{-1},\infty) \to \mathbb{R}$, known as the LambertW, is the inverse of

$$f(W) = W e^{W}.$$

The Laplace method The exponential family generated by a Lognormal

Intuitive approach

Moreover, the property

$$LW(x) e^{LW(x)} = x, \qquad x \in \mathbb{C}.$$

is useful to prove that $\mathbb{E}[X^k e^{-\theta X}]$ can be approximated with

$$\frac{1}{\sqrt{\mathrm{LW}(\theta\sigma^{2}\mathrm{e}^{k\sigma^{2}+\mu})+1}} \times \exp\left\{-\frac{\mathrm{LW}^{2}(\theta\sigma^{2}\mathrm{e}^{k\sigma^{2}+\mu})+2\,\mathrm{LW}(\theta\sigma^{2}\mathrm{e}^{k\sigma^{2}+\mu})-2k\sigma^{2}\mu-k^{2}\sigma^{4}}{2\sigma^{2}}\right\}_{\text{THe UNIVERSITY OF QUEENSLAND}}$$

The Laplace method The exponential family generated by a Lognormal

Laplace transform

In particular, with k = 0

$$\mathcal{L}_{f}(\theta) pprox rac{1}{\sqrt{\mathrm{LW}(\theta\sigma^{2}\mathrm{e}^{\mu})+1}} \exp\left\{-rac{\mathrm{LW}^{2}(\theta\sigma^{2}\mathrm{e}^{\mu})+2\,\mathrm{LW}(\theta\sigma^{2}\mathrm{e}^{\mu})}{2\sigma^{2}}
ight\}$$

We will use the notation $\widetilde{\mathcal{L}_f}(\theta)$ for this approximation.

The Laplace method The exponential family generated by a Lognormal

Outline

Introduction

- Sums of Lognormal Random Variables
- Laplace transforms in probability

2 Approximations of the Laplace transform

- The Laplace method
- The exponential family generated by a Lognormal

3 Applications

- Cdf of a sum of lognormal via inversion
- Tail probabilities and rare-event simulation

The Laplace method The exponential family generated by a Lognormal

Exponential Family

Then we can approximate the solution of

 $\mathbb{E}_{\theta}[X] = y.$

where $\mathbb{E}_{\theta}[X]$ is the expectation w.r.t.

$$dF_{\theta}(x) = rac{\mathrm{e}^{- heta x} dF(x)}{\mathcal{L}_{f}(heta)}.$$

The Laplace method The exponential family generated by a Lognormal

Exponential family

Following an analogous procedure we arrive at

$$\begin{aligned} F_{\theta}(x) &= \int_{0}^{x} \frac{\mathrm{e}^{-\theta y}}{\mathcal{L}_{f}(\theta)} dF(y) \\ &\approx \frac{\widetilde{\mathcal{L}}_{f}(\theta)}{\mathcal{L}_{f}(\theta)} \int_{0}^{x} \frac{1}{y\sqrt{2\pi\sigma}} \exp\Big\{-\frac{\left(\log y - \mu_{\theta}\right)^{2}}{2\sigma_{\theta}^{2}}\Big\} dy. \end{aligned}$$

where

$$\mu_{\theta} := \mu - \mathrm{LW}(\theta \sigma^{2} \mathrm{e}^{\mu}), \qquad \sigma_{\theta}^{2} := \frac{\sigma^{2}}{1 + \mathrm{LW}(\theta \sigma^{2} \mathrm{e}^{\mu})}.$$

$$\underset{\text{OF QUEENSLAND}}{\underset{\text{OF RUSENSLAND}}{\underset{\text{ASSTRALIA}}{\underset{\text{OF QUEENSLAND}}{\underset{\text{OF QUEENSLAND}}}}}}}}.$$

The Laplace method The exponential family generated by a Lognormal

Exponential Family

That is

$$F_{ heta}(x) pprox G(x), \qquad G \sim \mathsf{LN}(\mu_{ heta}, \sigma_{ heta}^2)$$

The exponential family can be approximated with a lognormal distribution.

The Laplace method The exponential family generated by a Lognormal

Exponential family

This result enable us to approximate $\mathbb{E}_{\theta}[X]$ with the expected value of a lognormal

$$\mathbb{E}_{\theta}[X] \approx \mathrm{e}^{\mu_{\theta} + \sigma_{\theta}^2/2}$$

Moreover, the solution of $\mathbb{E}_{\theta}[X] = y$ for θ is given by

$$\theta = \frac{\gamma e^{\gamma}}{\sigma^2 e^{\mu}}, \qquad \gamma := \frac{-1 + \mu - \log y + \sqrt{(1 - \mu - \log y)^2 + 2\sigma^2}}{2}.$$

The Laplace method The exponential family generated by a Lognormal

Final notes

In the paper version we obtain an expression of the remainder, i.e.

$$\mathcal{L}_{f}(\theta) = \widetilde{\mathcal{L}_{f}(\theta)}(1 + \mathcal{R}(\theta)),$$

where $\mathcal{R}(\theta)$ is a series. Using higher order terms we can sharp the results above.

Cdf of a sum of lognormal via inversion Tail probabilities and rare-event simulation

Outline

Introduction

- Sums of Lognormal Random Variables
- Laplace transforms in probability
- 2 Approximations of the Laplace transform
 - The Laplace method
 - The exponential family generated by a Lognormal

3 Applications

- Cdf of a sum of lognormal via inversion
- Tail probabilities and rare-event simulation

Cdf of a sum of lognormal via inversion

Sums of Lognormals

The most obvious application is to approximate the cdf of a sum of independent lognormals. Figure below shows a numerical comparison with simulation results

Leonardo Rojas Nandayapa

Cdf of a sum of lognormal via inversion Tail probabilities and rare-event simulation

Outline

Introduction

- Sums of Lognormal Random Variables
- Laplace transforms in probability
- 2 Approximations of the Laplace transform
 - The Laplace method
 - The exponential family generated by a Lognormal

3 Applications

- Cdf of a sum of lognormal via inversion
- Tail probabilities and rare-event simulation

Cdf of a sum of lognormal via inversion Tail probabilities and rare-event simulation

Left tail

Commonly, approximations available are inaccurate in lower regions of the cdf.

$$\mathbb{P}(X_1 + \cdots + X_n < ny), \qquad y \to 0.$$

When the X_i 's are i.i.d. an importance sampling algorithm with exponential change of measure can be implemented. In fact, we prove that if θ is such that $\mathbb{E}_{\theta}[X] = y$ then this algorithm is strongly efficient as $y \to 0$.

Cdf of a sum of lognormal via inversion Tail probabilities and rare-event simulation

Left tail

Moreover, if $y < \mathbb{E}[X]$ and we want to estimate

$$\mathbb{P}(X_1 + \cdots + X_n < ny), \quad n \to \infty.$$

The same importance sampling algorithm is efficient as $n \rightarrow \infty$.

Cdf of a sum of lognormal via inversion Tail probabilities and rare-event simulation

Future Work

- A numerical analysis of available methods in the literature.
- A Monte Carlo method for the sum of lognormals which is efficient
 - Across the whole support of the distribution
 - In the case when $n \to \infty$.
- A valid saddlepoint approximation for the lower region.
- Extend the results to the non-independent case.

