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Sums of Lognormal random variables

Due to the popularity of the Lognormal random variables sums
of lognormal appear in a wide variety of applications

1 Finance Stock prices are modeled as lognormals. Sums of
lognormals arise in portfolio and option pricing.

2 Insurance Individual claims are also modeled lognormal:
Total claim amount is a sum of lognormals.

3 Engineering. Sums of lognormals arise in a large amount
of applications. Most prominent in telecommunications.

4 Biology, Geology,. . .
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Sums of Lognormal random variables

Since the distribution of the sum of lognormals is not available
a large number of numerical and approximative methods have
been developed.

1 Approximating distributions. A popular approach is
using another lognormal distribution. More recently
Pearson Type IV, left skew normal, log-shifted gamma,
power lognormal distributions have been used.

2 Transforms Inversion.
3 Bounds.
4 Monte Carlo methods.
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Sums of Lognormal random variables

However, most of these methods have drawbacks:
1 Inaccuracies in certain regions. Lower regions and upper

tail.
2 Poor approximations for large/low number of summands.

Same for extreme parameters.
3 Difficulties arising from non-identically distributed.
4 Complicated methods.
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Laplace Transform

We denote the Laplace transform of a density f

Lf (θ) =

∫ ∞
0

e−θx f (x)dx = E [e−θX ].

where the domain of convergence of the transform is

Θ = {θ ∈ R : θ ≥ 0}.
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Some applications of Laplace transforms

Cumulative Distribution Functions: It follows that the
Laplace transform of its cdf F is

LF (θ) =
Lf (θ)

θ
, θ > 0.

Thus we can compute probabilities by using any of the
numerical inversion methods available in the literature.
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Common applications of Laplace transforms

Example (Bromwich inversion integral)

If F is supported over [0,∞] with no atoms then

F (x) =
1

2πi

∫ γ+i∞

γ−i∞
exθLF (θ)dθ, γ > 0.
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Common applications of Laplace transforms

Sums of Independent Random Variables: Let X1, . . . ,Xn
be independent random variables with pdf’s f1, . . . , fn and
let F be the cdf of Sn := X1 + · · ·+ Xn. Then

LF (θ) =

∏n
i=1 Lfi (θ)

θn , θ > 0.
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Common applications of Laplace transforms

Exponential families generated by a random variable
Let X be a random variable with distribution F . The family
of distributions defined by

dFθ(x) =
e−θxdF (x)

Lf (θ)
, θ ∈ Θ.

is known as the exponential family of distributions
generated by X .
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Common applications of Laplace transforms

Example
In some applications (saddlepoint approximation and rare-event
simulation for example) it is often required to find the solution θ
to the equation

E θ[X ] = y , y fixed.

Here E θ is the expectation w.r.t. Fθ.
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Laplace transform of a Lognormal

No closed form of the Laplace transform of a Lognormal
random variable is known

Lf (θ) =

∫ ∞
0

1
x
√

2πσ
exp

{
− θx − (log x − µ)2

2σ2

}
dx
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Intuitive approach

We consider for k = 0,1,2, . . .

E [X k e−θX ] =

∞∫
0

xk−1

σ
√

2π
exp

{
− θx − (log x − µ)2

2σ2

}
dx

=

∞∫
−∞

1
σ
√

2π
exp

{
− θey + ky − (y − µ)2

2σ2

}
dy .

The change of variable y = log x was used here.
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The Laplace method suggest to replace the expression

−θey + ky − (y − µ)2

2σ2 (1)

by a Taylor approximation of second order around the value ρk
that maximizes this expression. That is

−θeρk
[
1 + (y − ρk ) +

(y − ρk )2

2

]
+ ky − (y − µ)2

2σ2 . (2)
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Intuitive approach

The figures illustrate the idea
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Intuitive approach

Moreover, the method works because the resulting integral can
be explicitly obtained.

1√
2πσ

∞∫
−∞

exp
{
−θeρk

[
1+(y−ρk )+

(y − ρk )2

2

]
+ky−(y − µ)2

2σ2

}
dy .

(Notice that the expression in the brackets is simply a second
order polynomial).
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Intuitive approach

The novelty in the lognormal case is the explicit calculation of
the value

ρk = −LW(θσ2ekσ2+µ) + kσ2 + µ,

where the function LW : [−e−1,∞)→ R, known as the
LambertW, is the inverse of

f (W ) = W eW .

Leonardo Rojas Nandayapa Laplace Transform of a Lognormal Random Variable



Introduction
Approximations of the Laplace transform

Applications

The Laplace method
The exponential family generated by a Lognormal

Intuitive approach

Moreover, the property

LW(x) eLW(x) = x , x ∈ C.

is useful to prove that E [X k e−θX ] can be approximated with

1√
LW(θσ2ekσ2+µ) + 1

× exp
{
− LW2(θσ2ekσ2+µ) + 2 LW(θσ2ekσ2+µ)− 2kσ2µ− k2σ4

2σ2

}
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Laplace transform

In particular, with k = 0

Lf (θ) ≈ 1√
LW(θσ2eµ) + 1

exp
{
− LW2(θσ2eµ) + 2 LW(θσ2eµ)

2σ2

}
We will use the notation L̃f (θ) for this approximation.
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Exponential Family

Then we can approximate the solution of

E θ[X ] = y .

where E θ[X ] is the expectation w.r.t.

dFθ(x) =
e−θxdF (x)

Lf (θ)
.
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Exponential family

Following an analogous procedure we arrive at

Fθ(x) =

∫ x

0

e−θy

Lf (θ)
dF (y)

≈ L̃f (θ)

Lf (θ)

x∫
0

1
y
√

2πσ
exp

{
−
(

log y − µθ
)2

2σ2
θ

}
dy .

where

µθ := µ− LW(θσ2eµ), σ2
θ :=

σ2

1 + LW(θσ2eµ)
.
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Exponential Family

That is
Fθ(x) ≈ G(x), G ∼ LN(µθ, σ

2
θ )

The exponential family can be approximated with a lognormal
distribution.
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Exponential family

This result enable us to approximate E θ[X ] with the expected
value of a lognormal

E θ[X ] ≈ eµθ+σ
2
θ/2.

Moreover, the solution of E θ[X ] = y for θ is given by

θ =
γeγ

σ2eµ
, γ :=

−1 + µ− log y +
√

(1− µ− log y)2 + 2σ2

2
.
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Final notes

In the paper version we obtain an expression of the remainder,
i.e.

Lf (θ) = L̃f (θ)(1 +R(θ)),

where R(θ) is a series. Using higher order terms we can sharp
the results above.
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Sums of Lognormals

The most obvious application is to approximate the cdf of a sum
of independent lognormals. Figure below shows a numerical
comparison with simulation results
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Left tail

Commonly, approximations available are inaccurate in lower
regions of the cdf.

P(X1 + · · ·+ Xn < ny), y → 0.

When the Xi ’s are i.i.d. an importance sampling algorithm with
exponential change of measure can be implemented. In fact,
we prove that if θ is such that E θ[X ] = y then this algorithm is
strongly efficient as y → 0.
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Left tail

Moreover, if y < E [X ] and we want to estimate

P(X1 + · · ·+ Xn < ny), n→∞.

The same importance sampling algorithm is efficient as n→∞.
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Future Work

A numerical analysis of available methods in the literature.
A Monte Carlo method for the sum of lognormals which is
efficient

Across the whole support of the distribution
In the case when n→∞.

A valid saddlepoint approximation for the lower region.
Extend the results to the non-independent case.
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