Distributions with rational transforms

Joint work with Mogens Bladt

New Frontiers in Applied Probability
honouring Søren Asmussen

Sandbjerg Castle 2/8 2011

Outline

- Moment recursions
- Kulkarni's multivariate phase-type distributions (MPH*)
- Multivariate definition and main theorem (MVME)
- Some constructions
- Classification of multivariate gamma distributions
- Distributions on the reals: uni- and multivariate
- The killing of a conjecture
- Further work

Laplace transform from moments

An m-dimensional ME distribution is uniquely determined from its first $2 m-1$ moments.

- Solve for f_{i} and g_{i} in the first $2 m-1$ moment equations.
g_{i} obtained from certain Hankel matrices.

$$
\mu_{i}=\frac{M_{i}}{i!} \quad \mu_{i}=\sum_{j=0}^{i}(-1)^{j} f_{m-j} \psi_{i-j} \quad i=0,1, \ldots
$$

where $\psi_{0}=\frac{1}{g_{m}}$ and $\psi_{i}=\sum_{j=0}^{i-1}(-1)^{j} \frac{\psi_{i-1-j} g_{m-1-j}}{g_{m}}$

- Moments of higher order are given recursively by

$$
\mu_{m+j}=\sum_{i=0}^{m-1} g_{i}(-1)^{m+i} \mu_{i+j} \text { for } j \geq 0
$$

Kultarni's multivariate phase-type
distributions - MPH*

- n different reward rates for each state of T given by R

$$
X_{j}=\sum_{i=1}^{m} \sum_{k=1}^{N_{k}} R_{i j} Z_{i k}
$$

\diamond Here N_{k} is the number of visits to state k before absorption and $Z_{i k}$ are the k 'th sojourn in state j

- Partial differential equations for joint survival function.
- Joint Laplace-Stieltjes transform

$$
H(s)=\gamma\left((-T)^{-1} \Delta(R s)+I\right)^{-1} e .
$$

- Includes previous work by Assaf defining the class MPH.

Joint transform and moments

Theorem 1 The cross-moments $\mathbb{E}\left(\prod_{i=1}^{n} Y_{i}^{r_{i}}\right)$, where \boldsymbol{Y} follows an $M M E^{*}$ distribution with representation (γ, T, R), and where $r_{i} \in \mathbb{N}$, are given by

$$
\boldsymbol{\gamma} \sum_{\ell=1}^{r!} \prod_{i=1}^{r}(-T)^{-1} \Delta\left(\boldsymbol{r}_{\sigma_{\ell}(i)}\right) \boldsymbol{e}
$$

Here $r=\sum_{i=1}^{n} r_{i}, \boldsymbol{r}_{j}$ is the j th column of R and σ_{ℓ} is one of the r ! possible ordered permutations of the derivatives, with $\sigma_{\ell}(i)$ being the value among $1 \ldots n$ at the i 'th position of that permutation.

General definition of multivariate matrix

exponential distributions

Definition 1 A non-negative random vector
$\boldsymbol{X}=\left(X_{1}, \ldots, X_{n}\right)$ of dimension n is said to have multivariate matrix-exponential distribution (MVME) if the joint Laplace transform $L(\boldsymbol{s})=\mathbb{E}[\exp (-<\boldsymbol{X}, \boldsymbol{s}>)]$ is a multi-dimensional rational function, that is, a fraction between two multi-dimensional polynomials. Here $<\cdot, \cdot>$ denotes the inner product in \mathbb{R}^{n} with $s=\left(s_{1}, \ldots, s_{n}\right)^{\prime}$.

Our main theorem characterizes the class of MVME.
Theorem $2 \boldsymbol{A}$ vector $\boldsymbol{X}=\left(X_{1}, \ldots, X_{n}\right)$ follows a multivariate matrix-exponential distribution if and only if $<\boldsymbol{X}, \boldsymbol{a}>=\sum_{i=1}^{n} a_{i} X_{i}$ has a univariate matrix-exponential distribution for all non-negative vectors $\boldsymbol{a} \neq \mathbf{0}$.

Outline of proof

- Only if part: Suppose $\mathbb{E}\left(e^{-<\boldsymbol{X}, \boldsymbol{s}\rangle}\right)$ is rational in \boldsymbol{s}. Then consider $\mathbb{E}\left(e^{-s<\boldsymbol{X}, \boldsymbol{a}_{>}}\right)=\mathbb{E}\left(e^{-<\boldsymbol{X}, s \boldsymbol{a}_{>}}\right)$that is obviously rational in s.
- If part: Suppose $<\boldsymbol{X}, \boldsymbol{a}>$ has ME representation $(\boldsymbol{\beta}(\boldsymbol{a}), D(\boldsymbol{a}), \boldsymbol{d}(\boldsymbol{a}))$ for all $\boldsymbol{a}>\mathbf{0}$.
\diamond The dimension of D is bounded by some integer m.
\diamond Using the moment relations we express the coefficients $f_{i}(\boldsymbol{a})$ and $g_{i}(\boldsymbol{a})$ of the Laplace transform in terms of certain determinants of the moments.
\diamond The j th moment is a sum of j th order monomials in the components of \boldsymbol{a}.
\diamond We conclude that f_{i} and g_{i} are rational in \boldsymbol{a}.

The transform is of a particular simple form

Lemma 1 If $\langle\boldsymbol{X}, \boldsymbol{a}\rangle$ is MVME distributed then we may write its Laplace transform for $\langle\boldsymbol{X}, \boldsymbol{a}\rangle$ as

$$
\frac{\tilde{f}_{1}(\boldsymbol{a}) s^{m-1}+\tilde{f}_{2}(\boldsymbol{a}) s^{m-2}+\ldots+\tilde{f}_{m-1}(\boldsymbol{a}) s+1}{\tilde{g}_{0}(\boldsymbol{a}) s^{m}+\tilde{g}_{1}(\boldsymbol{a}) s^{m-1}+\ldots+\tilde{g}_{m-1}(\boldsymbol{a}) s+1}
$$

where the terms $\tilde{f}_{i}(\boldsymbol{a})$ and $\tilde{g}_{i}(\boldsymbol{a})$ are sums of n-dimensional monomials in \boldsymbol{a} of degree $m-i$ and m is the common order except a set of measure zero.

Farlie Gumbel Morgenstern construction

Consider

$$
F\left(x_{1}, x_{2}\right)=F_{1}\left(x_{1}\right) F_{2}\left(x_{2}\right)\left(1+\rho\left(1-F_{1}\left(x_{1}\right)\right)\left(1-F_{2}\left(x_{2}\right)\right)\right),
$$

where F_{i} are univariate cumulative distribution functions. This expression can be rewritten as

$$
\begin{aligned}
F\left(x_{1}, x_{2}\right) & =\frac{1+\rho}{4} F_{1, M}\left(x_{1}\right) F_{2, M}\left(x_{2}\right)+\frac{1-\rho}{4} F_{1, M}\left(x_{1}\right) F_{2, m}\left(x_{2}\right) \\
& +\frac{1-\rho}{4} F_{1, m}\left(x_{1}\right) F_{2, M}\left(x_{2}\right)+\frac{1+\rho}{4} F_{1, m}\left(x_{1}\right) F_{2, m}\left(x_{2}\right)
\end{aligned}
$$

where $F_{i, m}(x)=1-\left(1-F_{i}(x)\right)^{2}$ and $F_{i, M}(x)=F_{i}^{2}(x)$ i.e. the distribution of minimum and maximum respectively of two F_{i} distributed independent random variables.

Theorem 3 The bivariate Farlie-Gumbel-Morgenstern distribution formed from two matrix-exponential distributions is in $M M E^{*}$. An MME* representation is

$$
\begin{gather*}
\left(\boldsymbol{\gamma}_{1} \otimes \boldsymbol{\gamma}_{1}, \mathbf{0}, \mathbf{0}, \mathbf{0}\right) \\
{\left[\begin{array}{cccc}
S_{1} \oplus S_{1} & \frac{1}{2}\left(\boldsymbol{s}_{1} \oplus \boldsymbol{s}_{1}\right) & \frac{1-\rho}{4}\left(\boldsymbol{s}_{1} \oplus \boldsymbol{s}_{1}\right) \boldsymbol{e} \tilde{\boldsymbol{\gamma}}_{2, M} & \frac{1+\rho}{4}\left(\boldsymbol{s}_{1} \oplus \boldsymbol{s}_{1}\right) \boldsymbol{e} \tilde{\boldsymbol{\gamma}}_{2, m} \\
0 & S_{1} & \frac{1+\rho}{2} \boldsymbol{s}_{1} \tilde{\boldsymbol{\gamma}}_{2, M} & \frac{1-\rho}{2} \boldsymbol{s}_{1} \tilde{\boldsymbol{\gamma}}_{2, m} \\
0 & 0 & \Delta_{2, M}^{-1} S_{2}^{\prime} \Delta_{2, M} & \Delta_{2, M}^{-1}\left(\boldsymbol{s}_{2} \oplus \boldsymbol{s}_{2}^{\prime}\right) \Delta_{2, m} \\
0 & 0 & 0 & \tilde{S}_{2, m}
\end{array}\right]} \\
\text { with } \\
\boldsymbol{\pi}_{2}=\mu_{2}^{-1} \boldsymbol{\alpha}_{2}\left(-S_{2}\right)^{-1}, \quad \tilde{\boldsymbol{\alpha}}_{2}=\mu_{2}^{-1} \boldsymbol{\pi}_{2} \circ \boldsymbol{s}_{2}, \tag{array}\\
\boldsymbol{\pi}_{2, m}=\mu_{2, m}^{-1}\left(\boldsymbol{\alpha}_{2} \otimes \boldsymbol{\alpha}_{2}\right)\left(-S_{2} \oplus S_{2}\right)^{-1}, \quad \boldsymbol{\pi}_{2, M}=\left(\frac{\mu_{2, m}}{\mu_{2, M}} \boldsymbol{\pi}_{2, m}, 1-\frac{\mu_{2, m}}{\mu_{2, M}} \boldsymbol{\pi}_{2}\right), \\
\tilde{\boldsymbol{\alpha}}_{2, m}=\left(\mu_{2, m}\right)^{-1} \boldsymbol{\pi}_{2}^{(m)} \circ\left(\boldsymbol{s}_{2} \oplus \boldsymbol{s}_{2}\right), \\
\tilde{\boldsymbol{\alpha}}_{2, M}=\left(\mu_{2, M}\right)^{-1}\left(\mathbf{0}, \boldsymbol{\pi}_{2, M} \circ \boldsymbol{s}_{2}\right)
\end{gather*}
$$

- Suppose $f(x)$ is (univariate) ME
- Then $f(\boldsymbol{x})$ is (proportional to) an MME* density
- For $n=2$ we get

$$
\left(\left(\frac{\boldsymbol{\alpha}(-C)^{-1}}{\mu}, \mathbf{0}\right),\left[\begin{array}{cc}
C & -C \\
0 & C
\end{array}\right],\left[\begin{array}{ll}
\boldsymbol{e} & \mathbf{0} \\
\mathbf{0} & \boldsymbol{e}
\end{array}\right]\right)
$$

- Not always the most interesting representation

Joint distribution of age and residual life time in equilibrium renewal process. Closely related to size-biased distributions

- The result can be generalized to apply for the nth order moment distributions, but we have no probabilistic interpretation at this point.

Bi and multivariate exponentials and

garnimas

A multitude of various definitions

- Most of these have rational joint Laplace transform for integer shape parameter
- Many of these are in MPH and most are in MPH*

The MME* provides a framework for categorization

Moran and Downton's Bivariate Exponential

The MME* representation of this distribution is

$$
\gamma(\boldsymbol{a})=\left(\alpha_{1}, \alpha_{2}\right)
$$

$$
T=\left[\begin{array}{cc}
-\lambda_{1} & \lambda_{1}\left(1-p_{1}\right) \\
\lambda_{2}\left(1-p_{2}\right) & -\lambda_{2}
\end{array}\right] \quad R=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] .
$$

$$
f\left(x_{1}, x_{2}\right)=\lambda_{1} \lambda_{2} p_{2} e^{-\left(\lambda_{1} x_{1}+\lambda_{2} x_{2}\right)} \sum_{i=1}^{\infty} \frac{\left(\lambda_{1}\left(1-p_{1}\right) x_{1} \lambda_{2}\left(1-p_{2}\right) x_{2}\right)^{i-1}}{((i-1)!)^{2}} .
$$

with (slightly more general) Laplace transform

$$
\frac{\left(\alpha_{1} s_{2} \lambda_{1} p_{1} \lambda_{2}+\alpha_{2} s_{1} \lambda_{1} \lambda_{2} p_{2}\right)+\lambda_{1} \lambda_{2}\left(1-\left(1-p_{1}\right)\left(1-p_{2}\right)\right)}{s_{1} s_{2}+\left(s_{2} \lambda_{1}+s_{1} \lambda_{2}\right)+\lambda_{1} \lambda_{2}\left(1-\left(1-p_{1}\right)\left(1-p_{2}\right)\right)}
$$

Cheriyan-Ramabhadran's Bivariate Gamma

With MME* representation $\gamma=(1,0, \ldots, 0)$, the matrix T is an $\left(m_{0}+m_{1}+m_{2}\right) \times\left(m_{0}+m_{1}+m_{2}\right)$ matrix of Erlang structure

$$
T=\left[\begin{array}{cccc}
-\lambda & \lambda & \ldots & 0 \\
0 & -\lambda & \ldots & 0 \\
\vdots & \vdots & \vdots: & \vdots \\
0 & 0 & \ldots & -\lambda
\end{array}\right], \quad R=\left[\begin{array}{cc}
\boldsymbol{e}_{m_{0}} & \boldsymbol{e}_{m_{0}} \\
\boldsymbol{e}_{m_{1}} & \mathbf{0} \\
\mathbf{0} & \boldsymbol{e}_{m_{2}}
\end{array}\right]
$$

The density is given by $f\left(x_{1}, x_{2}\right)=$

$$
\frac{e^{-x_{1}-x_{2}}}{\left(m_{0}-1\right)!\left(m_{1}-1\right)!\left(m_{2}-1\right)!} \int_{0}^{\min \left(x_{1}, x_{2}\right)} x^{m_{0}-1}\left(x_{1}-x\right)^{m_{1}-1}\left(x_{2}-x\right)^{m_{2}-1} e^{x} \mathrm{~d} x
$$

Dussauchoy-Berland's bivariate gamma

 $\gamma=(1,0,0,0)$ and$T=\left[\begin{array}{cccc}-\lambda_{1} & \lambda_{1} & 0 & 0 \\ 0 & -\lambda_{1} & \lambda_{1}\left(1-\frac{\lambda_{2}}{\rho \lambda_{1}}\right)^{2} & 2 \rho \lambda_{2}\left(1-\frac{\lambda_{2}}{\rho \lambda_{1}}\right) \\ 0 & 0 & -\lambda_{2} & \lambda_{2} \\ 0 & 0 & 0 & -\lambda_{2}\end{array}\right], \quad R=\left[\begin{array}{cc}\rho & 1 \\ \rho & 1 \\ 1 & 0 \\ 1 & 0\end{array}\right]$.
$X_{1}-\rho X_{2}$ and X_{2} are independent with LST

$$
\left(\frac{\lambda_{1}+\rho s_{1}}{\lambda_{1}+\rho s_{1}+s_{2}}\right)^{l_{1}}\left(\frac{\lambda_{2}}{\lambda_{2}+s_{1}}\right)^{l_{2}}
$$

in MME^{*} for positive integer values of l_{1} and l_{2}. An MME* representation, (even in MPH) for $l_{1}=l_{2}=2$ and $\rho \lambda_{1} \geq \lambda_{2}$ is

Bivariate exponentials with arbitray

 correlarions- Can be seen as a generalization of

Farlie-Gumbel-Morgenstern distributions.

- Mixtures of combinations of order statistics

A distribution can be seen as the average the distribution of its order statistics

- Eksplicit form of generator

$$
\left[\begin{array}{cccc}
-2 \lambda & \lambda & p_{11} \lambda & p_{12} \lambda \\
0 & -\lambda & p_{21} \lambda & p_{22} \lambda \\
0 & 0 & -\mu & \mu \\
0 & 0 & 0 & -2 \mu
\end{array}\right]
$$

Joint density of the bivariate exponential
Theorem 4 The joint density for $\mathbf{Y}^{(n)}=\left(Y_{1}^{(n)}, Y_{2}^{(n)}\right)$ is given by

$$
f\left(y_{1}, y_{2}\right)=\sum_{\ell=1}^{n} \sum_{k=1}^{n} c_{\ell k} \ell \lambda e^{-\ell \lambda y_{1}} k \mu e^{-k \mu y_{2}}
$$

with

$$
\begin{aligned}
c_{\ell k}= & \frac{(-1)^{\ell+k-(n+1)}}{n}\binom{n}{\ell}\binom{n}{k} \\
& \cdot \sum_{i=n+1-\ell}^{n} \sum_{j=1}^{k} p_{i j}(-1)^{-i-j}\binom{\ell-1}{n-i}\binom{k-1}{k-j}
\end{aligned}
$$

Krishnamoorthy and Parthasarathy's multivariate exponential
$H(s)=|I+P \Delta(s)|^{-1}$. For $n=3$ we have with
$P=\left[\begin{array}{ccc}1 & \rho & \tau \\ \rho & 1 & \eta \\ \tau & \eta & 1\end{array}\right] \quad, \quad H(s)=\frac{1}{s^{3} g_{0}^{*}+s^{2} g_{1}^{*}+s g_{2}^{*}+1}$,
where

$$
\begin{aligned}
g_{0}^{*} & =a_{1} a_{2} a_{3}\left(1+2 \rho \tau \eta-\rho^{2}-\tau^{2}-\eta^{2}\right) \\
g_{1}^{*} & =\left(a_{1} a_{2}\left(1-\rho^{2}\right)+a_{1} a_{3}\left(1-\tau^{2}\right)+a_{2} a_{3}\left(1-\eta^{2}\right)\right) \\
g_{2}^{*} & =\left(a_{1}+a_{2}+a_{3}\right)
\end{aligned}
$$

- Only in $\mathrm{MME}^{*}(3)$ when $\tau=\rho \eta, \rho=\tau \eta$, or $\eta=\rho \tau$

Rational moment generating functions

(distributions on the reals)
The characterization result generalizes directly giving rise to the class of BMVME distributions

Ahn and Ramaswami - bilateral phase-type distributions an MPH* construction with general rewards but just one variable.
\diamond Explicit representation of the two sided distribution Asmussen - like Ahn and Ramaswami but with a state dependent diffusion term.
\diamond Explicit representation of the two sided distribution - i.e. also the diffusion can be written on the MPH* form.

Generalization of Asmussens result on a

univariate diffusion
Let $\boldsymbol{Y}=\left(Y_{1}, \ldots, Y_{\ell}\right) \sim \operatorname{MME}^{*}(\boldsymbol{\alpha}, T, R)$, where T is of dimension m. Now consider a multidimensional vector $\boldsymbol{X}=\left(X_{1}, \ldots, X_{k}\right)$ such that

$$
X_{j}=\sum_{i=1}^{\ell} B_{i j}, \quad j=1, \ldots, k
$$

where $\mathbf{B}_{i}=\left(B_{i 1}, \ldots, B_{i k}\right) \sim \mathbf{N}_{k}\left(Y_{i} \mathbf{r}(i), Y_{i} \Sigma(i)\right)$, with $\mathbf{r}(i)=\left(r_{1}(i), \ldots, r_{k}(i)\right)$ and $\Sigma(i)$ is a covariance matrix, $i=1, \ldots, \ell$. Then \boldsymbol{X} has a rational (multi-dimensional) moment-generating function, i.e. \boldsymbol{X} belongs to the class of Bilateral Multivariate Matrix-Exponential distributions (BMVME).

Two independent Brownian motions
observed at the same (exponential) time

- With both diffusion parameters being $\sqrt{2}$ and the exponential parameter being one, the moment generating function is

$$
\frac{1}{1-s_{1}^{2}-s_{2}^{2}}
$$

- Which cannot be expressed in the MPH* form.

Further work

- Estimation
- Numerical evaluation
- Statistical estimation, fitting, tests?
- When is an MME* representation a distribution?
- Understanding the general case better
- Extension of $f(\boldsymbol{x})$ results.
- Further analytical results - extensions?
- Applications in Computer Science, Transportation Science, possibly Hydrology, and other fields

