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OutlineOutline

• Moment recursions

• Kulkarni’s multivariate phase–type distributions (MPH∗)

• Multivariate definition and main theorem (MVME)

• Some constructions

• Classification of multivariate gamma distributions

• Distributions on the reals: uni- and multivariate

• The killing of a conjecture

• Further work



Laplace transform from momentsLaplace transform from moments

• An m–dimensional ME distribution is uniquely determined

from its first 2m− 1 moments.

• Solve for fi and gi in the first 2m− 1 moment equations.

• gi obtained from certain Hankel matrices.

µi =
Mi

i!
µi =

i
∑

j=0

(−1)jfm−jψi−j i = 0, 1, ... ,

where ψ0 =
1
gm

and ψi =
∑i−1

j=0(−1)j
ψi−1−jgm−1−j

gm

• Moments of higher order are given recursively by

µm+j =
m−1
∑

i=0

gi(−1)m+iµi+j for j ≥ 0.



Kulkarni’s multivariate phase–type

distributions – MPH∗
Kulkarni’s multivariate phase–type

distributions – MPH∗

• n different reward rates for each state of T given by R

Xj =

m
∑

i=1

Nk
∑

k=1

RijZik .

⋄ Here Nk is the number of visits to state k before

absorption and Zik are the k’th sojourn in state j

• Partial differential equations for joint survival function.

• Joint Laplace-Stieltjes transform

H(s) = γ
(

(−T )−1∆(Rs) + I
)

−1
e.

• Includes previous work by Assaf defining the class MPH.



Joint transform and momentsJoint transform and moments

Theorem 1 The cross–moments IE (
∏n

i=1 Y
ri
i ), where Y

follows an MME∗ distribution with representation (γ, T, R),

and where ri ∈ N, are given by

γ

r!
∑

ℓ=1

r
∏

i=1

(−T )−1∆(rσℓ(i))e.

Here r =
∑n

i=1 ri, rj is the jth column of R and σℓ is one of

the r! possible ordered permutations of the derivatives, with

σℓ(i) being the value among 1 . . . n at the i’th position of

that permutation.



General definition of multivariate matrix

exponential distributions

General definition of multivariate matrix

exponential distributions
Definition 1 A non–negative random vector

X = (X1, ..., Xn) of dimension n is said to have multivariate

matrix–exponential distribution (MVME) if the joint Laplace

transform L(s) = E [exp(− <X, s >)] is a

multi–dimensional rational function, that is, a fraction

between two multi–dimensional polynomials. Here < ·, · >
denotes the inner product in R

n with s = (s1, . . . , sn)
′.

Our main theorem characterizes the class of MVME.

Theorem 2 A vector X = (X1, . . . , Xn) follows a

multivariate matrix–exponential distribution if and only if

<X,a >=
∑n

i=1 aiXi has a univariate matrix–exponential

distribution for all non–negative vectors a 6= 0.



Outline of proofOutline of proof

• Only if part: Suppose E

(

e−<X ,s>
)

is rational in s. Then

consider E
(

e−s<X ,a>
)

= E

(

e−<X ,sa>
)

that is

obviously rational in s.

• If part: Suppose <X,a > has ME representation

(β(a), D(a),d(a)) for all a > 0.

⋄ The dimension of D is bounded by some integer m.

⋄ Using the moment relations we express the coefficients

fi(a) and gi(a) of the Laplace transform in terms of

certain determinants of the moments.

⋄ The jth moment is a sum of jth order monomials in the

components of a.

⋄ We conclude that fi and gi are rational in a.



The transform is of a particular simple formThe transform is of a particular simple form

Lemma 1 If 〈X,a〉 is MVME distributed then we may

write its Laplace transform for 〈X,a〉 as

f̃1(a)s
m−1 + f̃2(a)s

m−2 + ...+ f̃m−1(a)s+ 1

g̃0(a)sm + g̃1(a)sm−1 + ....+ g̃m−1(a)s+ 1
,

where the terms f̃i(a) and g̃i(a) are sums of n–dimensional

monomials in a of degree m− i and m is the common order

except a set of measure zero.



Farlie Gumbel Morgenstern constructionFarlie Gumbel Morgenstern construction

Consider

F (x1, x2) = F1(x1)F2(x2) (1 + ρ (1− F1(x1)) (1− F2(x2))) ,

where Fi are univariate cumulative distribution functions. This

expression can be rewritten as

F (x1, x2) =
1 + ρ

4
F1,M(x1)F2,M(x2) +

1− ρ

4
F1,M(x1)F2,m(x2)

+
1− ρ

4
F1,m(x1)F2,M(x2) +

1 + ρ

4
F1,m(x1)F2,m(x2) ,

where Fi,m(x) = 1− (1− Fi(x))
2 and Fi,M(x) = F 2

i (x) i.e.

the distribution of minimum and maximum respectively of two

Fi distributed independent random variables.



Theorem 3 The bivariate Farlie-Gumbel-Morgenstern

distribution formed from two matrix-exponential distributions

is in MME∗. An MME∗ representation is

(γ1 ⊗ γ1,0,0,0)














S1 ⊕ S1
1
2
(s1 ⊕ s1)

1−ρ
4

(s1 ⊕ s1) eγ̃2,M
1+ρ
4

(s1 ⊕ s1) eγ̃2,m

0 S1
1+ρ
2
s1γ̃2,M

1−ρ
2
s1γ̃2,m

0 0 ∆−1
2,MS

′

2∆2,M ∆−1
2,M(s2 ⊕ s′2)∆2,m

0 0 0 S̃2,m















with

π2 = µ−1
2 α2 (−S2)

−1
, α̃2 = µ−1

2 π2 ◦ s2,

π2,m = µ−1
2,m (α2 ⊗α2) (−S2 ⊕ S2)

−1
, π2,M =

(

µ2,m

µ2,M
π2,m, 1−

µ2,m

µ2,M
π2

)

,

α̃2,m = (µ2,m)
−1

π
(m)
2 ◦(s2⊕s2), α̃2,M = (µ2,M)−1 (0,π2,M ◦ s2)



1
µ
f (x)1

µ
f (x)

• Suppose f(x) is (univariate) ME

• Then f(x) is (proportional to) an MME∗ density

• For n = 2 we get




(

α(−C)−1

µ
,0

)

,





C −C
0 C



 ,





e 0

0 e









• Not always the most interesting representation

• Joint distribution of age and residual life time in equilibrium

renewal process. Closely related to size–biased distributions

• The result can be generalized to apply for the nth order

moment distributions, but we have no probabilistic

interpretation at this point.



Bi and multivariate exponentials and

gammas

Bi and multivariate exponentials and

gammas
• A multitude of various definitions

• Most of these have rational joint Laplace transform for

integer shape parameter

• Many of these are in MPH and most are in MPH∗

• The MME∗ provides a framework for categorization



Moran and Downton’s Bivariate ExponentialMoran and Downton’s Bivariate Exponential

The MME∗ representation of this distribution is

γ(a) = (α1, α2)

T =





−λ1 λ1(1− p1)

λ2(1− p2) −λ2



 R =





1 0

0 1



 .

f(x1, x2) = λ1λ2p2e
−(λ1x1+λ2x2)

∞
∑

i=1

(λ1(1− p1)x1λ2(1− p2)x2)
i−1

((i− 1)!)2
.

with (slightly more general) Laplace transform

(α1s2λ1p1λ2 + α2s1λ1λ2p2) + λ1λ2(1− (1− p1)(1− p2))

s1s2 + (s2λ1 + s1λ2) + λ1λ2(1− (1− p1)(1− p2))
.



Cheriyan-Ramabhadran’s Bivariate GammaCheriyan-Ramabhadran’s Bivariate Gamma

With MME∗ representation γ = (1, 0, . . . , 0), the matrix T is

an (m0 +m1 +m2)× (m0 +m1 +m2) matrix of Erlang

structure

T =















−λ λ . . . 0

0 −λ . . . 0
...

...
...
...
...

...

0 0 . . . −λ















, R =









em0
em0

em1
0

0 em2









.

The density is given by f(x1, x2) =

e−x1−x2

(m0 − 1)!(m1 − 1)!(m2 − 1)!

∫ min (x1,x2)

0

xm0−1(x1−x)m1−1(x2−x)m2−1exdx



Dussauchoy-Berland’s bivariate gammaDussauchoy-Berland’s bivariate gamma

γ = (1, 0, 0, 0) and

T =

















−λ1 λ1 0 0

0 −λ1 λ1

(

1− λ2
ρλ1

)2

2ρλ2

(

1− λ2
ρλ1

)

0 0 −λ2 λ2

0 0 0 −λ2

















, R =















ρ 1

ρ 1

1 0

1 0















.

• X1 − ρX2 and X2 are independent with LST
(

λ1 + ρs1

λ1 + ρs1 + s2

)l1
(

λ2

λ2 + s1

)l2

,

in MME∗ for positive integer values of l1 and l2. An MME∗

representation, (even in MPH) for l1 = l2 = 2 and

ρλ1 ≥ λ2 is



Bivariate exponentials with arbitray

correlations

Bivariate exponentials with arbitray

correlations
• Can be seen as a generalization of

Farlie–Gumbel–Morgenstern distributions.

• Mixtures of combinations of order statistics

• A distribution can be seen as the average the distribution

of its order statistics

• Eksplicit form of generator














−2λ λ p11λ p12λ

0 −λ p21λ p22λ

0 0 −µ µ

0 0 0 −2µ

















Joint density of the bivariate exponentialJoint density of the bivariate exponential

Theorem 4 The joint density for Y(n) =
(

Y
(n)
1 , Y

(n)
2

)

is

given by

f(y1, y2) =
n

∑

ℓ=1

n
∑

k=1

cℓkℓλe
−ℓλy1kµe−kµy2 ,

with

cℓk =
(−1)ℓ+k−(n+1)

n





n

ℓ









n

k





·
n

∑

i=n+1−ℓ

k
∑

j=1

pij(−1)−i−j





ℓ− 1

n− i









k − 1

k − j



 .



Krishnamoorthy and Parthasarathy’s

multivariate exponential

Krishnamoorthy and Parthasarathy’s

multivariate exponential

• H(s) = |I + P∆(s)|−1
. For n = 3 we have with

P =









1 ρ τ

ρ 1 η

τ η 1









, H(s) =
1

s3g∗0 + s2g∗1 + sg∗2 + 1
,

where

g∗0 = a1a2a3(1 + 2ρτη − ρ2 − τ 2 − η2)

g∗1 = (a1a2(1− ρ2) + a1a3(1− τ 2) + a2a3(1− η2))

g∗2 = (a1 + a2 + a3)

• Only in MME∗(3) when τ = ρη, ρ = τη, or η = ρτ



Rational moment generating functions

(distributions on the reals)

Rational moment generating functions

(distributions on the reals)
• The characterization result generalizes directly giving rise

to the class of BMVME distributions

• Ahn and Ramaswami - bilateral phase-type distributions -

an MPH∗ construction with general rewards but just one

variable.

⋄ Explicit representation of the two sided distribution

• Asmussen - like Ahn and Ramaswami but with a state

dependent diffusion term.

⋄ Explicit representation of the two sided distribution - i.e.

also the diffusion can be written on the MPH∗ form.



Generalization of Asmussens result on a

univariate diffusion

Generalization of Asmussens result on a

univariate diffusion
Let Y = (Y1, . . . , Yℓ) ∼ MME∗(α, T, R), where T is of

dimension m. Now consider a multidimensional vector

X = (X1, . . . , Xk) such that

Xj =
ℓ

∑

i=1

Bij, j = 1, . . . , k

where Bi = (Bi1, . . . , Bik) ∼ Nk(Yir(i), YiΣ(i)), with

r(i) = (r1(i), . . . , rk(i)) and Σ(i) is a covariance matrix,

i = 1, . . . , ℓ. Then X has a rational (multi-dimensional)

moment-generating function, i.e. X belongs to the class of

Bilateral Multivariate Matrix-Exponential distributions

(BMVME).



Two independent Brownian motions

observed at the same (exponential) time

Two independent Brownian motions

observed at the same (exponential) time

• With both diffusion parameters being
√
2 and the

exponential parameter being one, the moment generating

function is
1

1− s21 − s22

• Which cannot be expressed in the MPH∗ form.



Further workFurther work
• Estimation

• Numerical evaluation

• Statistical estimation, fitting, tests?

• When is an MME∗ representation a distribution?

• Understanding the general case better

• Extension of f(x) results.

• Further analytical results - extensions?

• Applications in Computer Science, Transportation Science,

possibly Hydrology, and other fields


