Conference in Honour of Søren Asmussen

On growth collapse processes with stationary structure and their shot-noise counterparts

Offer Kella
The Hebrew University of Jerusalem
joint work with
Onno Boxma
Technical University Eindhoven and

David Perry
Haifa University

Edinburgh

[^0]
Danish Garden

Conference in Honour of Søren Asmussen

Conference in Honour of Søren Asmussen

- W - growth collapse process

Conference in Honour of Søren Asmussen

- W - growth collapse process

Additive Increase Multiplicative Decrease (AIMD)

Conference in Honour of Søren Asmussen

- W - growth collapse process

Additive Increase Multiplicative Decrease (AIMD)

- $X_{n}=\frac{W\left(T_{n}\right)}{W\left(T_{n}-\right)} \in[0,1]$ - collapse ratios

Conference in Honour of Søren Asmussen

- W - growth collapse process

Additive Increase Multiplicative Decrease (AIMD)

- $X_{n}=\frac{W\left(T_{n}\right)}{W\left(T_{n}-\right)} \in[0,1]$ - collapse ratios
- With $W_{n}=W\left(T_{n}\right)$ and $Y_{n}=r T_{n}$:

$$
W_{n}=\left(W_{n-1}+Y_{n}\right) X_{n}
$$

Conference in Honour of Søren Asmussen

- W - growth collapse process

Additive Increase Multiplicative Decrease (AIMD)

- $X_{n}=\frac{W\left(T_{n}\right)}{W\left(T_{n}-\right)} \in[0,1]$ - collapse ratios
- With $W_{n}=W\left(T_{n}\right)$ and $Y_{n}=r T_{n}$:

$$
W_{n}=\left(W_{n-1}+Y_{n}\right) X_{n}
$$

- With $N(t)=\sup \left\{n \mid T_{n} \leq t\right\}$

$$
W(t)=W_{N(t)}+r\left(t-T_{N(t)}\right)
$$

Conference in Honour of Søren Asmussen

- K - 2009, J. Appl. Probab., 46, 363-371.

Conference in Honour of Søren Asmussen

- K - 2009, J. Appl. Probab., 46, 363-371.
- K and Löpker-2010, Prob. Eng. Inf. Sci., 24, 99-107.

Conference in Honour of Søren Asmussen

- K - 2009, J. Appl. Probab., 46, 363-371.
- K and Löpker - 2010, Prob. Eng. Inf. Sci., 24, 99-107.
- K and Yor-2010, Ann. Appl. Prob., 20, 367-381.

Conference in Honour of Søren Asmussen

Assumptions:

- All variables are independent

Conference in Honour of Søren Asmussen

Assumptions:

- All variables are independent
- $T_{i} \sim G$

Conference in Honour of Søren Asmussen

Assumptions:

- All variables are independent
- $T_{i} \sim G$
- $X_{i}=e^{-P_{i}}$

Conference in Honour of Søren Asmussen

Assumptions:

- All variables are independent
- $T_{i} \sim G$
- $X_{i}=e^{-P_{i}}$
- $P_{i} \sim$ phase type (i.d.)

Conference in Honour of Søren Asmussen

Conference in Honour of Søren Asmussen

- Kaspi, K and Perry. - 1997, QUESTA 24, 37-57.

$$
f_{\mathrm{gc}}(x) \propto x \cdot f_{\mathrm{sn}}(x)
$$

Conference in Honour of Søren Asmussen

- Kaspi, K and Perry. - 1997, QUESTA 24, 37-57.

$$
f_{\mathrm{gc}}(x) \propto x \cdot f_{\mathrm{sn}}(x)
$$

- We prefer to solve the shot noise problem

Conference in Honour of Søren Asmussen

Or, better yet, a more general problem:

- (X, J) - MAP.

Conference in Honour of Søren Asmussen

Or, better yet, a more general problem:

- (X, J) - MAP.
- J-K-state irreducible CTMC.

Conference in Honour of Søren Asmussen

Or, better yet, a more general problem:

- (X, J) - MAP.
- J - K-state irreducible CTMC.
- On intervals where $J(t)=i, X$ behaves like a subordinator with Lévy measure ν_{i} and a rate $c_{i} \geq 0$.

Conference in Honour of Søren Asmussen

Or, better yet, a more general problem:

- (X, J) - MAP.
- J - K-state irreducible CTMC.
- On intervals where $J(t)=i, X$ behaves like a subordinator with Lévy measure ν_{i} and a rate $c_{i} \geq 0$.
- At state change epochs of J from i to $j \neq i, \Delta X(t) \sim G_{i j}$.

Conference in Honour of Søren Asmussen

Or, better yet, a more general problem:

- (X, J) - MAP.
- J - K-state irreducible CTMC.
- On intervals where $J(t)=i, X$ behaves like a subordinator with Lévy measure ν_{i} and a rate $c_{i} \geq 0$.
- At state change epochs of J from i to $j \neq i, \Delta X(t) \sim G_{i j}$.
- $W(t)=W(0)+X(t)-\int_{0}^{t} r(J(s)) \cdot W(s) d s(r(i) \geq 0)$

Conference in Honour of Søren Asmussen

- Asmussen and K-1996: Rate modulation in dams and ruin problems. J. Appl. Probab. 33 523-535.

Conference in Honour of Søren Asmussen

- Asmussen and K-1996: Rate modulation in dams and ruin problems. J. Appl. Probab. 33 523-535.
- K and W. Whitt. (1999). Linear stochastic fluid networks. J. Appl. Probab. 36, 244-260.

Conference in Honour of Søren Asmussen

- Asmussen and K-1996: Rate modulation in dams and ruin problems. J. Appl. Probab. 33 523-535.
- K and W. Whitt. (1999). Linear stochastic fluid networks. J. Appl. Probab. 36, 244-260.
- K and Stadje - 2002: Markov modulated linear fluid networks with Markov additive input. J. Appl. Probab. 39 413-420.

Conference in Honour of Søren Asmussen

- Asmussen and K-1996: Rate modulation in dams and ruin problems. J. Appl. Probab. 33 523-535.
- K and W. Whitt. (1999). Linear stochastic fluid networks. J. Appl. Probab. 36, 244-260.
- K and Stadje - 2002: Markov modulated linear fluid networks with Markov additive input. J. Appl. Probab. 39 413-420.
- Asmussen and K - 2000: A multi-dimensional martingale for Markov additive processes and its applications. Adv. Appl. Probab. 32 376-393.

Conference in Honour of Søren Asmussen

Assumptions:

$$
\text { 1. } c_{i}+\int_{(0, \infty)} x \nu_{i}(d x)<\infty
$$

Conference in Honour of Søren Asmussen

Assumptions:

1. $c_{i}+\int_{(0, \infty)} x \nu_{i}(d x)<\infty$
2. $\int_{[0, \infty)} x G_{i j}(d x)<\infty$

Conference in Honour of Søren Asmussen

Assumptions:

1. $c_{i}+\int_{(0, \infty)} x \nu_{i}(d x)<\infty$
2. $\int_{[0, \infty)} x G_{i j}(d x)<\infty$
3. J is irreducible

Conference in Honour of Søren Asmussen

Assumptions:

1. $c_{i}+\int_{(0, \infty)} x \nu_{i}(d x)<\infty$
2. $\int_{[0, \infty)} x G_{i j}(d x)<\infty$
3. J is irreducible
4. $r(i)>0$ for some i.

Conference in Honour of Søren Asmussen

Theorem
Under conditions 1-4 a unique stationary distribution for the joint (Markov) process (W, J) exists; and it is also the limiting distribution, which is independent of initial conditions.

Conference in Honour of Søren Asmussen

From Asmussen\&K(2000), the following is a zero mean martingale:

$$
\begin{aligned}
\int_{0}^{t} e^{-\alpha W(s)} \mathbf{1}_{J(s)} \mathrm{d} s \cdot F(\alpha) & +e^{-\alpha W(0)} \mathbf{1}_{J(0)}-e^{-\alpha W(t)} \mathbf{1}_{J(t)} \\
& -\alpha \int_{0}^{t} e^{-\alpha W(s)} \mathbf{1}_{J(s)} r(J(s)) W(s) \mathrm{d} s
\end{aligned}
$$

Conference in Honour of Søren Asmussen

From Asmussen\&K(2000), the following is a zero mean martingale:

$$
\begin{aligned}
\int_{0}^{t} e^{-\alpha W(s)} \mathbf{1}_{J(s)} \mathrm{d} s \cdot F(\alpha) & +e^{-\alpha W(0)} \mathbf{1}_{J(0)}-e^{-\alpha W(t)} \mathbf{1}_{J(t)} \\
& -\alpha \int_{0}^{t} e^{-\alpha W(s)} \mathbf{1}_{J(s)} r(J(s)) W(s) \mathrm{d} s
\end{aligned}
$$

where

- $F_{i j}(\alpha)=Q_{i j} \tilde{G}_{i j}(\alpha)-\eta_{i}(\alpha) \delta_{i j}$

Conference in Honour of Søren Asmussen

From Asmussen\&K(2000), the following is a zero mean martingale:

$$
\int_{0}^{t} e^{-\alpha W(s)} \mathbf{1}_{J(s)} \mathrm{d} s \cdot F(\alpha)+e^{-\alpha W(0)} \mathbf{1}_{J(0)}-e^{-\alpha W(t)} \mathbf{1}_{J(t)}
$$

$$
-\alpha \int_{0}^{t} e^{-\alpha W(s)} \mathbf{1}_{J(s)} r(J(s)) W(s) \mathrm{d} s
$$

where

- $F_{i j}(\alpha)=Q_{i j} \tilde{G}_{i j}(\alpha)-\eta_{i}(\alpha) \delta_{i j}$
- Q-rate transition matrix of J

Conference in Honour of Søren Asmussen

From Asmussen\&K(2000), the following is a zero mean martingale:

$$
\int_{0}^{t} e^{-\alpha W(s)} \mathbf{1}_{J(s)} \mathrm{d} s \cdot F(\alpha)+e^{-\alpha W(0)} \mathbf{1}_{J(0)}-e^{-\alpha W(t)} \mathbf{1}_{J(t)}
$$

$$
-\alpha \int_{0}^{t} e^{-\alpha W(s)} \mathbf{1}_{J(s)} r(J(s)) W(s) \mathrm{d} s
$$

where

- $F_{i j}(\alpha)=Q_{i j} \tilde{G}_{i j}(\alpha)-\eta_{i}(\alpha) \delta_{i j}$
- Q-rate transition matrix of J
- $\tilde{G}_{i j}(\alpha)=\int_{(0, \infty)} e^{-\alpha x} G_{i j}(d x)$

Conference in Honour of Søren Asmussen

From Asmussen\&K(2000), the following is a zero mean martingale:

$$
\int_{0}^{t} e^{-\alpha W(s)} \mathbf{1}_{J(s)} \mathrm{d} s \cdot F(\alpha)+e^{-\alpha W(0)} \mathbf{1}_{J(0)}-e^{-\alpha W(t)} \mathbf{1}_{J(t)}
$$

$$
-\alpha \int_{0}^{t} e^{-\alpha W(s)} \mathbf{1}_{J(s)} r(J(s)) W(s) \mathrm{d} s
$$

where

- $F_{i j}(\alpha)=Q_{i j} \tilde{G}_{i j}(\alpha)-\eta_{i}(\alpha) \delta_{i j}$
- Q-rate transition matrix of J
- $\tilde{G}_{i j}(\alpha)=\int_{(0, \infty)} e^{-\alpha x} G_{i j}(d x)$
- $\eta_{i}(\alpha)=\alpha c_{i}+\int_{(0, \infty)}\left(1-e^{-\alpha x}\right) \nu_{i}(d x)$

Conference in Honour of Søren Asmussen

From Asmussen\&K(2000), the following is a zero mean martingale:

$$
\begin{aligned}
\int_{0}^{t} e^{-\alpha W(s)} \mathbf{1}_{J(s)} \mathrm{d} s \cdot F(\alpha) & +e^{-\alpha W(0)} \mathbf{1}_{J(0)}-e^{-\alpha W(t)} \mathbf{1}_{J(t)} \\
& -\alpha \int_{0}^{t} e^{-\alpha W(s)} \mathbf{1}_{J(s)} r(J(s)) W(s) \mathrm{d} s
\end{aligned}
$$

where

- $F_{i j}(\alpha)=Q_{i j} \tilde{G}_{i j}(\alpha)-\eta_{i}(\alpha) \delta_{i j}$
- Q-rate transition matrix of J
- $\tilde{G}_{i j}(\alpha)=\int_{(0, \infty)} e^{-\alpha x} G_{i j}(d x)$
- $\eta_{i}(\alpha)=\alpha c_{i}+\int_{(0, \infty)}\left(1-e^{-\alpha x}\right) \nu_{i}(d x)$
- $\mathbf{1}_{i}=(0, \ldots, \underset{i}{1}, \ldots, 0)$

Conference in Honour of Søren Asmussen

Thus, if $\left(W^{*}, J^{*}\right)$ has the stationary distribution:

$$
E e^{-\alpha W^{*}} \mathbf{1}_{J^{*}} F(\alpha)=\alpha \frac{\mathrm{d}}{\mathrm{~d} \alpha} E e^{-\alpha W^{*}} \mathbf{1}_{J^{*}} r\left(J^{*}\right)
$$

Conference in Honour of Søren Asmussen

Thus, if $\left(W^{*}, J^{*}\right)$ has the stationary distribution:

$$
E e^{-\alpha W^{*}} \mathbf{1}_{J *} F(\alpha)=\alpha \frac{\mathrm{d}}{\mathrm{~d} \alpha} E e^{-\alpha W^{*}} \mathbf{1}_{J *} r\left(J^{*}\right)
$$

so, with

- $w_{i}(\alpha)=E e^{-\alpha W^{*}} 1_{\left\{J^{*}=i\right\}}$

Conference in Honour of Søren Asmussen

Thus, if $\left(W^{*}, J^{*}\right)$ has the stationary distribution:

$$
E e^{-\alpha W^{*}} \mathbf{1}_{J *} F(\alpha)=\alpha \frac{\mathrm{d}}{\mathrm{~d} \alpha} E e^{-\alpha W^{*}} \mathbf{1}_{J^{*}} r\left(J^{*}\right)
$$

so, with

- $w_{i}(\alpha)=E e^{-\alpha W^{*}} 1_{\left\{J^{*}=i\right\}}$
- $w(\alpha)=\left(w_{i}(\alpha)\right)$

Conference in Honour of Søren Asmussen

Thus, if $\left(W^{*}, J^{*}\right)$ has the stationary distribution:

$$
E e^{-\alpha W^{*}} \mathbf{1}_{J *} F(\alpha)=\alpha \frac{\mathrm{d}}{\mathrm{~d} \alpha} E e^{-\alpha W^{*}} \mathbf{1}_{J *} r\left(J^{*}\right)
$$

so, with

- $w_{i}(\alpha)=E e^{-\alpha W^{*}} 1_{\left\{J^{*}=i\right\}}$
- $w(\alpha)=\left(w_{i}(\alpha)\right)$
- $D_{r}=\operatorname{diag}((r(1), \ldots, r(K))$,

Conference in Honour of Søren Asmussen

Thus, if $\left(W^{*}, J^{*}\right)$ has the stationary distribution:

$$
E e^{-\alpha W^{*}} \mathbf{1}_{J *} F(\alpha)=\alpha \frac{\mathrm{d}}{\mathrm{~d} \alpha} E e^{-\alpha W^{*}} \mathbf{1}_{J *} r\left(J^{*}\right)
$$

so, with

- $w_{i}(\alpha)=E e^{-\alpha W^{*}} 1_{\left\{J^{*}=i\right\}}$
- $w(\alpha)=\left(w_{i}(\alpha)\right)$
- $D_{r}=\operatorname{diag}((r(1), \ldots, r(K))$,

$$
w(\alpha)^{T} F(\alpha)=\alpha w^{\prime}(\alpha)^{T} D_{r}
$$

Conference in Honour of Søren Asmussen

- $\pi_{i}=w_{i}(0)$ is stationary for $J\left(\pi^{T} Q=0\right.$ and sums to one)

Conference in Honour of Søren Asmussen

- $\pi_{i}=w_{i}(0)$ is stationary for $J\left(\pi^{T} Q=0\right.$ and sums to one)

$$
\sum_{k=0}^{n}\binom{n}{k} w^{(k)}(0)^{T} F^{(n-k)}(0)=n w^{(n)}(0)^{T} D_{r}
$$

Conference in Honour of Søren Asmussen

- $\pi_{i}=w_{i}(0)$ is stationary for $J\left(\pi^{T} Q=0\right.$ and sums to one)
- $\sum_{k=0}^{n}\binom{n}{k} w^{(k)}(0)^{T} F^{(n-k)}(0)=n w^{(n)}(0)^{T} D_{r}$
- $F^{(0)}(0)=F(0)=Q$:

Conference in Honour of Søren Asmussen

- $\pi_{i}=w_{i}(0)$ is stationary for $J\left(\pi^{T} Q=0\right.$ and sums to one)
- $\sum_{k=0}^{n}\binom{n}{k} w^{(k)}(0)^{T} F^{(n-k)}(0)=n w^{(n)}(0)^{T} D_{r}$
- $F^{(0)}(0)=F(0)=Q$:
- $\sum_{k=0}^{n-1}\binom{n}{k} w^{(k)}(0)^{T} F^{(n-k)}(0)=w^{(n)}(0)^{T}\left(n D_{r}-Q\right)$

Conference in Honour of Søren Asmussen

- $\pi_{i}=w_{i}(0)$ is stationary for $J\left(\pi^{T} Q=0\right.$ and sums to one)
- $\sum_{k=0}^{n}\binom{n}{k} w^{(k)}(0)^{T} F^{(n-k)}(0)=n w^{(n)}(0)^{T} D_{r}$
- $F^{(0)}(0)=F(0)=Q$:
- $\sum_{k=0}^{n-1}\binom{n}{k} w^{(k)}(0)^{T} F^{(n-k)}(0)=w^{(n)}(0)^{T}\left(n D_{r}-Q\right)$
- $n D_{r}-Q$ is invertible

Conference in Honour of Søren Asmussen

- $\pi_{i}=w_{i}(0)$ is stationary for $J\left(\pi^{T} Q=0\right.$ and sums to one)
- $\sum_{k=0}^{n}\binom{n}{k} w^{(k)}(0)^{T} F^{(n-k)}(0)=n w^{(n)}(0)^{T} D_{r}$
- $F^{(0)}(0)=F(0)=Q$:
- $\sum_{k=0}^{n-1}\binom{n}{k} w^{(k)}(0)^{T} F^{(n-k)}(0)=w^{(n)}(0)^{T}\left(n D_{r}-Q\right)$
- $n D_{r}-Q$ is invertible
- $E\left(W^{*}\right)^{n} 1_{\left\{J^{*}=i\right\}}$ computable for all $n \geq 1$.

Conference in Honour of Søren Asmussen

Conference in Honour of Søren Asmussen

- $r_{1}=\ldots=r_{K}=1, r_{0}=0$

Conference in Honour of Søren Asmussen

- $r_{1}=\ldots=r_{K}=1, r_{0}=0$
- $c_{i}=0, \nu_{i}=0$

Conference in Honour of Søren Asmussen

- $r_{1}=\ldots=r_{K}=1, r_{0}=0$
- $c_{i}=0, \nu_{i}=0$
- $\tilde{G}_{i j}=1$ for $1 \leq i \leq K, 0 \leq j \leq K$

Conference in Honour of Søren Asmussen

- $r_{1}=\ldots=r_{K}=1, r_{0}=0$
- $c_{i}=0, \nu_{i}=0$
- $\tilde{G}_{i j}=1$ for $1 \leq i \leq K, 0 \leq j \leq K$
- $\tilde{G}_{0 j}=\tilde{G}$ for $1 \leq j \leq K$

Conference in Honour of Søren Asmussen

- $r_{1}=\ldots=r_{K}=1, r_{0}=0$
- $c_{i}=0, \nu_{i}=0$
- $\tilde{G}_{i j}=1$ for $1 \leq i \leq K, 0 \leq j \leq K$
- $\tilde{G}_{0 j}=\tilde{G}$ for $1 \leq j \leq K$
- If $P\left[P_{n}>t\right]=\beta^{T} e^{-S t} \mathbf{1}$ then

$$
Q=\left(\begin{array}{cc}
-1 & \beta \\
-S 1 & S
\end{array}\right)
$$

Conference in Honour of Søren Asmussen

$$
\sum_{i=0}^{K} w_{i}(\alpha) q_{i j}=\alpha w_{j}^{\prime}(\alpha) \quad 1 \leq j \leq K
$$

Conference in Honour of Søren Asmussen

$$
\begin{aligned}
& \sum_{i=0}^{K} w_{i}(\alpha) q_{i j}=\alpha w_{j}^{\prime}(\alpha) \quad 1 \leq j \leq K \\
& -q_{0} w_{0}(\alpha)+G(\alpha) \sum_{i=1}^{K} w_{i}(\alpha) q_{i 0}=0
\end{aligned}
$$

$$
\text { where } q_{0}=-q_{00}=1,
$$

Conference in Honour of Søren Asmussen

- $\sum_{i=0}^{K} w_{i}(\alpha) q_{i j}=\alpha w_{j}^{\prime}(\alpha) \quad 1 \leq j \leq K$
- $-q_{0} w_{0}(\alpha)+G(\alpha) \sum_{i=1}^{K} w_{i}(\alpha) q_{i 0}=0$
where $q_{0}=-q_{00}=1$, thus for $1 \leq j \leq K$
- $\sum_{i=1}^{K} w_{i}(\alpha)\left(q_{i j}+\frac{q_{i 0} q_{0 j}}{q_{0}} G(\alpha)\right)=\alpha w_{j}^{\prime}(\alpha)$

Conference in Honour of Søren Asmussen

- $\sum_{i=0}^{K} w_{i}(\alpha) q_{i j}=\alpha w_{j}^{\prime}(\alpha) \quad 1 \leq j \leq K$
- $-q_{0} w_{0}(\alpha)+G(\alpha) \sum_{i=1}^{K} w_{i}(\alpha) q_{i 0}=0$ where $q_{0}=-q_{00}=1$, thus for $1 \leq j \leq K$
- $\sum_{i=1}^{K} w_{i}(\alpha)\left(q_{i j}+\frac{q_{i 0} q_{0 j}}{q_{0}} G(\alpha)\right)=\alpha w_{j}^{\prime}(\alpha)$
- $\left(I+\beta \mathbf{1}^{T} G(\alpha)\right) S^{T} \mathbf{w}(\alpha)=\alpha \mathbf{w}^{\prime}(\alpha)$

Conference in Honour of Søren Asmussen

The stationary LST of the shot noise process is:

$$
w(\alpha)=\frac{\sum_{i=1}^{K} w_{i}(\alpha)}{1-\pi_{0}}=\frac{1^{T} \mathbf{w}(\alpha)}{1-\pi_{0}}
$$

Conference in Honour of Søren Asmussen

The stationary LST of the shot noise process is:

$$
w(\alpha)=\frac{\sum_{i=1}^{K} w_{i}(\alpha)}{1-\pi_{0}}=\frac{1^{T} \mathbf{w}(\alpha)}{1-\pi_{0}}
$$

- $\tilde{q}_{i j}=q_{i j}+\frac{q_{i 0} q_{0 j}}{q_{0}}$

Conference in Honour of Søren Asmussen

The stationary LST of the shot noise process is:

$$
w(\alpha)=\frac{\sum_{i=1}^{K} w_{i}(\alpha)}{1-\pi_{0}}=\frac{1^{T} \mathbf{w}(\alpha)}{1-\pi_{0}}
$$

- $\tilde{q}_{i j}=q_{i j}+\frac{q_{i 0} q_{0 j}}{q_{0}}$
- $\sum_{j=1}^{K} \tilde{q}_{i j}=0$

Conference in Honour of Søren Asmussen

The stationary LST of the shot noise process is:

$$
w(\alpha)=\frac{\sum_{i=1}^{K} w_{i}(\alpha)}{1-\pi_{0}}=\frac{1^{T} \mathbf{w}(\alpha)}{1-\pi_{0}}
$$

- $\tilde{q}_{i j}=q_{i j}+\frac{q_{i 0} q_{0 j}}{q_{0}}$
- $\sum_{j=1}^{K} \tilde{q}_{i j}=0$
- $\sum_{j=1}^{K} \pi_{i} \tilde{q}_{i j}=0$

Conference in Honour of Søren Asmussen

The stationary LST of the shot noise process is:

$$
w(\alpha)=\frac{\sum_{i=1}^{K} w_{i}(\alpha)}{1-\pi_{0}}=\frac{1^{T} \mathbf{w}(\alpha)}{1-\pi_{0}}
$$

- $\tilde{q}_{i j}=q_{i j}+\frac{q_{i 0} q_{0 j}}{q_{0}}$
- $\sum_{j=1}^{K} \tilde{q}_{i j}=0$
- $\sum_{j=1}^{K} \pi_{i} \tilde{q}_{i j}=0$
- $\tilde{\pi}_{i}=\frac{\pi_{i}}{1-\pi_{0}}$ is stationary for \tilde{Q}.

Conference in Honour of Søren Asmussen

One may check that with $\mu_{i}^{n}=E\left[\left(W^{*}\right)^{n} \mid J^{*}=i\right], \mu_{k}=\int x^{k} G(d x)$

$$
\frac{q_{0 j}}{q_{0}} \sum_{k=0}^{n-1}\binom{n-1}{k} \frac{\mu_{k+1}}{k+1} \sum_{i=1}^{K} \pi_{i} \mu_{n-1-k, i}^{w} q_{i 0}=\sum_{i=1}^{K} \pi_{i} \mu_{n, i}^{w}\left(\delta_{i j}-\frac{\tilde{q}_{i j}}{n}\right)
$$

Conference in Honour of Søren Asmussen

One may check that with $\mu_{i}^{n}=E\left[\left(W^{*}\right)^{n} \mid J^{*}=i\right], \mu_{k}=\int x^{k} G(d x)$

$$
\begin{aligned}
& \frac{q_{0 j}}{q_{0}} \sum_{k=0}^{n-1}\binom{n-1}{k} \frac{\mu_{k+1}}{k+1} \sum_{i=1}^{K} \pi_{i} \mu_{n-1-k, i}^{w} q_{i 0}=\sum_{i=1}^{K} \pi_{i} \mu_{n, i}^{w}\left(\delta_{i j}-\frac{\tilde{q}_{i j}}{n}\right) \\
& \quad \tilde{a}=\frac{1}{q_{0}} \sum_{i=1}^{K} \sum_{j=1}^{K} q_{0 i}(I-\tilde{Q})_{i j}^{-1} q_{j 0}
\end{aligned}
$$

Conference in Honour of Søren Asmussen

One may check that with $\mu_{i}^{n}=E\left[\left(W^{*}\right)^{n} \mid J^{*}=i\right], \mu_{k}=\int x^{k} G(d x)$

$$
\begin{aligned}
& \frac{q_{0 j}}{q_{0}} \sum_{k=0}^{n-1}\binom{n-1}{k} \frac{\mu_{k+1}}{k+1} \sum_{i=1}^{K} \pi_{i} \mu_{n-1-k, i}^{w} q_{i 0}=\sum_{i=1}^{K} \pi_{i} \mu_{n, i}^{w}\left(\delta_{i j}-\frac{\tilde{q}_{i j}}{n}\right) \\
& -\tilde{a}=\frac{1}{q_{0}} \sum_{i=1}^{K} \sum_{j=1}^{K} q_{0 i}(I-\tilde{Q})_{i j}^{-1} q_{j 0} \\
& >m_{n}^{w}=\sum_{i=1}^{K} \pi_{i} \mu_{n, i}^{w} q_{i 0}
\end{aligned}
$$

Conference in Honour of Søren Asmussen

- if $\mu_{k}<\infty$ for all k,

Conference in Honour of Søren Asmussen

- if $\mu_{k}<\infty$ for all k,
- $m^{w}(\alpha)=\sum_{n=0}^{\infty} \frac{(-1)^{n} m_{n}^{w}}{n!} \alpha^{n}=\pi_{0} \frac{\frac{1}{1+\tilde{a}}}{1-\frac{\tilde{a}}{1+\tilde{a}} G(\alpha)}=$
$\pi_{0} \sum_{k=0}^{\infty} \frac{1}{1+\tilde{a}}\left(\frac{\tilde{a}}{1+\tilde{a}}\right)^{k} \tilde{G}^{k}(\alpha)$

Conference in Honour of Søren Asmussen

- if $\mu_{k}<\infty$ for all k,
- $m^{w}(\alpha)=\sum_{n=0}^{\infty} \frac{(-1)^{n} m_{n}^{w}}{n!} \alpha^{n}=\pi_{0} \frac{\frac{1}{1+\tilde{a}}}{1-\frac{\tilde{a}}{1+\tilde{a}} G(\alpha)}=$
$\pi_{0} \sum_{k=0}^{\infty} \frac{1}{1+\tilde{a}}\left(\frac{\tilde{a}}{1+\tilde{a}}\right)^{k} \tilde{G}^{k}(\alpha)$
Then if $Y_{k} \sim G$ are i.i.d. and $N \sim \operatorname{Geom}\left((1+\tilde{a})^{-1}\right)$, then
- $E\left(\sum_{k=1}^{N} Y_{k}\right)^{n}=\frac{m_{n}^{w}}{\pi_{0}}$

Conference in Honour of Søren Asmussen

$$
\tilde{a}_{j}=\sum_{i=1}^{K} \frac{q_{0 i}}{q_{0}}(I-\tilde{Q})_{i j}^{-1}
$$

Conference in Honour of Søren Asmussen

$\tilde{a}_{j}=\sum_{i=1}^{K} \frac{q_{0 i}}{q_{0}}(I-\tilde{Q})_{i j}^{-1}$

- $\tilde{a}=\sum_{j=1}^{K} \tilde{a}_{j} q_{j 0}$

Conference in Honour of Søren Asmussen

$$
\begin{aligned}
& \text { } \tilde{a}_{j}=\sum_{i=1}^{K} \frac{q_{0 i}}{q_{0}}(I-\tilde{Q})_{i j}^{-1} \\
& \text { } \tilde{a}=\sum_{j=1}^{K} \tilde{a}_{j} q_{j 0} \\
& \mu_{n, j}^{w}=\frac{\tilde{a}_{j}}{\pi_{j} \tilde{a}} m_{n}^{w}
\end{aligned}
$$

Conference in Honour of Søren Asmussen

- $\tilde{a}_{j}=\sum_{i=1}^{K} \frac{q_{0 i}}{q_{0}}(I-\tilde{Q})_{i j}^{-1}$
- $\tilde{a}=\sum_{j=1}^{K} \tilde{a}_{j} q_{j 0}$
$-\mu_{n, j}^{w}=\frac{\tilde{a}_{j}}{\pi_{j} \tilde{a}} m_{n}^{w}$
The unconditional moment:
$\frac{1}{1-\pi_{0}} \sum_{j=1}^{K} \pi_{j} \mu_{n, j}^{w}=\frac{m_{n}^{w}}{\left(1-\pi_{0}\right)} \sum_{j=1}^{K} \tilde{a}_{j}$

Conference in Honour of Søren Asmussen

When $K=2$, the solution is in terms of a hypergeometric function.

Conference in Honour of Søren Asmussen

From shot-noise to growth collapse:
$-\int_{0}^{\infty} x f_{s n}(x) d x=\frac{\mu}{E P}$

Conference in Honour of Søren Asmussen

From shot-noise to growth collapse:

- $\int_{0}^{\infty} x f_{s n}(x) d x=\frac{\mu}{E P}$
- $\int_{0}^{\infty} e^{-\alpha x} f_{g c}(x) \mathrm{d} x=\frac{E P}{\mu} \int_{0}^{\infty} e^{-\alpha x} x f_{s n}(x) \mathrm{d} x=$

$$
-\frac{E P}{\mu} \frac{\mathrm{~d}}{\mathrm{~d} \alpha} \int_{0}^{\infty} e^{-\alpha x} f_{s n}(x) \mathrm{d} x
$$

Conference in Honour of Søren Asmussen

From shot-noise to growth collapse:

- $\int_{0}^{\infty} x f_{s n}(x) d x=\frac{\mu}{E P}$
- $\int_{0}^{\infty} e^{-\alpha x} f_{g c}(x) \mathrm{d} x=\frac{E P}{\mu} \int_{0}^{\infty} e^{-\alpha x} x f_{s n}(x) \mathrm{d} x=$
$-\frac{E P}{\mu} \frac{\mathrm{~d}}{\mathrm{~d} \alpha} \int_{0}^{\infty} e^{-\alpha x} f_{s n}(x) \mathrm{d} x$
- nth moment for growth collapse is $\frac{E P}{\mu} \cdot(n+1)$ st moment for shot noise.

Conference in Honour of Søren Asmussen

- ...about two months from now $\ddot{\sim}$

HAPPY BIRTHDAY DEAR SØREN

[^0]:

