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Introduction

Dynamic stochastic phenomena frequently involve a significant element of
randomness beyond the most basic types of stochastic innovations.
Additional variations of this kind are referred to as Volatility or
Intermittency.

Such ‘additional’ random fluctuations generally vary, in time and/or in
space, in regard to both intensity and amplitudes.

This talk presents an overview of some recent and ongoing work on

How to model, measure and assess volatility /intermittency
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Introduction

Volatility /intermittency constitutes an important element in many
scientific contexts.

Turbulence [Kolmogorov-Obukhov (1962)]
Finance
Rain

Nanoscale emitters

In this talk the connection to Turbulence will be in focus.
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Ambit stochastics

Ambit Stochastics
Namer for the theory and applications of ambit fields and ambit processes

While we focus here is on the turbulence context, ambit stochastics has
also found roles in finance and biology.
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Ambit stochastics

Ambit fields

Yi (x) = ;H—/ g (g, s t,x)os (&) L(d¢ds)
+ q (& st x)as (&) déds.

Dt(X)

Here A; (x), and D; (x) are ambit sets (i.e. deterministic subsets of
RYxIR), g and q are deterministic (matrix) functions, ¢ > 0 is a
stochastic field, and L (d¢,ds) is a homogeneous Lévy basis (i.e. an
independently scattered random measure whose values are infinitely
divisible and such that L is homogeneous in space-time).

The volatility/intermittency is embodied in o.
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Ambit stochastics

Ambit processes
We shall, in particular, be interested in settings where the data consist in
observation of the values of an ambit field along a curve (x (6),t(0)) in

space-time R? xR.

Thus we consider processes of the form X = { Xy} where
Xo = Yi(o) (x (0)).

We refer to such processes as ambit processes.
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Ambit stochastics

Xg 9,:13'9
. (1(6),2(6))

Aoy (2(0))

Figure: Ambit processes
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Ambit stochastics

Stationary settings

We will mainly consider settings which are stationary in time and
sometimes also in space.

Vil) = k[ s (s 80005 (§) LdEds)

XO)

! /Dr(0)+(x,0) q(t—s,¢ x) as (¢)dids.

where ¢ and a are stochastic fields that are stationary at least in time.
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Modelling turbulence

Modelling turbulence

Let Y: (x) denote the velocity (d-dimensional; d = 1,2, 3) at time t and
at position x € R,

Yi(x) = p+ g(t—s,6x)os () W(dgds)
Ao (x)+(0,t)

i Do(x)+(0,t) q(t—s,¢;x)as (§)dids.

Encompassing stylised features of turbulence; by suitable choice of the
defining elements. [[BNSch04], [BNBISch04], [BNEgSch05], [BNSch07]]

Ole E. Barndorff-Nielsen Thiele Centre (Facu Volatility and Variation August 8, 2011 9 /38



Null-spatial setting

The null-spatial setting

BSS processes — Brownian semistationary processes

Y: = /t g(t—s)osB(ds) + /_too q(t —s)asds

—00
where B is Brownian motion on IR, ¢ and a are stationary cadlag processes
and g and g are deterministic continuous memory functions on IR, with
g (t) =q(t) =0 for t <O0. It is sometimes convenient to indicate the
formula for Y as
Y =gx0ceB+gxaeleb.

LSS processes:
Y=gxocel+qgxaeleb
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Null-spatial setting

We consider the BSS processes to be the natural analogue, in stationarity
related settings, of the class BSM of Brownian semimartingales.

t t
Y;: :/ osd Wi +/ asds.
0 0

@ The BSS processes are not in general semimartingales
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Null-spatial setting

Example Suppose Y = g*ce B with g (t) =t le M and c =1,
and where A > 0 and v > % (where the latter condition is required for the
integral g % B to exist). Then, by a theorem due to Knight, Y is a
semimartingale if and only if eitherv=1o0rv > % O

@ In the context of turbulence the most interesting cases are v € (1, %)

In general, the question of when an ambit process is a semimartingale is
far from resolved. However, an important class of one-dimensional cases is
covered by recent work of Basse-O'Connor and Pedersen [[BasPed09]].
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Modelling of volatility /intermittency fields

Modelling of volatility /intermittency fields

The volatility /intermittency fields we shall consider are the form

oo (x) = V </Ct(x) h(t, s xC)L (dsdcj))

where V' is a smooth positive function and L is a homogeneous Lévy basis
while G; (x) and h(t,s, x, ) are deterministic.

Of special interest are cases where o (x) is stationary in t.

We mention some main settings.
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Modelling of volatility /intermittency fields

Arithmetic case

0t (x) = L(Ce (x)) (1)
for a positive homogeneous Lévy basis L and where

Gt (x) = G (x) + (t,0).

More generally,

with A > 0.

Ole E. Barndorff-Nielsen Thiele Centre (Facu Volatility and Variation August 8, 2011



Modelling of volatility /intermittency fields

Geometric case

o (x) = e%i) (3)

where

Zi (x) = /qx) h(t—s x¢)L(dsdE) . 4)

A specification of particular interest in the context of turbulence is

Zi (x) = W (G (x)) -
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Modelling of volatility /intermittency fields

Specification of ambit regions

. (@)
ez,
/
t -
t'—t+1T)
Tscal
T+ Facat I tscal
T R
Figure:
[[BNEgSch05]]
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Quadratic variation of ambit processes

Inference on volatility /intermittency

Key tools are realised quadratic variation (RQV) and, more generally,
realised multipower variation (RMPV).
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Quadratic variation of ambit processes

Quadratic variation

The realised quadratic variation of a stochastic process X is denoted by
[X;]. Here ¢ is the time lag between observations, and [X;] and its

normalised version [X;] are, for t > 0, given by

[t/9] _

Xile = Y (Ko — Xpens)® and K], = —2 (X1,
k=1 c(4)

where ¢(J) is a positive constant, depending only on &, whose specific
form will be discussed below.

We are interested in the asymptotic behavior of [X;s] and [X;], for § — 0.
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Quadratic variation of ambit processes

Quadratic variation of ambit processes

In general, for ambit processes the realised quadratic variation does not
converge but in many cases of interest a suitably normed version of RQV,
e. [Xs], does have a limit in probability.

The limit behaviour of [X;s] depends generally in a crucial way on an
interplay between the shape of the ambit sets and the kernel function g.

We illustrate that by three examples. In the first two there is no spatial
component.
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Quadratic variation of ambit processes

Example Suppose that for some 0 < /| < oo we have
g(v)= e*A"l(Ov,)(v), so that

t
Y, = / e M=)y 4B,
t—1

This is a non-semimartingale case. Nevertheless,

-1 1
Vel 2 (14 e2) o2 = (14e) (02— 02,

Thus the ordinary RQV converges but the process Y is not volatility

memoryless, that is we do not have [Ys], —2= o2
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Quadratic variation of ambit processes

Example [[BNSch09]] Let g (v) = v* (1 —v) 1) (v) with =5 <«
(this inequality ensures existence of the stochastic integral g x o e B)

If @ < 0 then we are in the nonsemimartingale situation.
Then, for ¢ (8) = (1 —27) 1 6**2% we have
X, £ 3.

Hence the process X is volatility memoryless.
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Quadratic variation of ambit processes

Example [[BNG10]] Suppose now that
V)= [ s Etesn@wdds). ()

For a given smooth curve v = (71, 7,) : R — R? consider the process

Xo = Y(7(8)) 6>0.
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Quadratic variation of ambit processes

Pick up of information on intermittency:

(£(0), 2(0))

Figure: Increments

The figure shows a type of ambit sets that is of interest in turbulence
studies and whose shape is motivated in Taylor's frozen field hypothesis
(cf. [BNSch04]))
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Quadratic variation of ambit processes

We are primarily interested in the case where the ambit set A is bounded
with regular boundary curve and where the kernel function g is 'regular’ on
the interior of A.

We now introduce a probability measure 715 which is determined by the
kernel function g and whose behaviour as § — 0 is of key importance for
the probabilistic limit properties of [Xj].

Define 75 by

75 (dudv) = ll75c((L15.)\/)du dv

where

c(d) = /R2 Ps(u, v)dudv

and where ;(u, v) is defined in terms of squared increments of g.
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Quadratic variation of ambit processes

By construction, 715 is a probability measure and all weak limit points of
7ts for & — 0 will be probability measures concentrated on —A. Simple
calculations together with the continuity assumption on the volatility field
o imply that in case the limit

w
s —§—0 70

exists for some probability measure 77y then

E[[Ys], | 0] —>5—>o/ / _,(71(s) — u) ds o (du dv).

August 8, 2011
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Quadratic variation of ambit processes

We are particularly interested in conditions on A and g ensuring that the
limit 77p exists and is concentrated on d(—A) = —0dA. In this case we
have, as a main result, that

/R2 / o (71(5) + u) ds 7e(du dv). (6)

Here 71 denotes the image measure of 71g under the transformation
(u,v) — (—u, —v). Observe that 7 is concentrated on dA.

Remark Note especially that 71 may be situated on dA even if the
function g tends rather rapidly to 0 as its argument tends to the boundary.

Remark If A has a unique top point then the limit measure 7T exists and
equals the delta measure at that point, in which case the process is
volatility memoryless.
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Quadratic variation of ambit processes

The validity of the result

/Rz / )+v(71(8) + u) ds 7t(du dv)

has been established subject to specified regularity conditions on A, g and
o, including convexity of A, continuity of o and independence of o and W.
And we have worked under the assumption that the curve 7y is linear.
[BNG10]

Thus the assumptions have been quite restrictive, but we believe that the
conclusion holds in much greater generality.

But in any case, limit in probability can only be considered a first step.
Namely:
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It is important to establish CLT's for the normed RQV [Y;] and, more
generally, for normed realised multipower variations (RMPV). Such results
are, in particular, key for inference on g and ¢.

Some first results in this direction have recently been established in the
null-spatial setting of BSS processes. [[BNCP09], [BNCP10]]

We proceed to give an indication of those results.

We note first, however, that the theory of realised multipower variations
was first developed in the semimartingale setting, motivated by problems
in financial mathematics and financial econometrics. [[BNS02], [BNS03],
[BNS04], [BNGJPS06], [BNGJS06], [J08a], [J08b]]

Unlike these semimartingale based results, essential for the derivations in
ambit settings are the use of Malliavin calculus, in particular a new CLT
for Gaussian triangular arrays.
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Multipower variation

Multipower Variation

Let X be a stochastic process in continuous time, observed over the
interval [0, t] at time points 0,5, 24, ..., where § = n~! for some positive
integer n.

Realised multipower A-variations

A realised multipower A-variation of a stochastic process X is an object of

the type
[nt]—k+1 &

Va(Yoproooop)i = Y, TTIAY 1 XIP
=1 j=1

where ATX = Xj5 — X(,-_l)(; and p1,...,px = 0.
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Multipower variation

Realised multipower {-variations

A realised multipower (-variation of a stochastic process X is an object of

the type
[nt]—k+1 k
Vo(Y,pl,...,pk)g E H‘<>1+j—1X|pj
i=1

where 07X = Xjz — 2X(i_1)s + X(i—2)s and p1,..., px > 0.

@ Importance of ‘diamond’ variations

August 8, 2011
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Multipower variation

Now consider a BSS process

Y: = /t g(t—s)osW(ds) + /_too q(t — s)asds.

—00

Let G be the Gaussian core of Y, i.e.

G = /:og(t—s)W(ds)

and let G be the o-algebra generated by G.
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Multipower variation

Key quantities

Define r,,A as the autocorrelation function of the A-increments of G, i.e.

) ATG A" .G

() = cou( M8, 2146
Tn TI'J

and r,? as the autocorrelation function of the {-increments of G, i.e.

016 <>f+jG)

(oS

r,? () = cov(
where

(v4) =e{lat6P) and (v9) =E{jo16P}.
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Multipower variation

Let 7T§ be the measure on IR defined by

(= 8) — )2
A== <g<x—5>— ())Pdx

Note that 7104 is a probability measure on IR, and set

5 (x) = mg({y + y > x}).

This measure 775 has a crucial influence on the asymptotic behaviour of
the realised multipower A-variations of Y.
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Multipower variation

Similarly, let 7'[55> be the measure on R defined by

_ Jalg(x —26) —2g(x — §) + g(x))*dx
[ (g(x —20) — 2g(x — 8) + g(x))2dx’

Note that 7t(<5> is a probability measure on IR, and set

Ay (x) =5 ({y: ¥y >x}).

This measure ﬁg has a crucial influence on the asymptotic behaviour of
the realised multipower (-variations of Y.
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Multipower variation

We are interested in the probabilistic limit behaviour of the normalised
realised multipower A-variations

t]—k+1
Ua(Y RN s DYRE
A rplv'--rpk t n(TA)p+ 4 I+_/—1

and of the normalised realised multipower {-variations

1 —k+1 k

)PI 2 H (072 1P

VQ(Y,pl,...,pk)?: o
(<5
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Multipower variation

Example of results obtained (under regularity conditions): [BNCPQ9]

Joint Central Limit Theorem:

f(VA(Y PLoo Pl Pf,jl) p/k/ |(75|pj+d5)1§j§d

G- st/ Zl/2dB
0

where B is a d-dimensional Brownian motion that is independent of Y,
and Z is a d x d-dimensional process

Zi = ByloP P, 1<ij<d.
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Multipower variation

Realised Variation Ratios (RVR)

VA(Y,1,1) Vo (Y, 1,

RVRA = —————= d RVRy =
AT Vv 0

Roles in Finance and Turbulence

In particular:

@ RVRs: Fingerprints of turbulence

Joint Central Limit Theorems for RVR's established in [BNCP10].
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Stochastic analysis for ambit processes

Exit remark:
To what extent can one create a
Stochastic Calculus for (Stationary) Ambit Processes?
Integration issues
Stochastic differentials?

"Ito Algebra?
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