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Introduction

Dynamic stochastic phenomena frequently involve a signi�cant element of
randomness beyond the most basic types of stochastic innovations.
Additional variations of this kind are referred to as Volatility or
Intermittency.

Such �additional�random �uctuations generally vary, in time and/or in
space, in regard to both intensity and amplitudes.

This talk presents an overview of some recent and ongoing work on

How to model, measure and assess volatility/intermittency
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Introduction

Volatility/intermittency constitutes an important element in many
scienti�c contexts.

Turbulence [Kolmogorov-Obukhov (1962)]

Finance

Rain

Nanoscale emitters

In this talk the connection to Turbulence will be in focus.
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Ambit stochastics

Ambit Stochastics

Namer for the theory and applications of ambit �elds and ambit processes

While we focus here is on the turbulence context, ambit stochastics has
also found roles in �nance and biology.
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Ambit stochastics

Ambit �elds

Yt (x) = µ+
Z
At (x )

g (ξ, s; t, x) σs (ξ) L (dξds)

+
Z
Dt (x )

q (ξ, s; t, x) as (ξ)dξds.

Here At (x), and Dt (x) are ambit sets (i.e. deterministic subsets of
Rd�R), g and q are deterministic (matrix) functions, σ � 0 is a
stochastic �eld, and L (dξ,ds) is a homogeneous Lévy basis (i.e. an
independently scattered random measure whose values are in�nitely
divisible and such that L is homogeneous in space-time).

The volatility/intermittency is embodied in σ.
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Ambit stochastics

Ambit processes

We shall, in particular, be interested in settings where the data consist in
observation of the values of an ambit �eld along a curve (x (θ) , t (θ)) in
space-time Rd�R.

Thus we consider processes of the form X = fXθg where
Xθ = Yt(θ) (x (θ)).

We refer to such processes as ambit processes.
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Ambit stochastics

(t(θ), x(θ))Xθ

At(θ)(x(θ))

@

�
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Figure: Ambit processes
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Ambit stochastics

Stationary settings

We will mainly consider settings which are stationary in time and
sometimes also in space.

Yt (x) = µ+
Z
At (0)+(x ,0)

g (t � s, ξ, x) σs (ξ) L (dξds)

+
Z
Dt (0)+(x ,0)

q (t � s, ξ, x) as (ξ)dξds.

where σ and a are stochastic �elds that are stationary at least in time.
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Modelling turbulence

Modelling turbulence

Let Yt (x) denote the velocity (d-dimensional; d = 1, 2, 3) at time t and
at position x 2 Rd .

Yt (x) = µ+
Z
A0(x )+(0,t)

g (t � s, ξ; x) σs (ξ)W (dξds)

+
Z
D0(x )+(0,t)

q (t � s, ξ; x) as (ξ)dξds.

Encompassing stylised features of turbulence; by suitable choice of the
de�ning elements. [[BNSch04], [BNBlSch04], [BNEgSch05], [BNSch07]]
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Null-spatial setting

The null-spatial setting

BSS processes �Brownian semistationary processes

Yt =
Z t

�∞
g(t � s)σsB(ds) +

Z t

�∞
q(t � s)asds

where B is Brownian motion on R, σ and a are stationary cadlag processes
and g and q are deterministic continuous memory functions on R, with
g (t) = q (t) = 0 for t � 0. It is sometimes convenient to indicate the
formula for Y as

Y = g � σ � B + q � a � Leb.

LSS processes:
Y = g � σ � L+ q � a � Leb
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Null-spatial setting

We consider the BSS processes to be the natural analogue, in stationarity
related settings, of the class BSM of Brownian semimartingales.

Yt =
Z t

0
σsdWs +

Z t

0
asds.

The BSS processes are not in general semimartingales
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Null-spatial setting

Example Suppose Y = g � σ � B with g (t) = tν�1e�λt and σ = 1.,
and where λ > 0 and ν > 1

2 (where the latter condition is required for the
integral g � B to exist). Then, by a theorem due to Knight, Y is a
semimartingale if and only if either ν = 1 or ν > 3

2 . �

In the context of turbulence the most interesting cases are ν 2
�
1, 32

�
.

In general, the question of when an ambit process is a semimartingale is
far from resolved. However, an important class of one-dimensional cases is
covered by recent work of Basse-O�Connor and Pedersen [[BasPed09]].
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Modelling of volatility/intermittency �elds

Modelling of volatility/intermittency �elds

The volatility/intermittency �elds we shall consider are the form

σt (x) = V
�Z

Ct (x )
h (t, s, x , ξ) L (dsdξ)

�
where V is a smooth positive function and L is a homogeneous Lévy basis
while Ct (x) and h (t, s, x , ξ) are deterministic.

Of special interest are cases where σt (x) is stationary in t.

We mention some main settings.
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Modelling of volatility/intermittency �elds

Arithmetic case

σ2t (x) = L (Ct (x)) (1)

for a positive homogeneous Lévy basis L and where
Ct (x) = C0 (x) + (t, 0).

More generally,

σ2t (x) =
Z
Ct (x )

h (t � s, x , ξ) L (dsdξ) (2)

with h � 0.
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Modelling of volatility/intermittency �elds

Geometric case

σt (x) = eZt i (x ) (3)

where
Zt (x) =

Z
Ct (x )

h (t � s, x , ξ) L (dsdξ) . (4)

A speci�cation of particular interest in the context of turbulence is

Zt (x) = W (Ct (x)) .
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Modelling of volatility/intermittency �elds

Speci�cation of ambit regions

Figure:

[[BNEgSch05]]
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Quadratic variation of ambit processes

Inference on volatility/intermittency

Key tools are realised quadratic variation (RQV) and, more generally,
realised multipower variation (RMPV).
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Quadratic variation of ambit processes

Quadratic variation

The realised quadratic variation of a stochastic process X is denoted by
[Xδ]. Here δ is the time lag between observations, and [Xδ] and its
normalised version [Xδ] are, for t > 0, given by

[Xδ]t =
[t/δ]

∑
k=1

(Xkδ � X(k�1)δ)2 and [Xδ]t =
δ

c(δ)
[Xδ]t

where c(δ) is a positive constant, depending only on δ, whose speci�c
form will be discussed below.

We are interested in the asymptotic behavior of [Xδ] and [Xδ]t for δ ! 0.
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Quadratic variation of ambit processes

Quadratic variation of ambit processes

In general, for ambit processes the realised quadratic variation does not
converge but in many cases of interest a suitably normed version of RQV,
i.e. [Xδ], does have a limit in probability.

The limit behaviour of [Xδ] depends generally in a crucial way on an
interplay between the shape of the ambit sets and the kernel function g .

We illustrate that by three examples. In the �rst two there is no spatial
component.
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Quadratic variation of ambit processes

Example Suppose that for some 0 < l < ∞ we have
g (v) = e�λv1(0,l)(v), so that

Yt =
Z t

t�l
e�λ(t�s)σsdBs .

This is a non-semimartingale case. Nevertheless,

[Yδ]t
p!
�
1+ e�2λl

��1
σ2+t �

�
1+ e2λl

��1
(σ2+t�l � σ2+�l ).

Thus the ordinary RQV converges but the process Y is not volatility
memoryless, that is we do not have [Yδ]t

p�! σ2+t .
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Quadratic variation of ambit processes

Example [[BNSch09]] Let g (v) = v α (1� v) 1(0,1)(v) with � 1
2 < α

(this inequality ensures existence of the stochastic integral g � σ � B)

If α < 0 then we are in the nonsemimartingale situation.

Then, for c (δ) = (1� 2γ)�1 δ1+2α, we have

[Xδ]t
P�! σ2+t .

Hence the process X is volatility memoryless.
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Quadratic variation of ambit processes

Example [[BNG10]] Suppose now that

Yt (x) =
Z
A+(x ,t)

g (x � ξ, t � s) σs (ξ)W (dξds) . (5)

For a given smooth curve γ = (γ1,γ2) : R! R2 consider the process

Xθ = Y (γ(θ)) θ � 0.
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Quadratic variation of ambit processes

Pick up of information on intermittency:

t

t
′

•

•

x x
′

!

" (t(θ), x(θ))

Figure: Increments

The �gure shows a type of ambit sets that is of interest in turbulence
studies and whose shape is motivated in Taylor�s frozen �eld hypothesis
(cf. [BNSch04]))
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Quadratic variation of ambit processes

We are primarily interested in the case where the ambit set A is bounded
with regular boundary curve and where the kernel function g is �regular�on
the interior of A.

We now introduce a probability measure πδ which is determined by the
kernel function g and whose behaviour as δ ! 0 is of key importance for
the probabilistic limit properties of [Xδ].

De�ne πδ by

πδ (dudv) =
ψδ(u, v)
c(δ)

du dv

where
c(δ) =

Z
R2

ψδ(u, v)du dv

and where ψδ(u, v) is de�ned in terms of squared increments of g .
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Quadratic variation of ambit processes

By construction, πδ is a probability measure and all weak limit points of
πδ for δ ! 0 will be probability measures concentrated on �A. Simple
calculations together with the continuity assumption on the volatility �eld
σ imply that in case the limit

πδ
w!δ!0 π0

exists for some probability measure π0 then

E [ [Yδ]t j σ]!δ!0

Z
R2

Z t

0
σ2γ2(s)�v (γ1(s)� u) ds π0(du dv).
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Quadratic variation of ambit processes

We are particularly interested in conditions on A and g ensuring that the
limit π0 exists and is concentrated on ∂(�A) = �∂A. In this case we
have, as a main result, that

[Yδ]t
p!
Z
R2

Z t

0
σ2γ2(s)+v

(γ1(s) + u) ds π(du dv). (6)

Here π denotes the image measure of π0 under the transformation
(u, v) 7! (�u,�v). Observe that π is concentrated on ∂A.

Remark Note especially that π may be situated on ∂A even if the
function g tends rather rapidly to 0 as its argument tends to the boundary.

Remark If A has a unique top point then the limit measure π exists and
equals the delta measure at that point, in which case the process is
volatility memoryless.
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Quadratic variation of ambit processes

The validity of the result

[Yδ]t
p!
Z
R2

Z t

0
σ2γ2(s)+v

(γ1(s) + u) ds π(du dv)

has been established subject to speci�ed regularity conditions on A, g and
σ, including convexity of A, continuity of σ and independence of σ and W .
And we have worked under the assumption that the curve γ is linear.
[BNG10]

Thus the assumptions have been quite restrictive, but we believe that the
conclusion holds in much greater generality.

But in any case, limit in probability can only be considered a �rst step.
Namely:
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CLTs

It is important to establish CLT�s for the normed RQV [Yδ] and, more
generally, for normed realised multipower variations (RMPV). Such results
are, in particular, key for inference on g and σ.

Some �rst results in this direction have recently been established in the
null-spatial setting of BSS processes. [[BNCP09], [BNCP10]]

We proceed to give an indication of those results.

We note �rst, however, that the theory of realised multipower variations
was �rst developed in the semimartingale setting, motivated by problems
in �nancial mathematics and �nancial econometrics. [[BNS02], [BNS03],
[BNS04], [BNGJPS06], [BNGJS06], [J08a], [J08b]]

Unlike these semimartingale based results, essential for the derivations in
ambit settings are the use of Malliavin calculus, in particular a new CLT
for Gaussian triangular arrays.
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Multipower variation

Multipower Variation

Let X be a stochastic process in continuous time, observed over the
interval [0, t] at time points 0, δ, 2δ, ..., where δ = n�1 for some positive
integer n.

Realised multipower ∆-variations

A realised multipower ∆-variation of a stochastic process X is an object of
the type

V∆(Y , p1, . . . , pk )nt =
[nt ]�k+1

∑
i=1

k

∏
j=1
j∆ni+j�1X jpj

where ∆ni X = Xiδ � X(i�1)δ and p1, . . . , pk � 0.
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Multipower variation

Realised multipower �-variations

A realised multipower �-variation of a stochastic process X is an object of
the type

V�(Y , p1, . . . , pk )nt =
[nt ]�k+1

∑
i=1

k

∏
j=1
j�ni+j�1X jpj

where �ni X = Xiδ � 2X(i�1)δ + X(i�2)δ and p1, . . . , pk � 0.

Importance of �diamond�variations
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Multipower variation

Now consider a BSS process

Yt =
Z t

�∞
g(t � s)σsW (ds) +

Z t

�∞
q(t � s)asds.

Let G be the Gaussian core of Y , i.e.

Gt =
Z t

�∞
g(t � s)W (ds)

and let G be the σ-algebra generated by G .
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Multipower variation

Key quantities

De�ne r∆
n as the autocorrelation function of the ∆-increments of G , i.e.

r∆
n (j) = cov

�∆n1G
τ∆
n
,

∆n1+jG
τ∆
n

�
and r�n as the autocorrelation function of the �-increments of G , i.e.

r�n (j) = cov
��n1G

τ�n
,
�n1+jG

τ�n

�
where �

τ∆
n

�2
= E

n
j∆n1G j2

o
and

�
τ�n
�2
= E

n
j�n1G j2

o
.
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Multipower variation

Let π∆
δ be the measure on R+ de�ned by

π∆
δ (A) =

R
A(g(x � δ)� g(x))2dxR ∞
0 (g(x � δ)� g(x))2dx

.

Note that π∆
δ is a probability measure on R+, and set

π̄∆
δ (x) = π∆

δ (fy : y > xg).

This measure π̄δ has a crucial in�uence on the asymptotic behaviour of
the realised multipower ∆-variations of Y .
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Multipower variation

Similarly, let π�δ be the measure on R+ de�ned by

π�δ (A) =

R
A(g(x � 2δ)� 2g(x � δ) + g(x))2dxR ∞
0 (g(x � 2δ)� 2g(x � δ) + g(x))2dx

.

Note that π�δ is a probability measure on R+, and set

π̄�δ (x) = π�δ (fy : y > xg).

This measure π̄�δ has a crucial in�uence on the asymptotic behaviour of
the realised multipower �-variations of Y .
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Multipower variation

We are interested in the probabilistic limit behaviour of the normalised
realised multipower ∆-variations

V̄∆(Y , p1, . . . , pk )nt =
1

n (τ∆
n )
p+

[nt ]�k+1

∑
i=1

k

∏
j=1
j∆ni+j�1Y jpj

and of the normalised realised multipower �-variations

V̄�(Y , p1, . . . , pk )nt =
1

n
�

τ�n
�p+ [nt ]�k+1

∑
i=1

k

∏
j=1
j�ni+j�1Y jpj

Ole E. Barndor¤-Nielsen Thiele Centre (Faculty of Science and Engineering) and CREATES (Faculty of Business and Social Sciences); Aarhus University ()Volatility and Variation August 8, 2011 35 / 38



Multipower variation

Example of results obtained (under regularity conditions): [BNCP09]

Joint Central Limit Theorem:

p
n
�
V̄∆(Y , p

j
1, . . . , pjk )

n
t � ρ

(n)

p j1,...,p
j
k

Z t

0
jσs jp

j
+ds

�
1�j�d

G�st�!
Z t

0
Z 1/2
s dBs

where B is a d-dimensional Brownian motion that is independent of Y ,
and Z is a d � d-dimensional process

Z ijs = βij jσs jp
i
++p

j
+ , 1 � i , j � d .
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Multipower variation

Realised Variation Ratios (RVR)

RVR4 =
V4(Y , 1, 1)
V4(Y , 2)

and RVR� =
V�(Y , 1, 1)
V�(Y , 2)

Roles in Finance and Turbulence

In particular:

RVRs: Fingerprints of turbulence

Joint Central Limit Theorems for RVR�s established in [BNCP10].
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Stochastic analysis for ambit processes

Exit remark:

To what extent can one create a

Stochastic Calculus for (Stationary) Ambit Processes?

Integration issues

Stochastic di¤erentials?

"Ito Algebra"?

.....
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Rosínski, J. (2007): Spectral representation of in�nitely divisible
processes and injectivity of the Υ�transformation. Available from
www.math.ku.dk/english/research/conferences/levy2007/levy.html.

Sato, K. (1999): Lévy Processes and In�nitely Divisible Distributions.
Cambridge University Press.

Ole E. Barndor¤-Nielsen Thiele Centre (Faculty of Science and Engineering) and CREATES (Faculty of Business and Social Sciences); Aarhus University ()Volatility and Variation August 8, 2011 38 / 38



References

Sato, K. (2007): Transformations of in�nitely divisible distributions via
improper stochastic integrals, ALEA (Latin American Journal of
Probability and Mathematical Statistics) 3, 67-110.

Steutel, F.W. and van Harn, K. (2004): In�nite Divisibility of
Probability Distributions on the Real Line. Basel: Marcel Dekker.
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